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Programujeme L-systémy v PostScriptu
Michel Charpentier

Abstrakt
I když se PostScript tradičně považuje za formát souborů pro popis grafiky, jedná
se ve skutečnosti o plnohodnotný programovací jazyk rozšířený o grafické funkce.
Jeho vyjadřovací schopnosti sahají mnohem dál než pouhý popis vektorové
grafiky. PostScript umožňuje naprogramování řady různých druhů vypočtů,
včetně složitých aritmetických operací. V tomto článku ukážeme jak používat
rekurzivní funkce v PostScriptu k implementaci skupiny přepisovacích systémů
nazývaných L-systémy. Pomocí těchto systémů můžeme psát jednoduché pro-
gramy v PostScriptu, které kreslí jak klasické fraktály tak i zajímavé obrázky
připomínající rostliny.
Klíčová slova: PostScript, L-systémy, fraktály.

PostScript as a Programming Language

PostScript [1] is a graphical description language which was widely used in the
graphics and typesetting worlds but is slowly being supplanted by the newer
Portable Document Format (pdf). One fascinating thing about PostScript is
that, in addition to its graphical capabilities, it possesses many of the features
found in more traditional programming languages, like variables, conditional and
loops (which pdf does not). Indeed, there is enough in PostScript to compute
everything that is computable (in more pedantic terms, the language is said to
be “Turing-complete”).

It is always fun to learn a new programming language and, in my case, it always
begins by calculating prime numbers.1 Although it is possible to use PostScript
to generate tables of prime numbers—the fun2 part being that the numbers are
computed by the printer—the language is first and foremost a graphical language,
which begs the question: What can be done with prime numbers and graphics?
One answer is the Ulam Spiral [10], which places integers along a (squarish) spiral
and marks prime numbers with dots to display interesting patterns.

Fig. 1 shows Ulam’s Spiral with a dot for each prime number, in which diagonal
patterns start to emerge. Fig. 2 shows a closeup of the center of the spiral. Both
pictures are generated using a PostScript program [4] that draws the spiral, the

1I grew tired of saying Hello to a world that never said Hello back.
2It stops being fun as soon as there are enough people waiting for urgent printouts while

the main department printer is busy crunching prime numbers.
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Figure 1: Ulam’s Spiral.
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Figure 2: Ulam’s Spiral (closeup).

dots, the numbers inside the dots and, more importantly, implements its own
primality testing. Fig. 3 shows how trial division can be written in PostScript to
implement a prime? function that tests whether a number is prime. PostScript
also has arrays, which makes it possible to calculate prime numbers with the
sieve of Eratosthenes, but the code is a bit longer (see [4] for details).

/prime? {
/n exch def
n 1 eq {
false % 1 is not prime

}{
n 2 mod 0 eq {
n 2 eq

}{
/divide? false def
3 2 n sqrt {

n exch div dup ceiling eq
{/divide? true def exit} if

} for
divide? not

} ifelse
} ifelse

} bind def

Figure 3: Primality testing by trial division.

Without getting too much into PostScript syntax for now, a few things are
worth noting. We see that the language has all the usual good stuff, like Booleans
(true, false, not), conditionals (if, ifelse), loops (for, used here from 3 to
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√
n by 2 increments), tests (eq) and variable names (n, divide?). We also see

that it is based on a stack (exch, dup) and uses a postfix notation (as in (n 1 eq)
or when pushing the condition, “then” block and “else” block on the stack before
calling ifelse). This use of stack in a postfix manner does not make PostScript
the easiest programming language to read.3

Fractals as L-Systems

An L-system [9, 7], named after the biologist Lindenmayer, is a model based on
rewriting rules, most famously used to study the self-similarity found in plants
[6]. Before going into plants (which require branching, as plants would), consider
a (mythical) animal, the Dragon. The Dragon Curve [8] is a famous fractal that
is obtained by repeatedly replacing a line segment by a “corner” made of two
shorter line segments.

The Dragon Curve can be described as a L-system with three rewriting rules:4
X → -FX++FY-, Y → +FX--FY+ and F → Λ (where Λ represents the empty string
to indicate that F symbols are removed). Starting with X, apply the rules N
times, each time replacing all the X, Y and F. After N iterations, remove the
remaining the X and Y and what is left is a string of F, - and +. If F means “move
forward”; - means “turn 45◦ right”; and + means “turn 45◦ left”, in the classic
“turtle” interpretation, the string describes a curve. Intuitively, the rewriting
rules implement a process by which a line segment is being removed (rule F → Λ)
and replaced by a “corner” below (rule X) or above (rule Y) it, in an alternating
fashion. Fig 4 shows the first seven iterations, with the corresponding curves.

After seven iterations, and using “round corners” to make the curve easier to
follow, it looks like this (and yes, this is a Dragon, not a French poodle):

3Not that this would scare an experienced LATEX user, I am sure.
4There are simpler L-systems for the Dragon Curve, described in [6], but the system chosen

here has the benefit of drawing the Dragon always oriented in the same direction.
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N = 1 -F++F-

N = 2 –F++F-+++F–F+-

N = 3 –-F++F-+++F–F+-+++-F++F–-+F–F++-

N = 4 ––F++F-+++F–F+-+++-F++F–-+F–F++-+++–F++F-+++

F–F+–-+-F++F–-+F–F+++-

N = 5

––-F++F-+++F–F+-+++-F++F–-+F–F++-+++–F++F-++

+F–F+–-+-F++F–-+F–F+++-+++–-F++F-+++F–F+-+++

-F++F–-+F–F++–-+–F++F-+++F–F+–-+-F++F–-+F–

F++++-

N = 6

–––F++F-+++F–F+-+++-F++F–-+F–F++-+++–F++F-+

++F–F+–-+-F++F–-+F–F+++-+++–-F++F-+++F–F+-++

+-F++F–-+F–F++–-+–F++F-+++F–F+–-+-F++F–-+F-

-F++++-+++––F++F-+++F–F+-+++-F++F–-+F–F++-+++

–F++F-+++F–F+–-+-F++F–-+F–F+++–-+–-F++F-+++

F–F+-+++-F++F–-+F–F++–-+–F++F-+++F–F+–-+-F+

+F–-+F–F+++++-

N = 7

–––-F++F-+++F–F+-+++-F++F–-+F–F++-+++–F++F-

+++F–F+–-+-F++F–-+F–F+++-+++–-F++F-+++F–F+-+

++-F++F–-+F–F++–-+–F++F-+++F–F+–-+-F++F–-+F

–F++++-+++––F++F-+++F–F+-+++-F++F–-+F–F++-++

+–F++F-+++F–F+–-+-F++F–-+F–F+++–-+–-F++F-++

+F–F+-+++-F++F–-+F–F++–-+–F++F-+++F–F+–-+-F

++F–-+F–F+++++-+++––-F++F-+++F–F+-+++-F++F–-

+F–F++-+++–F++F-+++F–F+–-+-F++F–-+F–F+++-+++

–-F++F-+++F–F+-+++-F++F–-+F–F++–-+–F++F-+++F

–F+–-+-F++F–-+F–F++++–-+––F++F-+++F–F+-+++

-F++F–-+F–F++-+++–F++F-+++F–F+–-+-F++F–-+F–

F+++–-+–-F++F-+++F–F+-+++-F++F–-+F–F++–-+–F

++F-+++F–F+–-+-F++F–-+F–F++++++-

Figure 4: Dragon Curve, as generated by the system X → -FX++FY-,
Y → +FX–FY+, F → Λ.
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Programming L-Systems in PostScript

Since PostScript is stack-based, it obviously supports recursive functions. The
three rewriting rules of the Dragon Curve system can be implemented as three
functions X, Y and F, where X and Y are mutually recursive. The PostScript
program for the Dragon Curve is given below, with relevant comments.

First, the file starts with a special comment to indicate that it should be
interpreted as PostScript.
%!PS

A variable N is then defined. This is the number of iterations we want to perform.
/N 7 def

Three functions X, Y and F are defined. They take as parameter the number of
remaining iterations, which is pushed on the stack before each call. The idea is
that, at the last iteration, when this counter reaches zero, the symbols (here, the
function calls) are interpreted graphically: F draws a line segment while X and
Y do nothing. When the counter is non-zero, the functions are interpreted as
rewriting rules, triggering calls to more functions.

Function X tests the number of remaining iterations to see if it is zero. This is
done by duplicating it, then comparing to zero. This way, if the top of the stack
is 〈3〉, it becomes 〈3, true〉 and if it is 〈0〉, it becomes 〈0, false〉. If the count is
zero, the function does nothing (it has no graphical counterpart). If the count
is non-zero, X makes 7 function calls to functions -, +, F, X and Y. Functions -
and + represent 45◦ rotations and do not need the iteration count. The count
is thus pushed 4 times on the stack (for the 4 calls to F, X and Y) after having
been decremented by one. After the calls, the function terminates by popping its
parameter from the stack.
/X {

dup 0 ne
{1 sub 4 {dup} repeat - F X + + F Y -}
if pop

} def
Function Y is similar to function X. Function F does nothing when the count is
non-zero (corresponding to the F → Λ rule). When the counter reaches zero,
the function performs a graphical operation, namely drawing a horizontal line
segment of length 10.
/Y {

dup 0 ne
{1 sub 4 {dup} repeat + F X - - F Y +}
if pop

} def
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/F {
0 eq { 10 0 rlineto } if

} bind def
Although the line is always drawn horizontally, the graphics context is rotated by
the - and + functions. Function - rotates it clockwise (right turn) and function
+ does it counterclockwise (left turn).
/- { -45 rotate } bind def
/+ { 45 rotate } bind def

Following are simple settings so lines have rounded tips and they join nicely.
1 setlinejoin
1 setlinecap

The call to newpath starts a new curve. We move to a carefully calculated
location and we scale the picture by a factor equal to 50

(
√

2)N
, where N is the total

number of iterations. Since the line segment have a constant length of 10, the
Dragon ends up always having the same size, for any number of iterations.

newpath
220 180 moveto
50 N { 2 sqrt div } repeat dup scale

Finally, a 90◦ rotation places the page in landscape orientation and an initial call
to function X is made with N on the top of the stack. The path that is built
by the series of calls to rlineto is drawn as a line by stroke and the page is
printed or displayed, depending on where the PostScript code is interpreted.

90 rotate
N X
stroke
showpage

The full program can be downloaded from the Web [2]. Other well-known fractals,
besides the Dragon Curve, can be represented as L-Systems with well-chosen
rotation angles and rewriting rules. Many can be drawn with the same PostScript
program by only changing a few lines. Fig. 5 shows the classic examples of
Hilbert’s curve and Koch’s snowflake, with their associated L-systems.

Implementing Branching

Dragons—and, for that matter, French poodles—need trees and trees need
branches. L-systems include a branching operator, usually represented with
square brackets. Basically, ‘[’ marks a point and ‘]’ goes back to it. This allows
the system to recursively build a branch (a subtree) before it continues from
the trunk (or main branch) it left from. Fig. 6 shows examples of branching
L-systems from [6] and their graphical representations. Note how some systems
use nested branching. Colors are obtained here by using lighter shades of green

14



angle 90
START -> X
X -> -YF+XFX+FY-
Y -> +XF-YFY-FX+

angle 60
START -> +F--F--F
F -> F+F--F+F

Figure 5: Hilbert’s curve and Koch’s snowflake.

as the depth of the computation increases for a “realistic” effect, or are chosen
randomly at branching points, each variant being straightforward to implement
in PostScript (the language has a rand operator).

Branching can be implemented straightforwardly using PostScript’s gsave
and grestore operators. The first operator saves the current graphics context
(including color and current point) by pushing it onto the stack; the second
operator restores the graphics context from the stack. They result in the following
PostScript implementation of ‘[’ and ‘]’ (square brackets are part of PostScript’s
syntax for arrays, so B and E are used instead):
/B { gsave } bind def
/E { stroke grestore } bind def

B saves the graphics context and E draws the current subtree (stroke) before
restoring the context.

This implementation of branching in PostScript, however, turns out to be
quite inefficient: When function E is invoked (at the tip of a branch), a path
is being stroked all the way from the origin (the root of the tree). As a result,
branches shared by many leaves are being drawn many times. This can be avoided
by committing the path up to the branching point before branching. An alternate
definition of B could be:
/B { currentpoint stroke moveto gsave } bind def

15



angle 20
START -> X
X -> F[+X]F[-X]+X
F -> FF

angle 30
START -> F
F -> F[+F[+F][-F]F][-F

[+F][-F]F]F[+F][-F]F

angle 22.5
START -> F
F -> FF-[-F+F+F]+[+F-F-F]

angle 22.5
START -> X
X -> F-[[X]+X]+F[+FX]-X
F -> FF

angle 25
START -> F
F -> F[+F]F[-F]F

angle 25
START -> X
X -> F[+X][-X]FX
F -> FF

angle 20
START -> F
F -> F[+F]F[-F][F]

angle 25
START -> Y
X -> X[-FFF][+FFF]FX
Y -> YFX[+Y][-Y]

Figure 6: Plants as branching L-systems.
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Figure 7: Single path versus multiple paths.

Function B now draws the path up to the current point and moves the origin of
a new path to the branching point. The resulting program is faster, but branches
are drawn as a series of successive strokes, which does not always look as nice.
Fig. 7 shows a closeup of a branching point, with the new implementation of
branching on the right. To give the user a choice between faster computations
or nicer graphics, one can define a Boolean flag within the PostScript program.
It could be inefficient, however, to test this flag at every branching point. An
alternative approach is to use the flag to build variants of the branching function.
This strategy can also be used to choose a coloring scheme once and for all,
without the need for further testing when the drawing takes place. PostScript
was to some extend inspired by Lisp and like Lisp, it offers ways to dynamically
build blocks of code to be later evaluated (basically, a block is just an array that
is flagged as executable). The resulting implementation of B is as follows:
/B [
fast? {
{currentpoint stroke moveto}
aload pop

} if
{gsave} aload pop
currentdict /color known {
{dup color}
aload pop

} if
] cvx bind def

The code tests the Boolean fast? and looks up a color function to build an
array that is then given the executable property by the cvx operator. There
is no further testing of fast? or look-up of color when function B is executed

17



(i.e., when a branching point is reached). If no color function is defined, no
function call takes place and the drawing remains black. A complete program,
with branching and a few different color schemes can be downloaded from the
Web [3].

With branching L-systems and imaginative coloring schemes, short PostScript
programs can be written that produce impressive looking plants. One thing the
examples from fig. 6 show is that L-systems that are almost identical can result in
very different looking plants. One can therefore study the effects of mutation-like
variations to an L-system to evaluate what happens to the corresponding fractal
(see [5] for a system that implements such random mutations).

Conclusions

There is a lot more to L-systems, including fancy operators not described here,
generalizations to 3D graphics, and theoretical studies of their expressive power.
Sadly, though, PostScript is being superseded by the Portable Document Format
which, in spite of its qualities as a document exchange format, lacks the pro-
gramming capabilities that make PostScript so remarkable. The Web is full of
Java applets that implement L-systems, but it is just not the same thing. When
PostScript is gone, how will we use all those CPU cycles wasted in printers?
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Summary: Programming L-Systems in PostScript

Although we tend to think of PostScript as a file format used to describe graphics,
it is in reality a full-fledged programming language with graphical capabilities.
Thus, the power of PostScript goes far beyond that of simple vector-graphics
formats. All sorts of computations can be programmed, including complex
arithmetic calculations. In this paper, we show how to use recursive functions
in PostScript to implement a family of rewriting structures known as L-systems.
Based on these systems, one can write short PostScript programs that draw
classic fractals and beautiful plant-like pictures.
Keywords: PostScript, (Lindenmayer) L-systems, fractals, unconventional pro-
gramming languages.
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