
Zpravodaj Československého sdružení uživatelů TeXu

Michel Charpentier
Programujeme L-systémy v PostScriptu

Zpravodaj Československého sdružení uživatelů TeXu, Vol. 22 (2012), No. 1, 9–19

Persistent URL: http://dml.cz/dmlcz/150198

Terms of use:
© Československé sdružení uživatelů TeXu, 2012

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This document has been digitized, optimized for electronic delivery
and stamped with digital signature within the project DML-CZ:
The Czech Digital Mathematics Library http://dml.cz

http://dml.cz/dmlcz/150198
http://dml.cz


Programujeme L-systémy v PostScriptu
Michel Charpentier

Abstrakt
I když se PostScript tradičně považuje za formát souborů pro popis grafiky, jedná
se ve skutečnosti o plnohodnotný programovací jazyk rozšířený o grafické funkce.
Jeho vyjadřovací schopnosti sahají mnohem dál než pouhý popis vektorové
grafiky. PostScript umožňuje naprogramování řady různých druhů vypočtů,
včetně složitých aritmetických operací. V tomto článku ukážeme jak používat
rekurzivní funkce v PostScriptu k implementaci skupiny přepisovacích systémů
nazývaných L-systémy. Pomocí těchto systémů můžeme psát jednoduché pro-
gramy v PostScriptu, které kreslí jak klasické fraktály tak i zajímavé obrázky
připomínající rostliny.
Klíčová slova: PostScript, L-systémy, fraktály.

PostScript as a Programming Language

PostScript [1] is a graphical description language which was widely used in the
graphics and typesetting worlds but is slowly being supplanted by the newer
Portable Document Format (pdf). One fascinating thing about PostScript is
that, in addition to its graphical capabilities, it possesses many of the features
found in more traditional programming languages, like variables, conditional and
loops (which pdf does not). Indeed, there is enough in PostScript to compute
everything that is computable (in more pedantic terms, the language is said to
be “Turing-complete”).

It is always fun to learn a new programming language and, in my case, it always
begins by calculating prime numbers.1 Although it is possible to use PostScript
to generate tables of prime numbers—the fun2 part being that the numbers are
computed by the printer—the language is first and foremost a graphical language,
which begs the question: What can be done with prime numbers and graphics?
One answer is the Ulam Spiral [10], which places integers along a (squarish) spiral
and marks prime numbers with dots to display interesting patterns.

Fig. 1 shows Ulam’s Spiral with a dot for each prime number, in which diagonal
patterns start to emerge. Fig. 2 shows a closeup of the center of the spiral. Both
pictures are generated using a PostScript program [4] that draws the spiral, the

1I grew tired of saying Hello to a world that never said Hello back.
2It stops being fun as soon as there are enough people waiting for urgent printouts while

the main department printer is busy crunching prime numbers.

doi: 10.5300/2012-1/9 9



Figure 1: Ulam’s Spiral.

2
35

7
11

1317

19

23

29

3137

41

43 47

53

5961

67

71

73 79
83

89

97101

103

107

109

113

127

131

137139

149

151

157 163 167

173

179

181

191193197

199

211 223

227

229

233

239

241251257

263

269

271

277 281 283

293

307311313317

331

337

347 349 353 359

367

373

379

383389397401

409

419

421 431 433 439

443

449

457

461

463467479

487

491

499

503

509 521 523

541

547

557563569571577

587

593

599

601 607 613 617 619

631

641

643

647

653659661673677

683

691

701

709 719 727

733

739

743

751

757761769773

787

797

809

811

821 823 827 829 839

853

857

859

863

877881883887

907

911

919

929

937 941 947 953

967

971

977

983

991

9971009101310191021

1031

1033

1039

1049

1051

1061 1063 1069 1087

1091

1093

1097

1103

1109

1117

1123112911511153

1163

1171

1181

1187

1193 1201 1213 1217 1223

1229

1231

1237

1249

1259

127712791283128912911297

1301

1303

1307

1319

1321

1327

1361 1367

1373

1381

1399

140914231427142914331439

1447

1451

1453

1459

1471

1481

1483 1487 1489 1493 1499 1511

1523

1531

1543

1549

1553

1559

156715711579158315971601

1607

1609

1613

1619

1621

1627

1637

1657 1663 1667 1669

169

169

169

170

172

17217331741174717531759

777

783

787

789

801

1811 1823 1831 1847

19011907191319311933

1987 1993 1997 1999 2003 2011 2017

2081208320872089209921112113

2179 2203 220

2267226922732281228722932297

2357 2371 2377 2381 2383 2389 2393

2459246724732477

2557 2579 2591 2593

265926632671267726832687268926932699

2767 2777 2789 2791 2797 2801 2803

28792887289729032909

2999 3001 3011 301

Figure 2: Ulam’s Spiral (closeup).

dots, the numbers inside the dots and, more importantly, implements its own
primality testing. Fig. 3 shows how trial division can be written in PostScript to
implement a prime? function that tests whether a number is prime. PostScript
also has arrays, which makes it possible to calculate prime numbers with the
sieve of Eratosthenes, but the code is a bit longer (see [4] for details).

/prime? {
/n exch def
n 1 eq {
false % 1 is not prime

}{
n 2 mod 0 eq {
n 2 eq

}{
/divide? false def
3 2 n sqrt {

n exch div dup ceiling eq
{/divide? true def exit} if

} for
divide? not

} ifelse
} ifelse

} bind def

Figure 3: Primality testing by trial division.

Without getting too much into PostScript syntax for now, a few things are
worth noting. We see that the language has all the usual good stuff, like Booleans
(true, false, not), conditionals (if, ifelse), loops (for, used here from 3 to

10



√
n by 2 increments), tests (eq) and variable names (n, divide?). We also see

that it is based on a stack (exch, dup) and uses a postfix notation (as in (n 1 eq)
or when pushing the condition, “then” block and “else” block on the stack before
calling ifelse). This use of stack in a postfix manner does not make PostScript
the easiest programming language to read.3

Fractals as L-Systems

An L-system [9, 7], named after the biologist Lindenmayer, is a model based on
rewriting rules, most famously used to study the self-similarity found in plants
[6]. Before going into plants (which require branching, as plants would), consider
a (mythical) animal, the Dragon. The Dragon Curve [8] is a famous fractal that
is obtained by repeatedly replacing a line segment by a “corner” made of two
shorter line segments.

The Dragon Curve can be described as a L-system with three rewriting rules:4
X → -FX++FY-, Y → +FX--FY+ and F → Λ (where Λ represents the empty string
to indicate that F symbols are removed). Starting with X, apply the rules N
times, each time replacing all the X, Y and F. After N iterations, remove the
remaining the X and Y and what is left is a string of F, - and +. If F means “move
forward”; - means “turn 45◦ right”; and + means “turn 45◦ left”, in the classic
“turtle” interpretation, the string describes a curve. Intuitively, the rewriting
rules implement a process by which a line segment is being removed (rule F → Λ)
and replaced by a “corner” below (rule X) or above (rule Y) it, in an alternating
fashion. Fig 4 shows the first seven iterations, with the corresponding curves.

After seven iterations, and using “round corners” to make the curve easier to
follow, it looks like this (and yes, this is a Dragon, not a French poodle):

3Not that this would scare an experienced LATEX user, I am sure.
4There are simpler L-systems for the Dragon Curve, described in [6], but the system chosen

here has the benefit of drawing the Dragon always oriented in the same direction.

11



N = 1 -F++F-

N = 2 –F++F-+++F–F+-

N = 3 –-F++F-+++F–F+-+++-F++F–-+F–F++-

N = 4 ––F++F-+++F–F+-+++-F++F–-+F–F++-+++–F++F-+++

F–F+–-+-F++F–-+F–F+++-

N = 5

––-F++F-+++F–F+-+++-F++F–-+F–F++-+++–F++F-++

+F–F+–-+-F++F–-+F–F+++-+++–-F++F-+++F–F+-+++

-F++F–-+F–F++–-+–F++F-+++F–F+–-+-F++F–-+F–

F++++-

N = 6

–––F++F-+++F–F+-+++-F++F–-+F–F++-+++–F++F-+

++F–F+–-+-F++F–-+F–F+++-+++–-F++F-+++F–F+-++

+-F++F–-+F–F++–-+–F++F-+++F–F+–-+-F++F–-+F-

-F++++-+++––F++F-+++F–F+-+++-F++F–-+F–F++-+++

–F++F-+++F–F+–-+-F++F–-+F–F+++–-+–-F++F-+++

F–F+-+++-F++F–-+F–F++–-+–F++F-+++F–F+–-+-F+

+F–-+F–F+++++-

N = 7

–––-F++F-+++F–F+-+++-F++F–-+F–F++-+++–F++F-

+++F–F+–-+-F++F–-+F–F+++-+++–-F++F-+++F–F+-+

++-F++F–-+F–F++–-+–F++F-+++F–F+–-+-F++F–-+F

–F++++-+++––F++F-+++F–F+-+++-F++F–-+F–F++-++

+–F++F-+++F–F+–-+-F++F–-+F–F+++–-+–-F++F-++

+F–F+-+++-F++F–-+F–F++–-+–F++F-+++F–F+–-+-F

++F–-+F–F+++++-+++––-F++F-+++F–F+-+++-F++F–-

+F–F++-+++–F++F-+++F–F+–-+-F++F–-+F–F+++-+++

–-F++F-+++F–F+-+++-F++F–-+F–F++–-+–F++F-+++F

–F+–-+-F++F–-+F–F++++–-+––F++F-+++F–F+-+++

-F++F–-+F–F++-+++–F++F-+++F–F+–-+-F++F–-+F–

F+++–-+–-F++F-+++F–F+-+++-F++F–-+F–F++–-+–F

++F-+++F–F+–-+-F++F–-+F–F++++++-

Figure 4: Dragon Curve, as generated by the system X → -FX++FY-,
Y → +FX–FY+, F → Λ.

12



Programming L-Systems in PostScript

Since PostScript is stack-based, it obviously supports recursive functions. The
three rewriting rules of the Dragon Curve system can be implemented as three
functions X, Y and F, where X and Y are mutually recursive. The PostScript
program for the Dragon Curve is given below, with relevant comments.

First, the file starts with a special comment to indicate that it should be
interpreted as PostScript.
%!PS

A variable N is then defined. This is the number of iterations we want to perform.
/N 7 def

Three functions X, Y and F are defined. They take as parameter the number of
remaining iterations, which is pushed on the stack before each call. The idea is
that, at the last iteration, when this counter reaches zero, the symbols (here, the
function calls) are interpreted graphically: F draws a line segment while X and
Y do nothing. When the counter is non-zero, the functions are interpreted as
rewriting rules, triggering calls to more functions.

Function X tests the number of remaining iterations to see if it is zero. This is
done by duplicating it, then comparing to zero. This way, if the top of the stack
is 〈3〉, it becomes 〈3, true〉 and if it is 〈0〉, it becomes 〈0, false〉. If the count is
zero, the function does nothing (it has no graphical counterpart). If the count
is non-zero, X makes 7 function calls to functions -, +, F, X and Y. Functions -
and + represent 45◦ rotations and do not need the iteration count. The count
is thus pushed 4 times on the stack (for the 4 calls to F, X and Y) after having
been decremented by one. After the calls, the function terminates by popping its
parameter from the stack.
/X {

dup 0 ne
{1 sub 4 {dup} repeat - F X + + F Y -}
if pop

} def
Function Y is similar to function X. Function F does nothing when the count is
non-zero (corresponding to the F → Λ rule). When the counter reaches zero,
the function performs a graphical operation, namely drawing a horizontal line
segment of length 10.
/Y {

dup 0 ne
{1 sub 4 {dup} repeat + F X - - F Y +}
if pop

} def

13



/F {
0 eq { 10 0 rlineto } if

} bind def
Although the line is always drawn horizontally, the graphics context is rotated by
the - and + functions. Function - rotates it clockwise (right turn) and function
+ does it counterclockwise (left turn).
/- { -45 rotate } bind def
/+ { 45 rotate } bind def

Following are simple settings so lines have rounded tips and they join nicely.
1 setlinejoin
1 setlinecap

The call to newpath starts a new curve. We move to a carefully calculated
location and we scale the picture by a factor equal to 50

(
√

2)N
, where N is the total

number of iterations. Since the line segment have a constant length of 10, the
Dragon ends up always having the same size, for any number of iterations.

newpath
220 180 moveto
50 N { 2 sqrt div } repeat dup scale

Finally, a 90◦ rotation places the page in landscape orientation and an initial call
to function X is made with N on the top of the stack. The path that is built
by the series of calls to rlineto is drawn as a line by stroke and the page is
printed or displayed, depending on where the PostScript code is interpreted.

90 rotate
N X
stroke
showpage

The full program can be downloaded from the Web [2]. Other well-known fractals,
besides the Dragon Curve, can be represented as L-Systems with well-chosen
rotation angles and rewriting rules. Many can be drawn with the same PostScript
program by only changing a few lines. Fig. 5 shows the classic examples of
Hilbert’s curve and Koch’s snowflake, with their associated L-systems.

Implementing Branching

Dragons—and, for that matter, French poodles—need trees and trees need
branches. L-systems include a branching operator, usually represented with
square brackets. Basically, ‘[’ marks a point and ‘]’ goes back to it. This allows
the system to recursively build a branch (a subtree) before it continues from
the trunk (or main branch) it left from. Fig. 6 shows examples of branching
L-systems from [6] and their graphical representations. Note how some systems
use nested branching. Colors are obtained here by using lighter shades of green

14



angle 90
START -> X
X -> -YF+XFX+FY-
Y -> +XF-YFY-FX+

angle 60
START -> +F--F--F
F -> F+F--F+F

Figure 5: Hilbert’s curve and Koch’s snowflake.

as the depth of the computation increases for a “realistic” effect, or are chosen
randomly at branching points, each variant being straightforward to implement
in PostScript (the language has a rand operator).

Branching can be implemented straightforwardly using PostScript’s gsave
and grestore operators. The first operator saves the current graphics context
(including color and current point) by pushing it onto the stack; the second
operator restores the graphics context from the stack. They result in the following
PostScript implementation of ‘[’ and ‘]’ (square brackets are part of PostScript’s
syntax for arrays, so B and E are used instead):
/B { gsave } bind def
/E { stroke grestore } bind def

B saves the graphics context and E draws the current subtree (stroke) before
restoring the context.

This implementation of branching in PostScript, however, turns out to be
quite inefficient: When function E is invoked (at the tip of a branch), a path
is being stroked all the way from the origin (the root of the tree). As a result,
branches shared by many leaves are being drawn many times. This can be avoided
by committing the path up to the branching point before branching. An alternate
definition of B could be:
/B { currentpoint stroke moveto gsave } bind def

15



angle 20
START -> X
X -> F[+X]F[-X]+X
F -> FF

angle 30
START -> F
F -> F[+F[+F][-F]F][-F

[+F][-F]F]F[+F][-F]F

angle 22.5
START -> F
F -> FF-[-F+F+F]+[+F-F-F]

angle 22.5
START -> X
X -> F-[[X]+X]+F[+FX]-X
F -> FF

angle 25
START -> F
F -> F[+F]F[-F]F

angle 25
START -> X
X -> F[+X][-X]FX
F -> FF

angle 20
START -> F
F -> F[+F]F[-F][F]

angle 25
START -> Y
X -> X[-FFF][+FFF]FX
Y -> YFX[+Y][-Y]

Figure 6: Plants as branching L-systems.
16



Figure 7: Single path versus multiple paths.

Function B now draws the path up to the current point and moves the origin of
a new path to the branching point. The resulting program is faster, but branches
are drawn as a series of successive strokes, which does not always look as nice.
Fig. 7 shows a closeup of a branching point, with the new implementation of
branching on the right. To give the user a choice between faster computations
or nicer graphics, one can define a Boolean flag within the PostScript program.
It could be inefficient, however, to test this flag at every branching point. An
alternative approach is to use the flag to build variants of the branching function.
This strategy can also be used to choose a coloring scheme once and for all,
without the need for further testing when the drawing takes place. PostScript
was to some extend inspired by Lisp and like Lisp, it offers ways to dynamically
build blocks of code to be later evaluated (basically, a block is just an array that
is flagged as executable). The resulting implementation of B is as follows:
/B [
fast? {
{currentpoint stroke moveto}
aload pop

} if
{gsave} aload pop
currentdict /color known {
{dup color}
aload pop

} if
] cvx bind def

The code tests the Boolean fast? and looks up a color function to build an
array that is then given the executable property by the cvx operator. There
is no further testing of fast? or look-up of color when function B is executed

17



(i.e., when a branching point is reached). If no color function is defined, no
function call takes place and the drawing remains black. A complete program,
with branching and a few different color schemes can be downloaded from the
Web [3].

With branching L-systems and imaginative coloring schemes, short PostScript
programs can be written that produce impressive looking plants. One thing the
examples from fig. 6 show is that L-systems that are almost identical can result in
very different looking plants. One can therefore study the effects of mutation-like
variations to an L-system to evaluate what happens to the corresponding fractal
(see [5] for a system that implements such random mutations).

Conclusions

There is a lot more to L-systems, including fancy operators not described here,
generalizations to 3D graphics, and theoretical studies of their expressive power.
Sadly, though, PostScript is being superseded by the Portable Document Format
which, in spite of its qualities as a document exchange format, lacks the pro-
gramming capabilities that make PostScript so remarkable. The Web is full of
Java applets that implement L-systems, but it is just not the same thing. When
PostScript is gone, how will we use all those CPU cycles wasted in printers?

18



References

[1] Adobe Systems Incorporated. PostScript Language Reference. Addison-
Wesley, third edition, February 1999.

[2] Michel Charpentier. Dragon Curve in PostScript. http://www.cs.unh.
edu/~charpov/Programming/L-systems/simple-dragon.ps.

[3] Michel Charpentier. L-systems in PostScript. http://www.cs.unh.edu/
~charpov/Programming/L-systems/plant2.ps.

[4] Michel Charpentier. Ulam’s Spiral in PostScript. http://www.cs.unh.edu/
~charpov/Programming/PostScript-primes/primes-distribution.ps.

[5] Jim Lund. DoodleTron (a L-system Iterator). http://elegans.uky.edu/
jiml/lsystem/ls_index.html.

[6] Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The Algorithmic Beauty
of Plants. Springer-Verlag, 1990.

[7] Pavel Tišnovský. L-systémy: přírodní objekty i umělé artefakty. http://www.
root.cz/clanky/l-systemy-prirodni-objekty-i-umele-artefakty.

[8] Eric W. Weisstein. Dragon Curve. From MathWorld–A Wolfram Web
Resource. http://mathworld.wolfram.com/PrimeSpiral.html.

[9] Eric W. Weisstein. Lindenmayer Systems. From MathWorld–A Wolfram Web
Resource. http://mathworld.wolfram.com/LindenmayerSystem.html.

[10] Eric W. Weisstein. Ulam’s Spiral. From MathWorld–A Wolfram Web
Resource. http://mathworld.wolfram.com/PrimeSpiral.html.

Summary: Programming L-Systems in PostScript

Although we tend to think of PostScript as a file format used to describe graphics,
it is in reality a full-fledged programming language with graphical capabilities.
Thus, the power of PostScript goes far beyond that of simple vector-graphics
formats. All sorts of computations can be programmed, including complex
arithmetic calculations. In this paper, we show how to use recursive functions
in PostScript to implement a family of rewriting structures known as L-systems.
Based on these systems, one can write short PostScript programs that draw
classic fractals and beautiful plant-like pictures.
Keywords: PostScript, (Lindenmayer) L-systems, fractals, unconventional pro-
gramming languages.

Michel Charpentier, charpov@cs.unh.edu
University of New Hampshire, Computer Science Department

Kingsbury Hall, rm N215A, Durham, NH 03824
The United States of America

19


