
Zpravodaj Československého sdružení uživatelů TeXu

Hans Hagen
Lua in MetaPost

Zpravodaj Československého sdružení uživatelů TeXu, Vol. 27 (2017), No. 3-4, 138–154

Persistent URL: http://dml.cz/dmlcz/150280

Terms of use:
© Československé sdružení uživatelů TeXu, 2017

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This document has been digitized, optimized for electronic delivery
and stamped with digital signature within the project DML-CZ:
The Czech Digital Mathematics Library http://dml.cz

http://dml.cz/dmlcz/150280
http://dml.cz


Lua in MetaPost
Hans Hagen

In LuaTEX, it is now possible to run snippets of Lua code from within Meta-
Post. The article describes the mechanism, the low-level interface available
in LuaTEX, as well as the high-level interface available in ConTEXt through
example.
Keywords: Lua, LuaTEX, ConTEXt, MetaPost, MPlib

Introduction
Already for a some years I have been wondering how it would be if we could
escape to Lua inside MetaPost, or in practice, in MPlib in LuaTEX. The idea
is simple: embed Lua code in a MetaPost file that gets run as soon as it’s seen.
In case you wonder why Lua code makes sense, imagine generating graphics
using external data. The capabilities of Lua to deal with that is more flexible
and advanced than in MetaPost. Of course we could generate a MetaPost
definition of a graphic from data but often it makes more sense to do the reverse.
I finally found time and reason to look into this and in the following sections I
will describe how it’s done.

The basics
The approach is comparable to LuaTEX’s \directlua. That primitive can be
used to execute Lua code and in combination with tex.print we can pipe back
strings into the TEX input stream. There is a complication that we have to
be able to operate under different so called catcode regimes: the meaning of
characters can differ per regime. We also have to deal with line endings in special
ways as they relate to paragraphs and such. In MetaPost we don’t have that
complication so getting back input into the MetaPost input, we can do so
with simple strings. For that a mechanism similar to scantokens can be used.
That way we can return anything (including nothing) as long as MetaPost can
interpret it and as long as it fulfils the expectations.
numeric n ;
n := scantokens("123.456") ;
A script is run as follows:
numeric n ;
n := runscript("return ’123.456’") ;

138 doi: 10.5300/2017-3-4/138



139

This primitive doesn’t have the word lua in its name so in principle any
wrapper around the library can use it as hook. In the case of LuaTEX the script
language is of course Lua. At the MetaPost end we only expect a string. How
that string is constructed is completely up to the Lua script. In fact, the user
is completely free to implement the runner any way she or he wants, like:
local function scriptrunner(code)

local f = loadstring(code)
if f then

return tostring(f())
else

return ""
end

end
This is hooked into an instance as follows:
local m = mplib.new {

...
run_script = scriptrunner,
...

}
Now, beware, this is not the ConTEXt way. We provide print functions and
other helpers, which we will explain in the next section.

Helpers
After I got this feature up and running I played a bit with possible interfaces
at the ConTEXt (read: MetaFun) end and ended up with a bit more advanced
runner where no return value is used. The runner is wrapped in the lua macro.
numeric n ;
n := lua("mp.print(12.34567)") ;
draw textext(n) xsized 4cm withcolor maincolor ;
This renders as:

12.34567
In case you wonder how efficient calling Lua is, don’t worry: it’s fast enough,
especially if you consider suboptimal Lua code and the fact that we switch
between machineries.
draw image (

lua("statistics.starttiming()") ;
for i=1 upto 5000 :



140

draw lua ("mp.pair
(math.random(-74,270),

math.random(-22,22))" ) ;
endfor ;
lua("statistics.stoptiming()") ;
draw textext(lua

("mp.print(
statistics.elapsedtime())")

) ysized 40 ;
) withcolor maincolor

withpen pencircle scaled 1 ;
Here the part:
draw lua ("mp.pair

(math.random(-74,270),
math.random(-22,22))" ) ;

effectively becomes (for instance):
draw scantokens "(25,15)" ;
which in turn becomes:
draw scantokens (25,15) ;

The same happens with this:
draw textext (lua

("mp.print
(statistics.elapsedtime())"

) ) ...
This becomes for instance:
draw textext(scantokens "1.23") ...
and therefore:
draw textext(1.23) ...
We can use mp.print here because the textext macro can deal with numbers.
The next also works:
draw textext(lua

("mp.quoted
(statistics.elapsedtime())"

)
) ...
Now we get (in MetaPost speak):
draw textext(scantokens

(ditto & "1.23" & ditto) ...



141

Here ditto represents the double quotes that mark a string. Of course, because
we pass the strings directly to scantokens, there are no outer quotes at all, but
this is how it can be simulated. In the end we have:
draw textext("1.23") ...
What you use, mp.print or mp.quoted depends on what the expected code is:
an assignment to a numeric can best be a number or an expression resulting in
a number. This graphic becomes:

0.048
The runtime on my current machine is some 0.25 seconds without and 0.12
seconds with caching. But to be honest, speed is not really a concern here
as the amount of complex MetaPost graphics can be neglected compared to
extensive node list manipulation. With LuajitTEX generating the graphic takes
15% less time.1

The three print command accumulate their arguments:
numeric n ;
n := lua("mp.print(1) mp.print('+') mp.print(2)") ;
draw textext(n) xsized 1cm

withcolor maincolor ;
As expected we get:

3
Equally valid is:
numeric n ;
n := lua("mp.print(1,'+',2)") ;
draw textext(n) xsized 1cm

withcolor maincolor ;
This gives the same result:

3
1Processing a small 8 page document like this takes about one second, which includes loading
a bunch of fonts.



142

Of course all kind of action can happen between the prints. It is also legal
to have nothing returned as could be seen in the 10.000 dot example: there
the timer related code returns nothing so effectively we have scantokens("").
Another helper is mp.quoted, as in:
draw textext

(lua
("mp.quoted

('@0.3f',
" & decimal n & "

)"
)

) withcolor maincolor ;
This typesets 3.000. Watch the @. When no percent character is found in the
format specifier, we assume that an @ is used instead.

But, the real benefit of embedded Lua is when we deal with data that is
stored at the Lua end. First we define a small dataset:
\startluacode
table.save("demo-data.lua",

{
{ 1, 2 }, { 2, 4 }, { 3, 3 },
{ 4, 2 }, { 5, 2 }, { 6, 3 },
{ 7, 4 }, { 8, 1 },

}
)
\stopluacode
There are several ways to deal with this table. I will show clumsy as well as
better looking ways.
lua("MP = { }
MP.data = table.load('demo-data.lua')"
) ;
numeric n ;
lua("mp.print('n := ',\#MP.data)") ;
for i=1 upto n :

drawdot
lua("mp.pair

(MP.data[" & decimal i & "])"
) scaled cm
withpen pencircle scaled 2mm
withcolor maincolor ;

endfor ;



143

Here we load a Lua table and assign the size to a MetaPost numeric. Next
we loop over the table entries and draw the coordinates.

We will stepwise improve this code. In the previous examples we omitted wrap-
per code but here we show it:
\startluacode

MP.data = table.load('demo-data.lua')
function MP.n()

mp.print(#MP.data)
end
function MP.dot(i)

mp.pair(MP.data[i])
end

\stopluacode

\startMPcode
numeric n ;
n := lua("MP.n()") ;
for i=1 upto n :

drawdot
lua("MP.dot

(" & decimal i & ")"
) scaled cm
withpen pencircle scaled 2mm
withcolor maincolor ;

endfor ;
\stopMPcode
So, we create a few helpers in the MP table. This table is predefined so normally
you don’t need to define it. You may however decide to wipe it clean.



144

You can decide to hide the data:
\startluacode

local data = { }
function MP.load(name)

data = table.load(name)
end
function MP.n()

mp.print(#data)
end
function MP.dot(i)

mp.pair(data[i])
end

\stopluacode
It is possible to use less Lua, for instance in:
\startluacode

local data = { }
function MP.loaded(name)

data = table.load(name)
mp.print(#data)

end
function MP.dot(i)

mp.pair(data[i])
end

\stopluacode

\startMPcode
for i=1 upto

lua
("MP.loaded

('demo-data.lua')"
) :

drawdot
lua("MP.dot(",i,")") scaled cm



145

withpen pencircle scaled 4mm
withcolor maincolor ;

endfor ;
\stopMPcode
Here we also omit the decimal because the lua macro is clever enough to rec-
ognize it as a number.

By using some MetaPost magic we can even go a step further in readability:
\startMPcode{doublefun}

cmykcolor maincolor;
maincolor := (1,.15,0,0);
lua.MP.load("demo-data.lua") ;

for i=1 upto lua.MP.n() :
drawdot lua.MP.dot(i) scaled cm

withpen pencircle scaled 4mm
withcolor maincolor ;

endfor ;

for i=1 upto MP.n() :
drawdot MP.dot(i) scaled cm

withpen pencircle scaled 2mm
withcolor white ;

endfor ;
\stopMPcode
Here we demonstrate that it also works ok in double mode, which makes much
sense when processing data from other sources. Watch how we omit the .lua
prefix: the MP macro will deal with that.



146

So in the end we can simplify the code that we started with to:
\startMPcode{doublefun}

for i=1 upto
MP.loaded("demo-data.lua") :
drawdot

MP.dot(i) scaled cm
withpen pencircle scaled 2mm
withcolor maincolor ;

endfor ;
\stopMPcode

Access to variables
The question with such mechanisms is always: how far should we go. Although
MetaPost is a macro language it has properties of procedural languages. It
also has more introspective features at the user end. For instance, one can loop
over the resulting picture and manipulate it. This means that we don’t need
full access to MetaPost internals. However, it makes sense to provide access
to basic variables: numeric, string, and boolean.
draw textext(lua

("mp.quoted
('@0.15f',

mp.get.numeric('pi')-math.pi
)"

)
)

ysized .5cm
withcolor maincolor ;

In double mode you will get zero printed but in scaled mode we definitely get a
difference:

-0.000006349878856



147

In the next example we use mp.quoted to make sure that indeed we pass a
string. The textext macro can deal with numbers but an unquoted yes or no
is asking for problems.
boolean b ;
b := true ;
draw textext(

lua
("mp.quoted(mp.get.boolean('b')
and 'yes' or 'no')"

)
)

ysized 1cm
withcolor maincolor ;

Especially when more text is involved it makes sense to predefine a helpers in
the MP namespace if only because MetaPost (currently) doesn’t like newlines
in the middle of a string, so a lua call has to be on one line.

yes
Here is an example where Lua does something that would be close to im-

possible, especially if more complex text is involved.
string s ;
s := "ΤΕΧ" ; % ""
draw textext

(lua
("mp.quoted

(characters.lower
(mp.get.string('s')
)

)"
)

)
ysized 1cm
withcolor maincolor ;

As you can see here, the whole repertoire of helper functions can be used in a
MetaFun definition.



148

The library
In ConTEXt we have a dedicated runner, but for the record we mention the low
level constructor:
local m = mplib.new {

...
script_runner = function(s) return

loadstring(s)() end,
script_error = function(s)

print(s) end,
...,

}
An instance (in this case m) has a few extra methods. Instead you can use the
helpers in the library.

m:get_numeric(name) returns a numeric (double)
m:get_boolean(name) returns a boolean (true or false)
m:get_string (name) returns a string

mplib.get_numeric(m,name) returns a numeric (double)
mplib.get_boolean(m,name) returns a boolean (true or false)
mplib.get_string (m,name) returns a string

In ConTEXt the instances are hidden and wrapped in high level macros, so there
you cannot use these commands.

ConTEXt helpers
The mp namespace provides the following helpers:

print(...) returns one or more values
pair(x,y) and pair(t) returns a proper pair
triplet(x,y,z) and triplet(t) returns an RGB color
quadruple(w,x,y,z) and quadruple(t) returns an CMYK color
format(fmt,...) returns a formatted string
quoted(fmt,...) and quoted(s) returns a (formatted) quoted string
path(t[,connect][,close]) returns a connected (closed) path

The mp.get namespace provides the following helpers:

numeric(name) gets a numeric from MetaPost
boolean(name) gets a boolean from MetaPost
string(name) gets a string from MetaPost



149

Paths
In the meantime we got several questions on the ConTEXt mailing list about
turning coordinates into paths. Now imagine that we have this dataset:
10 20 20 20 -- sample 1
30 40 40 60
50 10

10 10 20 30 % sample 2
30 50 40 50
50 20

10 20 20 10 # sample 3
30 40 40 20
50 10
In this case I’ve put the data in a buffer so that it can be shown here as well as
used in a demo. Watch how we can add comments. The following code converts
this into a table with three subtables.
\startluacode

MP.myset =
mp.dataset

(buffers.getcontent("dataset"))
\stopluacode
We use the MP (user) namespace to store the table. Next we turn these subtables
into paths:
\startMPcode

for i=1 upto
lua("mp.print(mp.n(MP.myset))") :

draw
lua("mp.path

(MP.myset[" & decimal i & "]
)"

)
xysized (HSize,10ExHeight)
withpen

pencircle scaled .25ExHeight
withcolor basiccolors[i]/2 ;

endfor ;
\stopMPcode
This gives:



150

Instead we can fill the path in which case we also need to close it. The true
argument deals with that:
\startMPcode

for i=1 upto
lua("mp.print(mp.n(MP.myset))") :

path p ; p :=
lua("mp.path

(MP.myset
[" & decimal i & "],
true

)"
)
xysized (HSize,10ExHeight) ;

fill p
withcolor basiccolors[i]/2
withtransparency (1,.5) ;

endfor ;
\stopMPcode
We get:

The following makes more sense:
\startMPcode

for i=1 upto
lua("mp.print

(mp.n(MP.myset))"
) :

path p ;
p := lua("mp.path

(MP.myset[" & decimal i & "])"
)
xysized (HSize,10ExHeight) ;

p :=



151

(xpart llcorner boundingbox p,0)
-- p --
(xpart lrcorner boundingbox p,0)
-- cycle ;

fill p
withcolor basiccolors[i]/2
withtransparency (1,.25) ;

endfor ;
\stopMPcode
So this gives:

This (area) fill is so common that we have a helper for it:
\startMPcode

for i=1 upto
lua("mp.size(MP.myset)") :

fill area
lua("mp.path

(MP.myset[" & decimal i & "])"
)
xysized (HSize,5ExHeight)
withcolor basiccolors[i]/2
withtransparency (2,.25) ;

endfor ;
\stopMPcode
So this gives:

This snippet of MetaPost code still looks kind of horrible so how can we
make it look better? Here is an attempt, First we define a bit more Lua:
\startluacode
local data =

mp.dataset
(buffers.getcontent("dataset"))



152

MP.dataset = {
Line = function(n) mp.path(data[n]) end,
Size = function() mp.size(data) end,

}
\stopluacode
We can now make the MetaPost look more natural. Of course this is possible
because in MetaFun the lua macro does some extra work.
\startMPcode

for i=1 upto
lua.MP.dataset.Size() :

path p ;
p := lua.MP.dataset.Line(i)

xysized (HSize,20ExHeight) ;
draw

p
withpen pencircle scaled .25ExHeight
withcolor basiccolors[i]/2 ;

drawpoints
p
withpen pencircle scaled ExHeight
withcolor .5white ;

endfor ;
\stopMPcode
As expected, we get the desired result:

Once we start making things look nicer and more convenient, we quickly end
up with helpers like the once in the next example. First we save some demo
data in files:
\startluacode

io.savedata("foo.tmp","10 20 20 20 30 40 40 60 50 10")
io.savedata("bar.tmp","10 10 20 30 30 50 40 50 50 20")

\stopluacode



153

We load the data in datasets:
\startMPcode

lua.mp.datasets.load("foo","foo.tmp");
lua.mp.datasets.load("bar","bar.tmp");
fill area
lua.mp.datasets.foo.Line()
xysized (HSize/2-EmWidth,10ExHeight)
withpen

pencircle scaled .25ExHeight
withcolor green/2 ;
fill area
lua.mp.datasets.bar.Line()
xysized (HSize/2-EmWidth,10ExHeight)
shifted (HSize/2+EmWidth,0)
withpen

pencircle scaled .25ExHeight
withcolor red/2 ;

\stopMPcode
Because the datasets are stores by name we can use them without worrying
about them being forgotten:

If no tag is given, the filename (without suffix) is used as tag, so the following
is valid:
\startMPcode

lua.mp.datasets.load("foo.tmp") ;
lua.mp.datasets.load("bar.tmp") ;

\stopMPcode
The following methods are defined for a dataset:

method usage
Size the number of subsets in a dataset
Line the joined pairs in a dataset making a non-closed path
Data the table containing the data (in subsets, so there is always at least

one subset)

Due to limitation is MetaPost suffix handling the methods start with an up-
percase character.



154

Remark
The features described here are at this moment still experimental but the inter-
face will not change. There might be a few more accessors and for sure there
will be more Lua helpers provided. As usual I need some time to play with it
before I make up my mind. It is also possible to optimize the MetaPost--Lua
script call a bit but I might do that later.

When we played with this interface we ran into problems with loop variables
and macro arguments. These are internally kind of anonymous. Take this:
for i=1 upto 100 : draw(i,i) endfor ;
The i is not really a variable with name i but becomes an object (capsule)
when the condition is scanned, and a reference to that object when the body is
scanned. The body of the for loop gets expanded for each step but at that time
there is no longer a variable i. The same is true for variables in:
def foo(expr x, y, delta) =

draw (x+delta,y+delta)
enddef ;

We are still trying to get this right with the Lua interface. Interesting is that
when we were exploring this, we ran into quite some cases where we could make
MetaPost abort due some memory or stack overflow. Some are just bugs in
the new code (due to the new number model) while others come with the design
of the system: border cases that never seem to happen in interactive use while
the library use assumes no interaction in case of errors.

In ConTEXt there are more features and helpers than shown here but these
are discussed in the MetaFun manual.

Lua v MetaPostu

V LuaTEXu lze nyní spouštět skripty v jazyce Lua z interpretru jazyka Me-
taPost. Článek na příkladech popisuje samotný mechanismus, nízkoúrovňové
rozhraní na úrovni LuaTEXu i vysokoúrovňové rozhraní pro formát ConTEXt.

Klíčová slova: Lua, LuaTEX, ConTEXt, MetaPost, MPlib

Hans Hagen, pragma@wxs.nl


