In Con\TeX, it is now possible to prepare documents in a mixture of \TeX, XML, MetaPost, and \texttt{Lua}. The article gives a short introduction into the programming language of \texttt{Lua} and then goes on to describe how \texttt{Lua} can be used for programming in Con\TeX\ MkIV.

Keywords: \texttt{Lua}, \texttt{Lua\TeX}, Con\TeX, MkIV

Introduction

Sometimes you hear folks complain about the \TeX\ input language, i.e. the backslashed commands that determine your output. Of course, when alternatives are being discussed every one has a favourite programming language. In practice coding a document in each of them triggers similar sentiments with regards to coding as \TeX\ itself does.

So, just for fun, I added a couple of commands to Con\TeX\ MkIV that permit coding a document in \texttt{Lua}. In retrospect it has been surprisingly easy to implement a feature like this using metatables. Of course it’s a bit slower than using \TeX\ as input language but sometimes the \texttt{Lua} interface is more readable given the problem at hand.

After a while I decided to use that interface in non-critical core Con\TeX\ code and in styles (modules) and solutions for projects. Using the \texttt{Lua} approach is sometimes more convenient, especially if the code mostly manipulates data. For instance, if you process XML files of database output you can use the interface that is available at the \TeX\ end, or you can use \texttt{Lua} code to do the work, or you can use a combination. So, from now on, in Con\TeX\ you can code your style and document source in (a mixture of) \TeX, XML, MetaPost and in \texttt{Lua}.

In the following pages I will introduce typesetting in \texttt{Lua}, but as we rely on Con\TeX\ it is unavoidable that some regular Con\TeX\ code shows up. The fact that you can ignore backslashes does not mean that you can do without knowledge of the underlying system. I expect that the user is somewhat familiar with this macro package. Some chapters are follow ups on articles or earlier publications.

Although much of the code is still experimental it is also rather stable. Some helpers might disappear when the main functions become more clever. This manual is definitely far from complete. If you find errors, please let me know. If you think that something is missing, you can try to convince me to add it.
A bit of Lua

The language
Small is beautiful and this is definitely true for the programming language LUA (moon in Portuguese). We had good reasons for using this language in LUA\TeX: simplicity, speed, syntax and size to mention a few. Of course personal taste also played a role and after using a couple of scripting languages extensively the switch to LUA was rather pleasant.

As the LUA reference manual is an excellent book there is no reason to discuss the language in great detail: just buy ‘Programming in LUA’ by the LUA team. Nevertheless I will give a short summary of the important concepts but consult the book if you want more details.

Data types
The most basic data type is nil. When we define a variable, we don’t need to give it a value:

```
local v
```

Here the variable v can get any value but till that happens it equals nil. There are simple data types like numbers, bools and strings. Here are some numbers:

```
local n = 1 + 2 * 3
local x = 2.3
```

Numbers are always floats\(^1\) and you can use the normal arithmetic operators on them as well as functions defined in the math library. Inside \TeX we have only integers, although for instance dimensions can be specified in points using floats but that’s more syntactic sugar. One reason for using integers in \TeX has been that this was the only way to guarantee portability across platforms. However, we’re 30 years along the road and in LUA the floats are implemented identical across platforms, so we don’t need to worry about compatibility.

Strings in LUA can be given between quotes or can be so called long strings forced by square brackets.

```
local s = "Whatever"
local t = s .. ' you want'
local u = t .. [[ to know]] .. [[-- about Lua!]]
```

The two periods indicate a concatenation. Strings are hashed, so when you say:

```
local s = "Whatever"
local t = "Whatever"
local u = t
```

\(^1\)This is true for all versions upto 5.2 but following version can have a more hybrid model.
only one instance of Whatever is present in memory and this fact makes LUA very efficient with respect to strings. Strings are constants and therefore when you change variable s, variable t keeps its value. When you compare strings, in fact you compare pointers, a method that is really fast. This compensates the time spent on hashing pretty well.

Booleans are normally used to keep a state or the result from an expression.

```lua
local b = false
local c = n > 10 and s == "whatever"
```

The other value is true. There is something that you need to keep in mind when you do testing on variables that are yet unset.

```lua
local b = false
local n
```

The following applies when b and n are defined this way:

```lua
b == false  true
n == false  false
n == nil    true
b == nil    false
b == n      false
```

Often a test looks like:

```lua
if somevar then...
else...
end
```

In this case we enter the else branch when somevar is either nil or false. It also means that by looking at the code we cannot beforehand conclude that somevar equals true or something else. If you want to really distinguish between the two cases you can be more explicit:

```lua
if somevar == nil then...
elseif somevar == false then...
else...
end
```

or

```lua
if somevar == true then...
else...
```
but such an explicit test is seldom needed.

There are a few more data types: tables and functions. Tables are very important and you can recognize them by the same curly braces that make \text{T\textsc{e}X} famous:

```r
local t = { 1, 2, 3 }
local u = { a = 4, b = 9, c = 16 }
local w = { 1, 2, 3, a = 4, b = 9, c = 16 }
```

The \texttt{t} is an indexed table and \texttt{u} a hashed table. Because the second slot is empty, table \texttt{v} is partially indexed (slot 1) and partially hashed (the others). There is a gray area there, for instance, what happens when you nil a slot in an indexed table? In practice you will not run into problems as you will either use a hashed table, or an indexed table (with no holes), so table \texttt{w} is not uncommon.

We mentioned that strings are in fact shared (hashed) but that an assignment of a string to a variable makes that variable behave like a constant. Contrary to that, when you assign a table, and then copy that variable, both variables can be used to change the table. Take this:

```r
local t = { 1, 2, 3 }
local u = t
```

We can change the content of the table as follows:

```r
t[1], t[3] = t[3], t[1]
```

Here we swap two cells. This is an example of a parallel assigment. However, the following does the same:

```r
t[1], t[3] = u[3], u[1]
```

After this, both \texttt{t} and \texttt{u} still share the same table. This kind of behaviour is quite natural. Keep in mind that expressions are evaluated first, so

```r
t[#t+1], t[#t+1] = 23, 45
```

makes no sense, as the values end up in the same slot. There is no gain in speed so using parallel assignments is mostly a convenience feature.

There are a few specialized data types in LUA, like \texttt{coroutines} (built in), \texttt{file} (when opened), \texttt{lpeg} (only when this library is linked in or loaded). These are called ‘userdata’ objects and in \texttt{LUAT\textsc{e}X} we have more userdata objects as we will see in later chapters. Of them nodes are the most noticeable: they are the core data type of the \textsc{e}X machinery. Other libraries, like \texttt{math} and \texttt{bit32} are just collections of functions operating on numbers.

Functions look like this:

```r
function sum(a,b)
  print(a, b, a + b)
end
```
end
or this:
function sum(a,b)
 return a + b
end
There can be many arguments of all kind of types and there can be multiple return values. A function is a real type, so you can say:
local f = function(s) print("the value is: " .. s) end
In all these examples we defined variables as local. This is a good practice and avoids clashes. Now watch the following:
local n = 1

function sum(a,b)
 n = n + 1
 return a + b
end

function report()
 print("number of summations: " .. n)
end
Here the variable n is visible after its definition and accessible for the two global functions. Actually the variable is visible to all the code following, unless of course we define a new variable with the same name. We can hide n as follows:
do
 local n = 1

 sum = function(a,b)
 n = n + 1
 return a + b
 end

 report = function()
 print("number of summations: " .. n)
 end
end
This example also shows another way of defining the function: by assignment.
The do ... end creates a so called closure. There are many places where such closures are created, for instance in function bodies or branches like if ... then ... else. This means that in the following snippet, variable b is not seen after the end:
if a > 10 then
local b = a + 10
print(b*b)
end

When you process a blob of LUA code in TeX (using \directlua or \latelua) it happens in a closure with an implied do ... end. So, local defined variables are really local.

TeX’s data types
We mentioned numbers. At the TeX end we have counters as well as dimensions. Both are numbers but dimensions are specified differently

```lua
local n = tex.count[0]
local m = tex.dimen.lineheight
local o = tex.sp("10.3pt") -- scaled point is the smallest unit

The unit of dimension is ‘scaled point’ and this is a pretty small unit: 10 points equals to 655360 such units.

Another accessible data type is tokens. They are automatically converted to strings and vice versa.
```

```lua
tex.toks[0] = "message"
print(tex.toks[0])
```

Be aware of the fact that the tokens are letters so the following will come out as text and not issue a message:

```lua
tex.toks[0] = "\message{just text}"
print(tex.toks[0])
```

Control structures
Loops are not much different from other languages: we have for ... do, while ... do and repeat ... until. We start with the simplest case:

```lua
for index=1,10 do
  print(index)
end
```

You can specify a step and go downward as well:

```lua
for index=22,2,-2 do
  print(index)
end
```

Indexed tables can be traversed this way:

```lua
for index=1,#list do
  print(index, list[index])
end
```

Hashed tables on the other hand are dealt with as follows:
for key, value in next, list do
 print(key, value)
end

Here next is a built-in function. There is more to say about this mechanism but the average user will use only this variant. Slightly less efficient is the following, more readable variant:

for key, value in pairs(list) do
 print(key, value)
end

and for an indexed table:

for index, value in ipairs(list) do
 print(index, value)
end

The function call to pairs(list) returns next, list so there is an (often neglectable) extra overhead of one function call.

The other two loop variants, while and repeat, are similar.

i = 0
while i < 10 do
 i = i + 1
 print(i)
end

This can also be written as:

i = 0
repeat
 i = i + 1
 print(i)
until i == 10

or:

i = 0
while true do
 i = i + 1
 print(i)
 if i == 10 then
 break
 end
end

Of course you can use more complex expressions in such constructs.
Conditions
Conditions have the following form:
if a == b or c > d or e then
...
elseif f == g then
...
else
...
end
Watch the double ==. The complement of this is ~=. Precedence is similar to other languages. In practice, as strings are hashed, tests like
if key == "first" then
...
end
and
if n == 1 then
...
end
are equally efficient. There is really no need to use numbers to identify states instead of more verbose strings.

Namespaces
Functionality can be grouped in libraries. There are a few default libraries, like string, table, lpeg, math, io and os and LUATeX adds some more, like node, tex and texio.

A library is in fact nothing more than a bunch of functionality organized using a table, where the table provides a namespace as well as place to store public variables. Of course there can be local (hidden) variables used in defining functions.
do
mylib = { }

local n = 1

function mylib.sum(a,b)
 n = n + 1
 return a + b
end

function mylib.report()
print("number of summations: " .. n)
end
end
The defined function can be called like:
mylib.report()
You can also create a shortcut, This speeds up the process because there are less
lookups then. In the following code multiple calls take place:
local sum = mylib.sum

for i=1,10 do
 for j=1,10 do
 print(i, j, sum(i,j))
 end
end
mylib.report()

As LUA is pretty fast you should not overestimate the speedup, especially not
when a function is called seldom. There is an important side effect here: in the
case of:
print(i, j, sum(i,j))
the meaning of sum is frozen. But in the case of
print(i, j, mylib.sum(i,j))
the current meaning is taken, that is: each time the interpreter will access mylib
and get the current meaning of sum. And there can be a good reason for this,
for instance when the meaning is adapted to different situations.

In CONTEXT we have quite some code organized this way. Although much
is exposed (if only because it is used all over the place) you should be careful
in using functions (and data) that are still experimental. There are a couple of
general libraries and some extend the core LUA libraries. You might want to
take a look at the files in the distribution that start with l-, like l-table.lua.
These files are preloaded.² For instance, if you want to inspect a table, you can
say:
local t = { "aap", "noot", "mies" }
table.print(t)
You can get an overview of what is implemented by running the following com-
mand:
context s-tra-02 --mode=tablet

²In fact, if you write scripts that need their functionality, you can use mtxrun to process
the script, as mtxrun has the core libraries preloaded as well.
Comment
You can add comments to your LUA code. There are basically two methods: one liners and multi line comments.

local option = "test" -- use this option with care

local method = "unknown" -- [[comments can be very long and when entered this way they can span multiple lines]]

The so called long comments look like long strings preceded by -- and there can be more complex boundary sequences.

Pitfalls
Sometimes nil can bite you, especially in tables, as they have a dual nature: indexed as well as hashed.

\startluacode
local n1 = # { nil, 1, 2, nil } -- 3
local n2 = # { nil, nil, 1, 2, nil } -- 0
\stopluacode

context("n1 = %s and n2 = %s",n1,n2)

results in: n1 = 3 and n2 = 0. So, you cannot really depend on the length operator here. On the other hand, with:

\startluacode
local function check(...) return select("#",...) end
local n1 = check (nil, 1, 2, nil) -- 4
local n2 = check (nil, nil, 1, 2, nil) -- 5
\stopluacode

context("n1 = %s and n2 = %s",n1,n2)

we get: n1 = 4 and n2 = 5, so the select is quite useable. However, that function also has its specialities. The following example needs some close reading:

\startluacode
local function filter(n,...)
 return select(n,...)
end
local v1 = { filter (1, 1, 2, 3) }
local v2 = { filter (2, 1, 2, 3) }
\stopluacode
local v3 = { filter (3, 1, 2, 3) }

context("v1 = %+t and v2 = %+t and v3 = %+t",v1,v2,v3)
\stopluacode
We collect the result in a table and show the concatenation: v1 = 1+2+3 and v2 = 2+3 and v3 = 3. So, what you effectively get is the whole list starting with the given offset.
\startluacode
local function filter(n,...)
 return (select(n,...))
end

local v1 = { filter (1, 1, 2, 3) }
local v2 = { filter (2, 1, 2, 3) }
local v3 = { filter (3, 1, 2, 3) }

context("v1 = %+t and v2 = %+t and v3 = %+t",v1,v2,v3)
\stopluacode
Now we get: v1 = 1 and v2 = 2 and v3 = 3. The extra () around the result makes sure that we only get one return value.

Of course the same effect can be achieved as follows:
local function filter(n,...)
 return select(n,...)
end

local v1 = filter (1, 1, 2, 3)
local v2 = filter (2, 1, 2, 3)
local v3 = filter (3, 1, 2, 3)

context("v1 = %s and v2 = %s and v3 = %s",v1,v2,v3)

A few suggestions
You can wrap all kind of functionality in functions but sometimes it makes no sense to add the overhead of a call as the same can be done with hardly any code.

If you want a slice of a table, you can copy the range needed to a new table. A simple version with no bounds checking is:
local new = { } for i=a,b do new[#new+1] = old[i] end
Another, much faster, variant is the following.
local new = { unpack(old,a,b) }
You can use this variant for slices that are not extremely large. The function `table.sub` is an equivalent:

```lua
local new = table.sub(old, a, b)
```

An indexed table is empty when its size equals zero:

```lua
if #indexed == 0 then ... else ... end
```

Sometimes this is better:

```lua
if indexed and #indexed == 0 then ... else ... end
```

So how do we test if a hashed table is empty? We can use the `next` function as in:

```lua
if hashed and next(indexed) then ... else ... end
```

Say that we have the following table:

```lua
local t = { a=1, b=2, c=3 }
```

The call `next(t)` returns the first key and value:

```lua
local k, v = next(t) -- "a", 1
```

The second argument to `next` can be a key in which case the following key and value in the hash table is returned. The result is not predictable as a hash is unordered. The generic for loop uses this to loop over a hashed table:

```lua
for k, v in next, t do
...
end
```

Anyway, when `next(t)` returns zero you can be sure that the table is empty. This is how you can test for exactly one entry:

```lua
if t and not next(t,next(t)) then ... else ... end
```

Here it starts making sense to wrap it into a function.

```lua
function table.has_one_entry(t)
    t and not next(t,next(t))
end
```

On the other hand, this is not that useful, unless you can spend the runtime on it:

```lua
function table.is_empty(t)
    return not t or not next(t)
end
```

Interfacing

We have already seen that you can embed LUA code using commands like:

```latex
\startluacode
    print("this works")
\stopluacode
```
This command should not be confused with:

\startlua
 \print("this works")
\stoplua

The first variant has its own catcode regime which means that tokens between
the start and stop command are treated as LUA tokens, with the exception of
\TeX commands. The second variant operates under the regular \TeX catcode
regime.

Their short variants are \ctxluacode and \ctxlua as in:

\ctxluacode{\print("this works")}
\ctxlua{\print("this works")}

In practice you will probably use \startluacode when using or defining a blob
of LUA and \ctxlua for inline code. Keep in mind that the longer versions need
more initialization and have more overhead.

There are some more commands. For instance \ctxcommand can be used as
an efficient way to access functions in the commands namespace. The following
two calls are equivalent:

\ctxlua {\texttt{commands.thisorthat("...")}}
\ctxcommand {\texttt{thisorthat("...")}}

There are a few shortcuts to the context namespace. Their use can best be
seen from their meaning:

\cldprocessfile#1{\directlua{\texttt{context.runfile("#1")}}}
\cldloadfile #1{\directlua{\texttt{context.loadfile("#1")}}}
\cldcontext #1{\directlua{\texttt{context(#1)}}}
\cldcommand #1{\directlua{\texttt{context.#1}}}

Each time a call out to LUA happens the argument eventually gets parsed, con-
verted into tokens, then back into a string, compiled to bytecode and executed.
The next example code shows a mechanism that avoids this:

\startctxfunction MyFunctionA
 context(" A1 ")
\stopctxfunction

\startctxfunctiondefinition MyFunctionB
 context(" B2 ")
\stopctxfunctiondefinition

The first command associates a name with some LUA code and that code can
be executed using:

\ctxfunction{MyFunctionA}

The second definition creates a command, so there we do:

\MyFunctionB
There are some more helpers but for use in document sources they make less sense. You can always browse the source code for examples.

Getting started

Some basics

I assume that you have either the so called \texttt{CONTeXT} standalone (formerly known as minimals) installed or \texttt{TEXLive}. You only need \texttt{LUATEX} and can forget about installing \texttt{PDPTEX} or \texttt{XeTEX}, which saves you some megabytes and hassle. Now, from the users perspective a \texttt{CONTeXT} run goes like:

```plaintext
context yourfile
```

and by default a file with suffix \texttt{tex}, \texttt{mkiv}, or \texttt{mkvi} will be processed. There are however a few other options:

```plaintext
context yourfile.xml  
context yourfile.rlx --forcexml  
context yourfile.lua  
context yourfile.pqr --forcelua  
context yourfile.cld  
context yourfile.xyz --forcecld  
context yourfile.mp  
context yourfile.xyz --forcemp  
```

When processing a LUA file the given file is loaded and just processed. This options will seldom be used as it is way more efficient to let \texttt{mtxrun} process that file. However, the last two variants are what we will discuss here. The suffix \texttt{cld} is a shortcut for \texttt{CONTeXT} LUA Document.

A simple \texttt{cld} file looks like this:

```plaintext
context.starttext()  
context.chapter("Hello There!")  
context.stoptext()  
```

So yes, you need to know the \texttt{CONTeXT} commands in order to use this mechanism. In spite of what you might expect, the codebase involved in this interface is not that large. If you know \texttt{CONTeXT}, and if you know how to call commands, you basically can use this LUA method.

The examples that I will give are either (sort of) standalone, i.e. they are dealt with from LUA, or they are run within this document. Therefore you will see two patterns. If you want to make your own documentation, then you can use this variant:

```plaintext
\startbuffer  
context("See this!")  
\stopbuffer
```
I use anonymous buffers here but you can also use named ones. The other variant is:

```
\startluacode
context("See this!")
\stopluacode
```

This will process the code directly. Of course we could have encoded this document completely in LUA but that is not much fun for a manual.

The main command

There are a few rules that you need to be aware of. First of all no syntax checking is done. Second you need to know what the given commands expects in terms of arguments. Third, the type of your arguments matters:

- **nothing**: just the command, no arguments
- **string**: an argument with curly braces
- **array**: a list between square brackets (sometimes optional)
- **hash**: an assignment list between square brackets
- **boolean**: when `true` a newline is inserted
 - when `false`, omit braces for the next argument

In the code above you have seen examples of this but here are some more:

```
context.chapter("Some title")
context.chapter({ "first" }, "Some title")
context.startchapter({ title = "Some title", label = "first" })
```

This blob of code is equivalent to:

```
\chapter{Some title}
\chapter[first]{Some title}
\startsection[title={Some title},label=first]
```

You can simplify the third line of the LUA code to:

```
context.startchapter { title = "Some title", label = "first" }
```

In case you wonder what the distinction is between square brackets and curly braces: the first category of arguments concerns settings or lists of options or names of instances while the second category normally concerns some text to be typeset.

Strings are interpreted as \TeX input, so:

```
context.mathematics("\sqrt{2^3}"")
```

and if you don’t want to escape:

```
context.mathematics([\sqrt{2^3}])
```
are both correct. As \TeX math is a language in its own and a de-facto standard way of inputting math this is quite natural, even at the LUA end.

Spaces and Lines

In a \TeX file, spaces and newline characters are collapsed into one space. The same happens in LUA. Compare the following examples. First we omit spaces:

```plaintext
context("left")
context("middle")
context("right")
```
resulting in: leftmiddleright. Next we add spaces:

```plaintext
context(" left ")
context(" middle ")
context(" right ")
```
resulting in: left middle right. We can also add more spaces:

```plaintext
context(" left ")
context(" middle ")
context(" right ")
```
resulting in: left middle right. In principle all content becomes a stream and after that the \TeX parser will do its normal work: collapse spaces unless configured to do otherwise.

Now take the following code:

```plaintext
context("before")
context("word 1")
context("word 2")
context("word 3")
context("after")
```
resulting in: beforeword 1word 2word 3after. Here we get no spaces between the words at all, which is what we expect. So, how do we get lines (or paragraphs)?

```plaintext
context("before")
context.startlines()
context("line 1")
context("line 2")
context("line 3")
context.stoplines()
context("after")
```
results in: before

```plaintext
line 1
line 2
line 3
```
after.
This does not work out well, as again there are no lines seen at the TeX end. Newline tokens are injected by passing `true` to the `context` command:

```latex
context("before")
context.startlines()
context("line 1") context(true)
context("line 2") context(true)
context("line 3") context(true)
context.stoplines()
context("after")
```
resulting in:

```
before
line 1
line 2
line 3
after
```

Don’t confuse this with:

```latex
context("before") context.par()
context("line 1") context.par()
context("line 2") context.par()
context("line 3") context.par()
context("after") context.par()
```
which results in:

```
before
line 1
line 2
line 3
after
```

There we use the regular \par command to finish the current paragraph and normally you will use that method. In that case, when set, whitespace will be added between paragraphs.

This newline issue is a somewhat unfortunate inheritance of traditional TeX, where \n and \r mean something different. I’m still not sure if the CLD do the right thing as dealing with these tokens also depends on the intended effect. Catcodes as well as the LuaTeX input parser also play a role. Anyway, the following also works:

```latex
context.startlines()
context("line 1\n")
context("line 2\n")
context("line 3\n")
context.stoplines()
```

Direct output
The ConTeXt user interface is rather consistent and the use of special input syntaxes is discouraged. Therefore, the Lua interface using tables and strings
works quite well. However, imagine that you need to support some weird macro (or a primitive) that does not expect its argument between curly braces or brackets. The way out is to precede an argument by another one with the value \texttt{false}. We call this the direct interface. This is demonstrated in the following example.

\begin{verbatim}
\unexpanded\def\bla#1{[#1]}
\startluacode
context.bla(false,"***")
context.par()
context.bla("***")
\stopluacode
\end{verbatim}

This results in: \texttt{[*]**

\texttt{[***]}. Here, the first call results in three * being passed, and \texttt{#1} picks up the first token. The second call to \texttt{bla} gets \texttt{{***}} passed so here \texttt{#1} gets the triplet. In practice you will seldom need the direct interface.

In \texttt{CONTEXT} for historical reasons, combinations accept the following syntax:

\begin{verbatim}
\startcombination % optional specification, like [2*3]
 \{\framed{content one}} \{caption one} \\
 \{\framed{content two}} \{caption two}\stopcombination
\end{verbatim}

You can also say:

\begin{verbatim}
\startcombination
 \combination {\framed{content one}} {caption one} \\
 \combination {\framed{content two}} {caption two}\stopcombination
\end{verbatim}

When coded in \texttt{LUA}, we can feed the first variant as follows:

\begin{verbatim}
context.startcombination()
 context.direct("one","two")
 context.direct("one","two")
context.stopcombination()
\end{verbatim}

To give you an idea what this looks like, we render it:

\begin{verbatim}
one one
two two
\end{verbatim}

So, the \texttt{direct} function is basically a no-op and results in nothing by itself. Only arguments are passed. An equivalent but bit more ugly looking is:

\begin{verbatim}
context.startcombination()
 context(false,"one","two")
 context(false,"one","two")
context.stopcombination()
\end{verbatim}
Catcodes
If you are familiar with the inner working of \TeX, you will know that characters can have special meanings. This meaning is determined by their catcodes.

\begin{verbatim}
context("\$x=1\$")
\end{verbatim}
This gives: $x = 1$ because the dollar tokens trigger inline math mode. If you think that this is annoying, you can do the following:

\begin{verbatim}
context.pushcatcodes("text")
context("\$x=1\$")
context.popcatcodes()
\end{verbatim}
Now we get: $x=1$. There are several catcode regimes of which only a few make sense in the perspective of the cld interface.

\begin{verbatim}
ctx, ctxcatcodes, context
prt, prtcatcodes, protect
tex, texcatcodes, plain
txt, txtcatcodes, text
vrb, vrbcatcodes, verbatim
xml, xmlcatcodes
\end{verbatim}
In the second case you can still get math:

\begin{verbatim}
context.pushcatcodes("text")
context.mathematics("x=1")
context.popcatcodes()
\end{verbatim}
When entering a lot of math you can also consider this:

\begin{verbatim}
context.startimath()
context("x")
context("=")
context("1")
context.stopimath()
\end{verbatim}
Module writers can use \texttt{unprotect} and \texttt{protect} as they do at the \TeX end.

As we’ve seen, a function call to \texttt{context} acts like a print, as in:

\begin{verbatim}
context("test ")
context.bold("me")
context(" first")
\end{verbatim}
resulting in: \texttt{test me first}. When more than one argument is given, the first argument is considered a format conforming the \texttt{string.format} function:

\begin{verbatim}
context.startimath()
context("\%s = \%0.5f",utf.char(0x03C0),math.pi)
context.stopimath()
\end{verbatim}
resulting in: \(\pi = 3.14159 \). This means that when you say:
\[
\text{context}(a,b,c,d,e,f)
\]
the variables \(b \) till \(f \) are passed to the format and when the format does not use them, they will not end up in your output.

\[
\text{context}("%s %s %s",1,2,3)
\]
\[
\text{context}(1,2,3)
\]
The first line results in the three numbers being typeset, but in the second case only the number 1 is typeset.

More on functions

Why we need them
In a previous section we introduced functions as arguments. At first sight this feature looks strange but you need to keep in mind that a call to a \texttt{context} function has no direct consequences. It generates \TeX{} code that is executed after the current \LaTeX{} chunk ends and control is passed back to \TeX{}. Take the following code:
\[
\text{context}.\text{framed}(\{ \\
\quad \text{frame} = \"on\", \\
\quad \text{offset} = \"5mm\", \\
\quad \text{align} = \"middle\" \\
\}, \\
\text{context}.\text{input}(\"knuth\")
\)
\]
We call the function \texttt{framed} but before the function body is executed, the arguments get evaluated. This means that \texttt{input} gets processed before \texttt{framed} gets done. As a result there is no second argument to \texttt{framed} and no content gets passed: an error is reported. This is why we need the indirect call:
\[
\text{context}.\text{framed}(\{ \\
\quad \text{frame} = \"on\", \\
\quad \text{align} = \"middle\" \\
\}, \\
\text{function()} \text{context}.\text{input}(\"knuth\") \text{end}
\)
This way we get what we want:
Thus, I came to the conclusion that the designer of a new system must not only be the implementer and first large-scale user; the designer should also write the first user manual.

The separation of any of these four components would have hurt \TeX significantly. If I had not participated fully in all these activities, literally hundreds of improvements would never have been made, because I would never have thought of them or perceived why they were important.

But a system cannot be successful if it is too strongly influenced by a single person. Once the initial design is complete and fairly robust, the real test begins as people with many different viewpoints undertake their own experiments.

The function is delayed till the `framed` command is executed. If your applications use such calls a lot, you can of course encapsulate this ugliness:

```lua
mycommands = mycommands or { }
function mycommands.framed_input(filename)
    context.framed( {
        frame = "on",
        align = "middle"
    },
    function() context.input(filename) end
end
mycommands.framed_input("knuth")
```

Of course you can nest function calls:

```lua
context.placefigure(
    "caption",
    function()
        context.framed( {
            frame = "on",
            align = "middle"
        },
        function() context.input("knuth") end
    )
end
```

Or you can use a more indirect method:

```lua
function text()
    context.framed( {
        frame = "on",
        align = "middle"
    }
```
How we can avoid them
As many nested functions can obscure the code rather quickly, there is an alternative. In the following examples we use test:
\def\test#1{[#1]}
context.test("test 1 ",context("test 2a")," test 3")
This gives: test 2a[test 1] test 3. As you can see, the second argument is executed before the encapsulating call to test. So, we should have packed it into a function but here is an alternative:
context.test("test 1 ",context.delayed("test 2a")," test 3")
Now we get: [test 1]test 2a test 3. We can also delay functions themselves, look at this:
context.test("test 1 ",context.delayed.test("test 2b")," test 3")
The result is: [test 1][test 2b] test 3. This feature also conveniently permits the use of temporary variables, as in:
local f = context.delayed.test("test 2c")
context("before ",f," after")
Of course you can limit the amount of keystrokes even more by creating a shortcut:
local delayed = context.delayed

context.test("test 1 ",delayed.test("test 2")," test 3")
context.test("test 4 ",delayed.test("test 5")," test 6")
So, if you want you can produce rather readable code and readability of code is one of the reasons why LUA was chosen in the first place. This is a good example of why coding in TeX makes sense as it looks more intuitive:
\test{test 1 \test{test 2} test 3}
\test{test 4 \test{test 5} test 6}
There is also another mechanism available. In the next example the second argument is actually a string.

```lua
local nested = context.nested

context.test("test 8", nested.test("test 9"), "test 10")
```

There is a pitfall here: a nested context command needs to be flushed explicitly, so in the case of:

```lua
context.nested.test("test 9")
```

a string is created but nothing ends up at the TeX end. Flushing is up to you. Beware: `nested` only works with the regular CONTEX catcode regime.

Trial typesetting

Some typesetting mechanisms demand a preroll. For instance, when determining the most optimal way to analyse and therefore typeset a table, it is necessary to typeset the content of cells first. Inside CONTEXT there is a state tagged ‘trial typesetting’ which signals other mechanisms that for instance counters should not be incremented more than once.

Normally you don’t need to worry about these issues, but when writing the code that implements the LUA interface to CONTEXT, it definitely had to be taken into account as we either or not can free cached (nested) functions.

You can influence this caching to some extend. If you say

```lua
function()
    context("whatever")
end
```

the function will be removed from the cache when CONTEXT is not in the trial typesetting state. You can prevent removal of a function by returning `true`, as in:

```lua
function()
    context("whatever")
    return true
end
```

Whenever you run into a situation that you don’t get the outcome that you expect, you can consider returning `true`. However, keep in mind that it will take more memory, something that only matters on big runs. You can force flushing the whole cache by:

```lua
context.restart()
```

An example of an occasion where you need to keep the function available is in repeated content, for instance in headers and footers.

```lua
context.setupheadertexts {
    function()
```
Of course it is not needed when you use the following method:
\begin{verbatim}
context.pagenumber("pagenumber")
\end{verbatim}
Because here \texttt{CONTeXT} itself deals with the content driven by the keyword \texttt{pagenumber}.

\section*{Steppers}

The \texttt{context} commands are accumulated within a \texttt{\ctxlua} call and only after the call is finished, control is back at the \TeX end. Sometimes you want (in your \texttt{LUA} code) to go on and pretend that you jump out to \TeX for a moment, but come back to where you left. The stepper mechanism permits this.

A not so practical but nevertheless illustrative example is the following:
\begin{verbatim}
\startluacode
context.stepwise (function()
 context.startitemize()
 context.startitem()
 context.step("BEFORE 1")
 context.stopitem()
 context.step(\\setbox0\\hbox{!!!!})
 context.startitem()
 context.step("%p",tex.getbox(0).width)
 context.stopitem()
 context.startitem()
 context.step("BEFORE 2")
 context.stopitem()
 context.step(\\setbox2\\hbox{????})
 context.startitem()
 context.step("%p",tex.getbox(2).width)
 context.startitem()
 context.step("BEFORE 3")
 context.stopitem()
 context.startitem()
 context.step(\\copy0\\copy2)
 context.stopitem()
 context.startitem()
 context.step("BEFORE 4")
 context.startitemize()
 context.stepwise (function()
\end{verbatim}
context.step(\\bgroup)\ncontext.step(\\setbox0\\hbox{>>>>})\ncontext.startitem()\n context.step("%p", tex.getbox(0).width)\ncontext.stopitem()\ncontext.step(\\setbox2\\hbox{<<<<})\ncontext.startitem()\n context.step("%p", tex.getbox(2).width)\ncontext.stopitem()\ncontext.startitem()\n context.step(\\copy0\\copy2)\ncontext.stopitem()\ncontext.startitem()\n context.step(\\copy0\\copy2)\ncontext.stopitem()\ncontext.startitem()\n context.step(\\copy0\\copy2)\ncontext.stopitem()\ncontext.startitem()\n context.step("\\egrup\n\ncontext.stopitemize() end)\ncontext.stopitem() context.startitem()\n context.step("AFTER 1\\par") context.stopitem() context.startitem()\n context.step("\\copy0\\copy2\\par") context.stopitem() context.startitem()\n context.stopitemize()\n\stopluacode
This gives an (ugly) itemize with a nested one:

- BEFORE 1
- 12.76001pt
- BEFORE 2
- 18.88pt
- BEFORE 3
- !!!!?????
- BEFORE 4
 - 31.12pt
 - 31.12pt
 - >>>>>>><<<
 - >>>>>>><<<
- AFTER 1
- !!!!?????
- !!!!?????
- AFTER 2
- !!!!?????
- !!!!?????

As you can see in the code, the step call accepts multiple arguments, but when more than one argument is given the first one is treated as a formatter.

A few Details

Variables
Normally it makes most sense to use the English version of CONTEXt. The advantage is that you can use English keywords, as in:

```latex
context.framed( {
  frame = "on",
```
If you use the Dutch interface it looks like this:
```latex
\texttt{context.omlijnd( \{ 
    \texttt{kader} = \texttt{"aan"},
\},
\texttt{\"wat tekst\"
})}
```

A rather neutral way is:
```latex
\texttt{context.framed( \{ 
    \texttt{frame} = \texttt{\texttt{interfaces.variables.on}},
\},
\texttt{\"some text\"
})}
```

But as said, normally you will use the English user interface so you can forget about these matters. However, in the \texttt{CONTEXT} core code you will often see the variables being used this way because there we need to support all user interfaces.

Modes

\texttt{CONTEXT} carries a concept of modes. You can use modes to create conditional sections in your style (and/or content). You can control modes in your styles or you can set them at the command line or in job control files. When a mode test has to be done at processing time, then you need constructs like the following:
```latex
\texttt{context.doifmodeelse( \"screen\",}
\texttt{ \texttt{function()} \texttt{... -- mode == screen}
\texttt{ end,}
\texttt{ \texttt{function()}
\texttt{... -- mode ~= screen}
\texttt{ end}
})
```

However, often a mode does not change during a run, and then we can use the following method:
```latex
\texttt{if \texttt{tex.modes[\"screen\"] then}
\texttt{...}
\texttt{else}
\texttt{...}
\texttt{end}
```
Watch how the modes table lives in the tex namespace. We also have systemmodes. At the \TeX end these are mode names preceded by a *, so the following code is similar:

```lua
if tex.modes[*mymode] then
    -- this is the same
elseif tex.systemmodes[mymode] then
    -- test as this
else
    -- but not this
end
```

Inside \CONTEXT we also have so called constants, and again these can be consulted at the LUA end:

```lua
if tex.constants[someconstant] then
    ...
else
    ...
end
```

But you will hardly need these and, as they are often not public, their meaning can change, unless of course they are documented as public.

Token lists

There is normally no need to mess around with nodes and tokens at the LUA end yourself. However, if you do, then you might want to flush them as well. Say that at the \TeX end we have said:

```
\toks0 = {Don't get \inframed{framed}!}
```

Then at the LUA end you can say:

```lua
context(tex.toks[0])
```

and get: Don’t get \textbf{framed}! In fact, token registers are exposed as strings so here, register zero has type string and is treated as such.

```lua
context(< %s >, tex.toks[0])
```

This gives: < Don’t get \textbf{framed}! >. But beware, if you go the reverse way, you don’t get what you might expect:

```lua
tex.toks[0] = [[\framed{oeps}]]
```

If we now say \texttt{\the\toks0} we will get \texttt{\framed{oeps}} as all tokens are considered to be letters.

Node lists

If you’re not deep into \TeX you will never feel the need to manipulate node lists yourself, but you might want to flush boxes. As an example we put something in box zero (one of the scratch boxes).
\setbox0 = \hbox{Don't get \texttt{framed}!}

At the TEX end you can flush this box (\box0) or take a copy (\copy0). At the LUA end you would do:

\begin{verbatim}
context.copy()
context.direct(0)
\end{verbatim}

or:

\begin{verbatim}
context.copy(false,0)
\end{verbatim}

but this works as well:

\begin{verbatim}
context(node.copy_list(tex.box[0]))
\end{verbatim}

So we get: Don't get framed! If you do:

\begin{verbatim}
context(tex.box[0])
\end{verbatim}

you also need to make sure that the box is freed but let's not go into those details now.

Here is an example of messing around with node lists that get seen before a paragraph gets broken into lines, i.e. when hyphenation, font manipulation etc. take place. First we define some colors:

\begin{verbatim}
\definecolor[mynesting:0][r=.6]
\definecolor[mynesting:1][g=.6]
\definecolor[mynesting:2][r=.6,g=.6]
\end{verbatim}

Next we define a function that colors nodes in such a way that we can see the different processing stages.

\begin{verbatim}
\startluacode
local enabled = false
local count = 0
local setcolor = nodes.tracers.colors.set

function userdata.processmystuff(head)
 if enabled then
 local color = "mynesting:" .. (count \mod 3)
 -- for n in node.traverse(head) do
 for n in node.traverse_id(nodes.nodecodes.glyph,head) do
 setcolor(n,color)
 count = count + 1
 end
 return head, true
 end
 return head, false
end
\end{verbatim}

end
function userdata.enablemystuff()
 enabled = true
end

function userdata.disablemystuff()
 enabled = false
end
\stopluacode

We hook this function into the normalizers category of the processor callbacks:
\startluacode
nodes.tasks.appendaction(
 "processors",
 "normalizers",
 "userdata.processmystuff"
)
\stopluacode

We now can enable this mechanism and show an example:
\ctxlua{userdata.enablemystuff()}
\par \getbuffer \par
\ctxlua{userdata.disablemystuff()}

The \par is needed because otherwise the processing is already disabled before the paragraph gets seen by \TeX. This is the result:

Node lists are processed \hbox {nested from \hbox{inside} out} which is not what you might expect. But, \hbox{coloring} does not \hbox {happen} really nested here, more \hbox {in} \hbox {the} \hbox {order} \hbox {of} \hbox {processing}.

Instead of using a boolean to control the state, we can also do this:
\startluacode
local count = 0
local setcolor = nodes.tracers.colors.set

function userdata.processmystuff(head)
 count = count + 1
 local color = "mynesting:" .. (count \% 3)
for n in node.traverse_id(nodes.nodecodes.glyph,head) do
 setcolor(n,color)
end
return head, true
end

nodes.tasks.appendaction(
 "processors",
 "after",
 "userdata.processmystuff"
)
\stopluacode
Disabling now happens with:
\startluacode
nodes.tasks.disableaction("processors", "userdata.processmystuff")
\stopluacode
As you might want to control these things in more details, a simple helper mechanism was made: markers. The following example code shows the way:
\definemarker[mymarker]
Again we define some colors:
\definecolor[mymarker:1][r=.6]
\definecolor[mymarker:2][g=.6]
\definecolor[mymarker:3][r=.6,g=.6]
The LUA code looks similar to the code presented before:
\startluacode
local setcolor = nodes.tracers.colors.setlist
local getmarker = nodes.markers.get
local hlist_code = nodes.codes.hlist
local traverse_id = node.traverse_id

function userdata.processmystuff(head)
 for n in traverse_id(hlist_code,head) do
 local m = getmarker(n,"mymarker")
 if m then
 setcolor(n.list,"mymarker:" .. m)
 end
 end
end
return head, true
end
nodes.tasks.appendaction(
 "processors",
 "after",
 "userdata.processmystuff")
nodes.tasks.disableaction("processors", "userdata.processmystuff")
\stopluacode

This time we disabled the processor (if only because in this document we
don’t want the overhead).
\startluacode
nodes.tasks.enableaction("processors", "userdata.processmystuff")
\stopluacode

Node lists are processed \hbox \boxmarker{mymarker}{1}
{nested from \hbox{inside} out}
which is not what you might expect. But,
\hbox {coloring} does not \hbox {happen} really
nested here, more \hbox {in} \hbox \boxmarker{mymarker}{2}
{the} \hbox {order} \hbox {of} \hbox \boxmarker{mymarker}{3}
{processing}.

\startluacode
nodes.tasks.disableaction("processors", "userdata.processmystuff")
\stopluacode

The result looks familiar:

Node lists are processed nested from inside out which is not what you might
expect. But, coloring does not happen really nested here, more in the order of
processing.

Some more examples

Appetizer
Before we give some more examples, we will have a look at the way the title
page is made. This way you get an idea what more is coming.
local todimen, random = number.todimen, math.random

context.startTEXpage()

local paperwidth = tex.dimen.paperwidth
local paperheight = tex.dimen.paperheight
local nofsteps = 25
local firstcolor = "darkblue"
local secondcolor = "white"

context.definelayer({ "titlepage" })

context.setuplayer(
 { "titlepage" },
 { width = todimen(paperwidth),
 height = todimen(paperheight),
 }
)

context.setlayerframed(
 { "titlepage" },
 { offset = "-5pt" },
 { width = todimen(paperwidth),
 height = todimen(paperheight),
 background = "color",
 backgroundcolor = firstcolor,
 backgroundoffset = "10pt",
 frame = "off",
 },
 ""
)

local settings = {
 frame = "off",
 background = "color",
 backgroundcolor = secondcolor,
 foregroundcolor = firstcolor,
 foregroundstyle = "type",
}

for i=1, nofsteps do
 for j=1, nofsteps do
 context.setlayerframed(
 { "titlepage" },
 { x = todimen((i-1) * paperwidth/nofsteps),
 y = todimen((j-1) * paperheight/nofsteps),
 rotation = random(360),
 },
 settings,
 "CLD"
)
 end
end
This does not look that bad, does it? Of course in pure \TeX{} code it looks mostly the same but loops and calculations feel a bit more natural in \texttt{LUA} than in \TeX{}. The result is shown in figure 1. The actual cover page of the manual was derived from this.

```
context.tightlayer({ "titlepage" })
context.stopTEXpage()
return true
```

Figure 1 The simplified cover page.

A few examples

As it makes most sense to use the \texttt{LUA} interface for generated text, here is another example with a loop:

```text
context.startitemize { "a", "packed", "two" }
  for i=1,10 do
    context.startitem()
    context("this is item %i",i)
    context.stopitem()
  end
context.stopitemize()
```

36
resulting in:

a. this is item 1
b. this is item 2
c. this is item 3
d. this is item 4
e. this is item 5
f. this is item 6
g. this is item 7
h. this is item 8
i. this is item 9
j. this is item 10

Just as you can mix T\(\TeX\) with XML and METAPOST, you can define bits and pieces of a document in LUA. Tables are good candidates:

```
local one = {
    align = "middle",
    style = "type",
}
local two = {
    align = "middle",
    style = "type",
    background = "color",
    backgroundcolor = "darkblue",
    foregroundcolor = "white",
}
local random = math.random
context.bTABLE { framecolor = "darkblue" }  
  for i=1,10 do
    context.bTR()
    for i=1,20 do
      local r = random(99)
      context.bTD(r < 50 and one or two)
      context("\%2i",r)
      context.eTD()
    end
    context.eTR()
  end
context.eTABLE()
```

Here we see a function call to `context` in the most indented line. The first argument is a format that makes sure that we get two digits and the random number is substituted into this format. The result is shown in table 1. The
line correction is ignored when we use this table as a float, otherwise it assures proper vertical spacing around the table. Watch how we define the tables one and two beforehand. This saves 198 redundant table constructions.

Not all code will look as simple as this. Consider the following:

```
context.placefigure(
    "caption",
    function() context.externalfigure( { "cow.pdf" } ) end
)
```

Here we pass an argument wrapped in a function. If we would not do that, the external figure would end up wrong, as arguments to functions are evaluated before the function that gets them (we already showed some alternative approaches in previous chapters). A function argument is treated as special and in this case the external figure ends up right. Here is another example:

```
context.placefigure("Two cows!",function()
    context.bTABLE()
    context.bTR()
    context.bTD()
        context.externalfigure(
            { "cow.pdf" },
            { width = "3cm", height = "3cm" }
        )
    context.eTD()
    context.bTD { align = "{lohi, middle}" }
    context("and")
    context.eTD()
    context.bTD()
    context.externalfigure(
```

Table 1 A table generated by LUA.
In this case the figure is not an argument so it gets flushed sequentially with the rest:

![Figure 2](cow.pdf)

Figure 2 Two cows!

Styles

Say that you want to typeset a word in a bold font. You can do that this way:

```plaintext
context("This is ")
context.bold("important")
context("!")
```

Now imagine that you want this important word to be in red too. As we have a nested command, we end up with a nested call:

```plaintext
context("This is ")
context.bold(function() context.color( { "red" }, "important") end)
context("!")
```

or

```plaintext
context("This is ")
context.bold(context.delayed.color( { "red" }, "important"))
context("!")
```

In that case it’s good to know that there is a command that combines both features:

```plaintext
context("This is ")
context.style( { style = "bold", color = "red" }, "important")
context("!")
```

But that is still not convenient when we have to do that often. So, you can wrap the style switch in a function.
local function mycommands.important(str)
 context.style({ style = "bold", color = "red" }, str)
end
context("This is ")
mycommands.important("important"")
context(", and ")
mycommands.important("this")
context(" too !")
Or you can setup a named style:
context.setupstyle({ "important" },
 { style = "bold", color = "red" })
context("This is ")
context.style({ "important" }, "important")
context(", and ")
context.style({ "important" }, "this")
context(" too !")
Or even define one:
context.definestyle({ "important" },
 { style = "bold", color = "red" })
context("This is ")
context.important("important")
context(", and ")
context.important("this")
context(" too !")
This last solution is especially handy for more complex cases:
context.definestyle({ "important" },
 { style = "bold", color = "red" })
context("This is ")
context.startimportant()
context.inframed("important")
context.stopimportant()
context(", and ")
context.important("this")
context(" too !")
resulting in: This is important, and this too!

A complete example
One day my 6 year old niece Lorien was at the office and wanted to know what I was doing. As I knew she was practicing arithmetic at school I wrote a quick and dirty script to generate sheets with exercises. The most impressive part was
that the answers were included. It was a rather braindead bit of LUA, written in a few minutes, but the weeks after I ended up running it a few more times, for her and her friends, every time a bit more difficult and also using different arithmetic. It was that script that made me decide to extend the basic cld manual into this more extensive document.

We generate three columns of exercises. Each exercise is a row in a table. The last argument to the function determines if answers are shown.

```lua
local random = math.random

local function ForLorien(n,maxa,maxb,answers)
    context.startcolumns { n = 3 }
    context.starttabulate { "|r|c|r|c|r|" }
    for i=1,n do
        local sign = random(0,1) > 0.5
        local a, b = random(1,maxa or 99), random(1,max or maxb or 99)
        if b > a and not sign then a, b = b, a end
        context.NC()
        context(a)
        context.NC()
        context.mathematics(sign and "+" or "-")
        context.NC()
        context(b)
        context.NC()
        context("=")
        context.NC()
        context(answers and (sign and a+b or a-b))
        context.NC()
        context.NR()
    end
    context.stoptabulate()
    context.stopcolumns()
    context.page()
end
```

This is a typical example of where it’s more convenient to write the code in LUA that in TEX’s macro language. As a consequence setting up the page also happens in LUA:

```lua
context.setupbodyfont {
    "palatino",
    "14pt"
}
```
context.setuplayout {
 backspace = "2cm",
 topspace = "2cm",
 header = "1cm",
 footer = "0cm",
 height = "middle",
 width = "middle",
}

This leaves us to generate the document. There is a pitfall here: we need to use the same random number for the exercises and the answers, so we freeze and defrost it. Functions in the commands namespace implement functionality that is used at the TeX end but better can be done in Lua than in TeX macro code. Of course these functions can also be used at the Lua end.

context.starttext()

 local n = 120

 commands.freezerandomseed()

 ForLorien(n,10,10)
 ForLorien(n,20,20)
 ForLorien(n,30,30)
 ForLorien(n,40,40)
 ForLorien(n,50,50)

 commands.defrostrandomseed()

 ForLorien(n,10,10,true)
 ForLorien(n,20,20,true)
 ForLorien(n,30,30,true)
 ForLorien(n,40,40,true)
 ForLorien(n,50,50,true)

context.stoptext()

A few pages of the result are shown in figure 3. In the CONTEXT distribution a more advanced version can be found in s-edu-01.cld as I was also asked to generate multiplication and table exercises. In the process I had to make sure that there were no duplicates on a page as she complained that was not good. There a set of sheets is generated with:

moduledata.educational.arithmetic.generate {
 name = "Bram Otten",
 fontsize = "12pt",
}
exercises

\begin{center}
\begin{tabular}{cccc}
1 & 2 & 3 & 4 \\
6 - 4 &=& 6 + 8 &=& 4 - 3 \\
1 + 8 &=& 8 + 9 &=& 3 - 3 \\
10 - 4 &=& 7 - 7 &=& 8 + 7 \\
5 + 3 &=& 5 + 5 &=& 10 - 5 \\
9 - 7 &=& 2 - 2 &=& 9 - 6 \\
6 - 10 &=& 9 - 3 &=& 5 + 1 \\
4 + 9 &=& 7 - 6 &=& 2 - 1 \\
9 + 10 &=& 8 + 3 &=& 1 + 2 \\
7 - 4 &=& 2 - 1 &=& 4 + 1 \\
10 + 2 &=& 6 - 5 &=& 5 + 4 \\
9 + 5 &=& 5 - 6 &=& 8 - 8 \\
7 - 1 &=& 7 - 2 &=& 4 + 10 \\
8 - 4 &=& 7 + 6 &=& 7 + 5 \\
4 - 3 &=& 4 + 10 &=& 10 - 5 \\
5 + 6 &=& 4 - 3 &=& 5 + 9 \\
6 + 1 &=& 7 - 2 &=& 3 - 2 \\
5 + 4 &=& 4 - 3 &=& 5 + 1 \\
4 - 1 &=& 1 + 7 &=& 5 + 9 \\
1 + 3 &=& 4 + 3 &=& 9 - 9 \\
3 + 5 &=& 9 - 2 &=& 6 + 1 \\
5 + 5 &=& 8 - 6 &=& 9 + 2 \\
7 - 2 &=& 8 + 2 &=& 10 - 9 \\
10 - 9 &=& 5 + 8 &=& 10 - 1 \\
5 + 1 &=& 10 - 4 &=& 7 - 5 \\
8 + 5 &=& 5 + 3 &=& 7 + 10 \\
5 + 1 &=& 6 + 7 &=& 7 - 1 \\
10 - 9 &=& 9 + 9 &=& 3 - 2 \\
7 - 4 &=& 5 - 2 &=& 7 + 5 \\
6 - 3 &=& 6 + 5 &=& 8 - 8 \\
2 + 1 &=& 5 - 1 &=& 6 + 6 \\
8 + 2 &=& 2 - 1 &=& 9 - 6 \\
5 + 7 &=& 7 + 4 &=& 9 - 3 \\
9 + 4 &=& 9 + 4 &=& 6 + 4 \\
10 + 2 &=& 3 - 2 &=& 9 - 2 \\
6 + 2 &=& 1 + 9 &=& 8 - 7 \\
7 - 1 &=& 8 + 1 &=& 8 - 8 \\
6 + 8 &=& 5 - 1 &=& 7 - 5 \\
10 + 2 &=& 5 - 1 &=& 5 + 10 \\
\end{tabular}
\end{center}

\textbf{Figure 3} Lorien’s challenge.

\begin{verbatim}
columns = 2,
run = {
 { method = "bin_add_and_subtract", maxa = 8, maxb = 8 },
 { method = "bin_add_and_subtract", maxa = 16, maxb = 16 },
 { method = "bin_add_and_subtract", maxa = 32, maxb = 32 },
 { method = "bin_add_and_subtract", maxa = 64, maxb = 64 },
 { method = "bin_add_and_subtract", maxa = 128, maxb = 128 },
},
\}
\end{verbatim}

\textbf{Interfacing}

The fact that we can define functionality using LUA code does not mean that we should abandon the \TeX interface. As an example of this we use a relatively simple module for typesetting morse code.\footnote{The real module is a bit larger and can format verbose morse.} First we create a proper namespace: \texttt{moduledata.morse = moduledata.morse or { }},\texttt{local morse = moduledata.morse}
We will use a few helpers and create shortcuts for them. The first helper loops over each UTF character in a string. The other two helpers map a character onto an uppercase (because morse only deals with uppercase) or onto a similar shaped character (because morse only has a limited character set).

local utfcharacters = string.utfcharacters
local ucchars, shchars = characters.ucchars, characters.shchars

The morse codes are stored in a table.

local codes = {
 ["A"] = ".-", ["B"] = "...-",
 ["C"] = ".-.-", ["D"] = ".-",
 ["E"] = ".", ["F"] = "...--",
 ["G"] = "--.", ["H"] = "....",
 ["I"] = "..", ["J"] = ".-.--",
 ["K"] = ".-.-", ["L"] = ".-..",
 ["M"] = "--", ["N"] = ".-",
 ["O"] = "---", ["P"] = ".--",
 ["Q"] = ".--.-", ["R"] = ".-.",
 ["S"] = "...", ["T"] = "-",
 ["U"] = ".--", ["V"] = "..--",
 ["W"] = ".--.-", ["X"] = "---.",
 ["Y"] = "-.--", ["Z"] = "--.-",
 ["0"] = "-----", ["1"] = "----.",
 ["2"] = "....-", ["3"] = "...--",
 ["4"] = ".....", ["5"] = "......",
 ["6"] = "-....", ["7"] = "--...",
 ["8"] = "---...", ["9"] = "-----",
 ["."] = "-----.", [","] = "----.-",
 [":"] = "------", ["]"] = "-....-",
 ["?"] = "-.....", ["!"]] = "----.-",
 ["]"] = "-....-", ["/"]] = "-....-",
 ["("] = "-....-", ["\"]] = "-....-",
 ["="] = "-....-", ["@"]] = "----.-",
 ["]"] = "-....-", ["\"]] = "-....-",
 ["Ê"] = ".-.-", ["Å"]] = "-....-",
 ["Ç"]] = ".-.-", ["È"]] = "-....-",
 ["Ê"] = ".-.-", ["Ñ"]] = "-....-",
 ["Ü"] = "---.", ["Ø"]] = "-....-",
 ["Ü"] = "-..-", ["ß"]] = "----...",
}
morse.codes = codes
As you can see, there are a few non ASCII characters supported as well. There will never be full UNICODE support simply because morse is sort of obsolete. Also, in order to support UNICODE one could as well use the bits of UTF characters, although ... memorizing the whole UNICODE table is not much fun.

We associate a metatable index function with this mapping. That way we can not only conveniently deal with the casing, but also provide a fallback based on the shape. Once found, we store the representation so that only one lookup is needed per character.

```lua
local function resolvemorse(t,k)
    if k then
        local u = ucchars[k]
        local v = rawget(t,u) or rawget(t,shchars[u]) or false
        t[k] = v
        return v
    else
        return false
    end
end
setmetatable(codes, { __index = resolvemorse })
```

Next comes some rendering code. As we can best do rendering at the \TeX\ end we just use macros.

```lua
local MorseBetweenWords = context.MorseBetweenWords
local MorseBetweenCharacters = context.MorseBetweenCharacters
local MorseLong = context.MorseLong
local MorseShort = context.MorseShort
local MorseSpace = context.MorseSpace
local MorseUnknown = context.MorseUnknown
```

The main function is not that complex. We need to keep track of spaces and newlines. We have a nested loop because a fallback to shape can result in multiple characters.

```lua
function morse.tomorse(str)
    local inmorse = false
    for s in utfcharacters(str) do
        local m = codes[s]
        if m then
            if inmorse then
                MorseBetweenWords()
            else
                inmorse = true
            end
```
local done = false
for m in utfcharacters(m) do
if done then
 MorseBetweenCharacters()
else
 done = true
end
if m == "·" then
 MorseShort()
elseif m == "—" then
 MorseLong()
elseif m == " " then
 MorseBetweenCharacters()
end
end
inmorse = true
elseif s == "\n" or s == " " then
 MorseSpace()
 inmorse = false
else
 if inmorse then
 MorseBetweenWords()
 else
 inmorse = true
 end
 MorseUnknown(s)
end
end
We use this function in two additional functions. One typesets a file, the other a table of available codes.

function morse.filetomorse(name,verbose)
 morse.tomorse(resolvers.loadtexfile(name),verbose)
end

function morse.showtable()
 context.starttabulate { "|l|l|" }
 for k, v in table.sortedpairs(codes) do
 context.NC() context(k)
 context.NC() morse.tomorse(v,true)
 end
end
context.NC() context.NR()
end
context.stoptabulate()
end

We’re done with the LUA code that we can either put in an external file or put in the module file. The \TeX\ file has two parts. The typesetting macros that we use at the LUA end are defined first. These can be overloaded.

\def\MorseShort
{\dontleavehmode
 \vrule
 width \MorseWidth
 height \MorseHeight
 depth \zeropoint
 \relax}

\def\MorseLong
{\dontleavehmode
 \vrule
 width 3\dimexpr\MorseWidth
 height \MorseHeight
 depth \zeropoint
 \relax}

\def\MorseBetweenCharacters
{\kern\MorseWidth}

\def\MorseBetweenWords
{\hskip3\dimexpr\MorseWidth\relax}

\def\MorseSpace
{\hskip7\dimexpr\MorseWidth\relax}

\def\MorseUnknown#1
{[\detokenize{#1}]}

The dimensions are stored in macros as well. Of course we could provide a proper setup command, but it hardly makes sense.

\def\MorseWidth{0.4em}
\def\MorseHeight{0.2em}

Finally we have arrived at the macros that interface to the LUA functions.

\def\MorseString#1{\ctxlua{moduledata.morse.tomorse(\!!bs#1\!!es)}}
\def\MorseFile #1{\ctxlua{moduledata.morse.filetomorse("#1")}}
A string is converted to morse with the first command.

A more advanced solution would be to convert a node list. That way we can deal with weird input.

This shows up as:

```
   ___   ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ _____.
is constructed. It is for this reason that no color is applied: the snippets that end up in the box are already typeset.

An alternative is to delegate the task to LUA:

\startluacode
local function process(data)

    local words = lpeg.split(lpeg.patterns.spacer,data or "")

    for i=1,#words do
        if i == 1 then
            context.dontleavehmode()
        else
            context.space()
        end
        context.colored(words[i])
    end

end

process(io.loaddata(resolvers.findfile("ward.tex")))
\stopluacode

This results in: The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact, it would be happening whether humans had ever evolved or not. But our presence is like the effect of an old-age patient who smokes many packs of cigarettes per day — and we humans are the cigarettes.

The function splits the loaded data into a table with individual words. We use a splitter that splits on spacing tokens. The special case for $i = 1$ makes sure that we end up in horizontal mode (read: properly start a paragraph). This time we do get color because the typesetting is done directly. Here is an alternative implementation:

local done = false

local function reset()
    done = false
    return true
end

local function apply(s)
    if done then
        context.space()
    else
        done = true
        context.dontleavehmode()
    end

end
end
context.colored(s)
end

local splitter = lpeg.P(reset)
  * lpeg.splitter(lpeg.patterns.spacer,apply)

local function process(data)
  lpeg.match(splitter,data)
end

This version is more efficient as it does not create an intermediate table. The
next one is comparable:

local function apply(s)
  context.colored("%s ",s)
end

local splitter lpeg.splitter(lpeg.patterns.spacer,apply)

local function process(data)
  context.dontleavevmode()
  lpeg.match(splitter,data)
  context.removeunwantedspaces()
end

Formatters
Sometimes you can save a bit of work by using formatters. By default, the
context command, when called directly, applies a given formatter. But when
called as table this feature is lost because then we want to process non-strings
as well. The next example shows a way out:

countex("the current emwidth is %p", \number\emwidth)
countex.par()
countex.formatted("the current emwidth is %p", \number\emwidth)
countex.par()
countex.bold(string.formatters["the current emwidth is %p"]( 
  \number\emwidth))
countex.par()
countex.formatted.bold("the current emwidth is %p", 
  \number\emwidth)

The last one is the most interesting one here: in the subnamespace formatted
(write the d) a format specification with extra arguments is expected. This is
the result: the current emwidth is 10pt

50
Summary

context("...")
The string is flushed directly.
...

class("format",...)
The first string is a format specification according that is passed to the LUA function format in the string namespace. Following arguments are passed too.
format("format",...)

context(123,...)
The numbers (and following numbers or strings) are flushed without any formatting.
123... (concatenated)

class(true)
An explicit \verb@endlinechar\ is inserted.

context(false,...)
Strings and numbers are flushed surrounded by curly braces, an indexed table is flushed as option list, and a hashed table is flushed as parameter set.
multiple {...} or [...] etc

class(node)
The node(list) is injected at the spot. Keep in mind that you need to do the proper memory management yourself.

class.command(value,...)
The value (string or number) is flushed as a curly braced (regular) argument.
\command {value}...

\texttt{context.command( value ,...)}
The table is flushed as value set. This can be an identifier, a list of options, or a directive.
\command [value]...

\texttt{context.command( key = value ,...)}
The table is flushed as key/value set.
\command [key={value}]...

\texttt{context.command(true)}
An explicit \texttt{endlinechar} is inserted.
\command ^^M

\texttt{context.command(node)}
The node(list) is injected at the spot. Keep in mind that you need to do the proper memory management yourself.
\command {node(list)}

\texttt{context.command(false,value)}
The value is flushed without encapsulating tokens.
\command value

\texttt{context.command( value , key = value , value, false, value)}
The arguments are flushed accordingly their nature and the order can be any.
\command [value][key={value}]{value}

\texttt{context.direct(...)}
The arguments are interpreted the same as if \texttt{direct} was a command, but no \texttt{direct} is injected in front.

\texttt{context.delayed(...)}
The arguments are interpreted the same as in a \texttt{context} call, but instead of a direct flush, the arguments will be flushed in a next cycle.
context.delayed.command(...)  
The arguments are interpreted the same as in a command call, but instead of a direct flush, the command and arguments will be flushed in a next cycle.

context.nested.command  
This command returns the command, including given arguments as a string. No flushing takes place.

context.nested  
This command returns the arguments as a string and treats them the same as a regular context call.

context.formatted.command  
This command returns the command that will pass it’s arguments to the string formatter.

context.formatted  
This command passes it’s arguments to the string formatter.

context.metafun.start(...)  
This starts a METAFun (or METAPost) graphic.

context.metafun()  
This finishes and flushes a METAFun (or METAPost) graphic.

context.metafun.stop(...)  
The argument is appended to the current graphic data.

context.metafun.stop("format",...)  
The argument is appended to the current graphic data but the string formatter is used on following arguments.
ConTExt–Lua dokumenty

V rámci formátu ConTExt lze připravovat dokumenty pomocí kombinace jazyků TEx, xml, MetaPost a Lua. Článek v krátkosti shrnuje základy jazyka Lua a následně se věnuje způsobům, jakými je možné jazyk využít při přípravě dokumentů ve formátu ConTExt MkIV.

Klíčová slova: Lua, LuaTEX, ConTExT, MkIV

Hans Hagen, pragma@wxs.nl