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Abstract. In this paper, we present a new iterative method for solving a linear system,
whose coefficient matrix is an M -matrix. This method includes four parameters that are
obtained by the accelerated overrelaxation (AOR) splitting and using the Taylor approxi-
mation. First, under some standard assumptions, we establish the convergence properties of
the new method. Then, by minimizing the Frobenius norm of the iteration matrix, we find
the optimal parameters. Meanwhile, numerical results on test examples show the efficiency
of the new proposed method in contrast with the Hermitian and skew-Hermitian splitting
(HSS), AOR methods and a modified version of the AOR (QAOR) iteration.
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1. Introduction

Lately, the iterative solution methods of a linear system of equations

(1.1) Ax = b

have been regarded in many scientific calculations and engineering problems, where

the coefficient matrix A ∈ R
n×n is nonsingular, b ∈ R

n is a given right-hand side

vector and x ∈ R
n is an unknown vector. A lot of linear systems appear in most

branches of science and engineering such as applied mathematics, biology, chemistry,

physics, electrical engineering, mechanics, transportation, buildings, vibrations and

so on. When the coefficient matrix of the linear system (1.1) is large and sparse,

iterative methods are offered instead of direct methods. In order to solve (1.1) more

efficiently by using the iterative methods, usually effective splittings of the coeffi-

cient matrix A are necessary. For example, the classical Jacobi and Gauss-Seidel
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iterations are gained by splitting the matrix A into its diagonal and off-diagonal

parts. Hadjidimos [13] first offered the accelerated overrelaxation (AOR) method,

which has been verified to be a potent device for solving the linear system (1.1),

and discussed its convergence under the conditions that the coefficient matrix is

an irreducible diagonally dominant matrix, L-matrix, or consistently ordered ma-

trix. In certain cases the AOR method has better convergence rate than the Jacobi,

JOR, Gauss-Seidel, or SOR methods [13], [1]. Bai and Chi [2] drafted the asymp-

totically optimal successive overrelaxation method by choosing the optimal factor

in a dynamic fashion according to the known information in the current iteration

step. Moreover, Meng in [16] introduced a method for determining the optimal

parameter of the successive overrelaxation (SOR) method. Wu and Liu [22] pre-

sented a new version of the AOR method called the quasi accelerated overrelaxation

(QAOR) method, when the coefficient matrix is an irreducible diagonally dominant

matrix, H-matrix, symmetric positive definite matrix, or L-matrix. In [3], Bai et

al. introduced the Hermitian/skew-Hermitian splitting (HSS) method to solve non-

Hermitian positive definite linear systems of equations. Afterwards, this method

received much attention and different versions of it were presented. Benzi and

Golub in [8] applied the HSS method to solve a saddle point problem and Bai et

al. in [5] used it as a preconditioner. The normal/skew-Hermitian splitting (NSS)

method has been proposed by Bai et al. [4]; in addition, Bai et al. in [3] offered

the positive definite and skew-Hermitian splitting (PSS) method to solve positive

definite linear systems of equations. Also, a lopsided version of the HSS (LHSS)

method has been introduced by Li et al. in [15]. Moreover, lately Benzi in [7] pre-

sented a generalization of the HSS method to solve positive definite linear systems

of equations.

Mostly, the methods mentioned are connected with some parameters that usually

are determined experimentally or randomly. But to have a faster rate of convergence

it is very useful if they are determined optimally. Based on this idea, in the sequel,

we build a new iterative method for solving the linear system of equations (1.1);

first we split the matrix A into two matrices M and N by using the AOR idea

and applying the Taylor approximation. Then we calculate the optimal value of the

parameters included in this splitting. We show that this modified method is more

stable and effective than the HSS and AOR methods and the method which was

presented in [22].

This paper is organized as follows: In Section 2, we present some required pre-

liminary concepts including symbols, definitions, theorems etc.; also, a brief re-

view on the HSS, AOR and QAOR methods and their properties is given. Sec-

tion 3 is devoted to describing the structure of our new proposed method and prov-

ing its convergence under some standard assumptions. Then, we present a new
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algorithm for solving the linear system of equations (1.1). Numerical results of

applying the new method to some standard test problems taken from the litera-

ture are given in Section 4. We end up the paper by some concluding remarks

in Section 5.

2. Preliminaries

In what follows, we recall some definitions and results which are utilized in the

paper. Throughout this paper, we denote by ‖A‖ the spectral norm of the matrix A

that is defined by ‖A‖ = {‖Ax‖ : x ∈ R
n, ‖x‖ = 1} where ‖x‖2 = x⊤x. For a square

matrixA, the spectral radius ofA is denoted by ̺(A). For a given matrixA ∈ R
n×n of

the linear equation system (1.1), the decomposition A = M −N is named a splitting

if M and N belong to Rn×n and M is nonsingular. For an arbitrary given splitting

A = M −N, a basic stationary iterative method for solving Ax = b has the form

(2.1) x(k+1) = Tx(k) +M−1b, k = 0, 1, 2, . . . ,

where the initial vector x(0) is given and T = M−1N is named the iteration matrix.

The (asymptotic) rate of convergence is defined by R∞ = − ln(̺). The convergence

analysis of the iterative method (2.1), based on the spectral radius of the iteration

matrix T , is presented in [20]. For large values of k, at each step, the corresponding

error reduces in magnitude approximately by the factor of ̺(T ). That is, when the

spectral radius is smaller, the convergence is faster.

In this study, we work with special kinds of matrices which are introduced in the

following definitions.

Definition 2.1 (Berman and Plemmons [9]). The matrix A ∈ R
n×n is called

a Z-matrix if aij 6 0 for i, j = 1, 2, 3, . . . , n (i 6= j). A Z-matrix with positive

diagonal elements is called an L-matrix.

Definition 2.2 (Berman and Plemmons [9]). Let A be an L-matrix. Then the

matrix A is said to be an M -matrix if A is nonsingular and A−1 > 0.

The next definition expounds different types of splittings employed in this study.

Definition 2.3 (Woznicki [21]). The splitting A = M −N is called

(i) a regular splitting of A if M−1 > 0 and N > 0,

(ii) a nonnegative splitting of A if M−1 > 0, M−1N > 0 and NM−1 > 0,

(iii) a weak nonnegative splitting of A if M−1 > 0 and either M−1N > 0 (the first

type) or NM−1 > 0 (the second type),

(iv) a convergent splitting of A if ̺(M−1N) < 1.
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Theorem 2.4. The series
∞
∑

k=0

Ak

converges if and only if ̺(A) < 1. Under this condition, I −A is nonsingular and the

sum of the series is equal to (I −A)−1.

P r o o f. See [18]. �

Theorem 2.5. Assume that A is a Z-matrix. Moreover, suppose that A = M−N

is a weak nonnegative splitting of the first type. Then ̺(M−1N) < 1 if and only if A

is an M -matrix.

P r o o f. See [6]. �

2.1. HSS iterative method. The HSS method is one of the efficient methods for

solving positive definite systems of linear equations which has been presented by Bai,

Golub and Ng [3], that we are going to introduce briefly here. Suppose A ∈ R
n×n

is a positive definite matrix. Consider the Hermitian and skew-Hermitian splitting

A = H + S where H = 1
2 (A + A⊤) and S = 1

2 (A − A⊤). Given an initial guess

x(0) ∈ R
n, compute x(k+1) by the following iterative scheme for k = 0, 1, 2, . . . until

the convergence,

(2.2)

{

(αI +H)x(k+1/2) = (αI − S)x(k) + b,

(αI + S)x(k+1) = (αI −H)x(k+1/2) + b,

where α is a given positive constant. The matrix-vector form of the HSS iteration

can be equivalently rewritten as

x(k+1) = T (α)x(k) +G(α)b, k = 0, 1, 2, . . . ,

where

T (α) = (αI + S)−1(αI −H)(αI +H)−1(αI − S),

and

G(α) = 2α(αI + S)−1(αI +H)−1.

Bai et al. in [3] showed that for any positive constant α we have ̺(T (α)) < 1.

This proves that the HSS iteration unconditionally converges to the exact solution

of linear system of equations for any initial guess x(0) ∈ R
n.

Since our new method for solving (1.1) is related to the used idea of the AOR

method, we give a brief review on this method in the next subsection.
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2.2. AOR method and its properties. For solving (1.1), Hadjidimos [13] pro-

posed the splitting A = Mγ,ω−Nγ,ω with two parameters for the coefficient matrix A

where

(2.3) Mγ,ω =
1

ω
(AD − γAL), Nγ,ω =

1

ω
[(1 − ω)AD + (ω − γ)AL + ωAU ]

and γ, ω 6= 0 are parameters, AD is the diagonal part of A, and −AL and −AU are

strictly lower and strictly upper triangular parts of A, respectively. The iteration

format of the AOR method for solving the linear system (1.1) is

(2.4) x(k+1) = TAOR
γ,ω x(k) + gγ,ω, k = 0, 1, 2, . . . ,

where

TAOR
γ,ω = (AD − γAL)

−1[(1− ω)AD + (ω− γ)AL +ωAU ]; gγ,ω = ω(AD − γAL)
−1b.

We show the particular values of the parameters γ and ω (see [13]) when the AOR

method can be simplified into

⊲ the Jacobi method if ω = 1, γ = 0;

⊲ the simultaneous overrelaxation method if γ = 0;

⊲ the Gauss-Seidel method if ω = γ = 1;

⊲ the successive overrelaxation method if ω = γ.

In [22], a version of the AOR method is presented under the title QAOR method,

which we introduce in the following subsection.

2.3. QAOR method. Consider the linear system of equations (1.1). Wu and

Liu proposed the following splitting for the coefficient matrix A:

(2.5) M1 = (1 + ω)AD − γAL, N1 = AD + (ω − γ)AL + ωAU .

Then

(2.6) A =
1

ω
(M1 −N1).

Based on the above matrix splitting, the QAOR method is defined as

(2.7) ((1+ω)AD−γAL)x
(k+1) = [AD+(ω−γ)AL+ωAU ]x

(k)+ωb, k = 0, 1, 2, . . . ,

and its iteration matrix is

(2.8) TQAOR
γ,ω = ((1 + ω)AD − γAL)

−1[AD + (ω − γ)AL + ωAU ]

= ((1 + ω)I − γL)−1[I + (ω − γ)L+ ωU ],

where L = A−1
D AL and U = A−1

D AU .
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Comparing the QAOR method with the AOR method, it is easy to see that the

iteration matrix of the QAOR method is similar to that of the AOR method. Based

on this fact, the QAOR method may retain all the privileges of the AOR method [22].

Wu and Liu in [22] showed that under some conditions, the QAOR method converges

when the coefficient matrix is an irreducible diagonally dominant matrix, H-matrix,

symmetric positive definite matrix, or L-matrix; also they demonstrated that under

some assumptions, the QAOR method is a simplified AOR method. If w = γ, the

QAOR is reduced to the QSOR method [22].

3. A new iterative method based on the AOR iteration

We know that (AD − γAL)
−1 = (I − γL)−1A−1

D , where L = A−1
D AL. Since L is

a strictly lower triangular matrix, we have Ln = 0 (the zero matrix) and ̺(γL) < 1;

also according to Theorem 2.4, (I − γL)−1 can be written in the form of the Taylor

expansion as

(I − γL)−1 =
n−1
∑

k=0

(γL)k.

Thus M−1
γ,ω can be expressed as

(3.1) M−1
γ,ω = ω(AD − γAL)

−1 = ω(I − γL)−1A−1
D = ω

n−1
∑

k=0

(γL)kA−1
D .

Obviously,M−1
γ,ω can be approximated by a lower-order truncation of the matrix series

on the right-hand side of (3.1); generally, M−1
γ,ω can be expressed approximately by

(3.2) M−1
γ,ω ≃ ω(I + αγL+ β2γ2L2)A−1

D ,

where α and β are two real parameters. Now, by applying this idea, we present

a splitting for the matrix A and then we propose a new method for solving the linear

system of equations Ax = b. Then we prove that our method converges for a certain

type of matrices.

Now, the new iterative algorithm is proposed as

(3.3)
1

ω
AD(I + αγL+ β2γ2L2)−1x(k+1)

=
( 1

ω
AD(I + αγL+ β2γ2L2)−1 −AD +AL +AU

)

x(k) + b,

its iteration matrix is

(3.4) T = I + ω(I + αγL+ β2γ2L2)(−I + L+A−1
D AU ),
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where AD is the diagonal part of A, −AL and −AU are strictly lower and strictly

upper triangular parts of A, respectively, L = A−1
D AL, and α, γ, ω and β are real

parameters with ω 6= 0. Since we split the matrix A into two matrices, using the

AOR idea and applying the Taylor approximation, we call this new method as TAOR

method. Now we show that when the coefficient matrix A is anM -matrix, the TAOR

iterative method is convergent.

Theorem 3.1. Let A = AD − AL − AU be an M -matrix, where AD, −AL and

−AU are defined as above, 0 < ω 6 1 and β2γ2 6 αγ 6 1. Then, the iterative

method defined by (3.3) converges to the exact solution of the linear system (1.1).

P r o o f. By Theorem 2.5, it is sufficient to prove that A = M − N is a weak

nonnegative splitting of the first type, whereM = ω−1AD(I+αγL+β2γ2L2)−1 and

N = ω−1AD(I+αγL+β2γ2L2)−1−AD+AL+AU . To this end, we need to show that

M−1 > 0 and M−1N > 0. Because A is an M -matrix, therefore L = A−1
D AL > 0.

On the other hand, since αγ > 0 we have αγL > 0. Hence ω > 0 implies that

M−1 > 0. Also, we have

T = M−1N = ω(I + αγL+ β2γ2L2)A−1
D

×
( 1

ω
AD(I + αγL+ β2γ2L2)−1 −AD +AL +AU

)

= I − ω(I + αγL+ β2γ2L2) + ω(I + αγL+ β2γ2L2)L

+ ω(I + αγL+ β2γ2L2)A−1
D AU

= I − ωI − ωαγL− ωβ2γ2L2 + ωL+ ωαγL2 + ωβ2γ2L3

+ ω(I + αγL+ β2γ2L2)A−1
D AU

= (1− ω)I + ω(1− αγ)L+ ωγ(α− β2γ)L2 + ωβ2γ2L3

+ ω(I + αγL+ β2γ2L2)A−1
D AU > 0.

In this regard, A = M − N is a weak nonnegative splitting of the first type and

thus A is an M -matrix. Now, Theorem 2.5 concludes that the iterative method

defined by (3.3) is convergent. �

Selecting the parameters for applying (3.3) can be randomly, but to have more

suitable results, it is better to choose them optimally. In this regard, and also to

have a better approximation in (3.3), and also a fast rate of convergence to reach

the best solution of (1.1) and also the least possible time-consumption, especially for

large scale problems, we prefer to find the parameters optimally.

Ren et al. presented an optimization technique to find the optimal parameters

of the AOR iteration by minimizing the 2-norm of the residual vector [17]. But in

general, a small residual does not guarantee that the computed solution is accu-
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rate [10], Subsection 2.2. Therefore, minimizing the residual vector is not always

the suitable criterion for examining the convergence rate. In addition, the authors

have used the Taylor expansion of the matrix M−1 in calculations, thus two param-

eters also are added to the AOR iteration parameters. But during optimization, the

two parameters obtained from the Taylor expansion are not optimized and only the

real parameters are considered. To achieve better results, we calculate the optimal

value of each of the four parameters. So our optimization technique is much more

robust than the technique used at [17]. In the following, we present an optimization

technique to find the optimal parameters of the proposed method which just needs

to minimize the Frobenius norm of the iteration matrix and avoids calculating the

2-norm of the iteration matrix of the TAOR method.

The TAOR iterative method can be rewriten as

(3.5) x(k+1) = Tx(k) +Gb, k = 0, 1, 2, . . . ,

where

T = (1−ω)I+ω(1−αγ)L+ωγ(α−β2γ)L2+ωβ2γ2L3+ω(I+αγL+β2γ2L2)A−1
D AU

and

G = ω(I + αγL+ β2γ2L2)A−1
D b.

Let x∗ be the exact solution of the linear system (1.1) and x(k) be the kth approxi-

mated solution obtained by the iterative method (3.5). We define the error vector as

e(k) = x∗ − x(k).

Lemma 3.2. Suppose that T = M−1N ∈ R
n×n and b ∈ R

n are given. Denote

by e(k + 1) = x∗ − x(k+1) the error vector in the kth iteration. Then the inequality

(3.6) ‖e(k + 1)‖ 6 ‖T ‖‖e(k)‖

holds for k = 0, 1, 2, . . .

P r o o f. By (3.5) we have

(3.7) e(k + 1) = x∗ − x(k+1) = T (x∗ − x(k)) = Te(k).

By taking the 2-norm of the sides of the above relationship, the desired result is

obtained. �

According to (3.6) the 2-norm of the iteration matrix plays an important role in

the rate of convergence; that is, the smaller ‖T ‖, the faster rate of convergence.
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R em a r k 3.3. In order to compute the optimal parameters, the determination

of ‖T ‖ is quite expensive and may greatly decrease the efficiency of the TAOR

iterative method. So, we use the Frobenius norm of the iteration matrix, which

is the upper bound for ‖T ‖.

We know that ‖T ‖2F = tr(T⊤T ). Put U = A−1
D AU , then from (3.5) we have:

T⊤T = (1 − ω)2I + ω(1− ω)(1 − αγ)L+ ωγ(1− ω)(α− β2γ)L2

+ ωβ2γ2(1− ω)L3 + ω(1− ω)(I + αγL+ β2γ2L2)U

+ ω(1− ω)(1− αγ)L⊤ + ω2(1 − αγ)2L⊤L

+ ω2γ(1− αγ)(α− β2γ)L⊤L2 + ω2β2γ2(1− αγ)L⊤L3

+ ω2(1− αγ)L⊤(I + αγL+ β2γ2L2)U

+ ωγ(1− ω)(α − β2γ)(L2)⊤ + ω2γ(α− β2γ)(1− αγ)(L2)⊤L

+ ω2γ2(α− β2γ)2(L2)⊤L2 + ω2β2γ3(α − β2γ)(L2)⊤L3

+ ω2γ(α− β2γ)(L2)⊤(I + αγL+ β2γ2L2)U

+ ωβ2γ2(1− ω)(L3)⊤ + ω2β2γ2(1 − αγ)(L3)⊤L

+ ω2β2γ3(α− β2γ)(L3)⊤L2 + ω2β4γ4(L3)⊤L3

+ ω2β2γ2(L3)⊤(I + αγL+ β2γ2L2)U

+ ω(1− ω)U⊤(I + αγL⊤ + β2γ2(L2)⊤)

+ ω2(1− αγ)U⊤(I + αγL⊤ + β2γ2(L2)⊤)L

+ ω2γ(α− β2γ)U⊤(I + αγL⊤ + β2γ2(L2)⊤)L2

+ ω2β2γ2U⊤(I + αγL⊤ + β2γ2(L2)⊤)L3

+ ω2U⊤(I + αγL⊤ + β2γ2(L2)⊤)(I + αγL+ β2γ2L2)U.

Therefore,

tr(T⊤T ) = (1− ω)2n+ 2ω(1− ω)αγc1 + 2ω(1− ω)β2γ2c2

+ ω2(1− αγ)2c3 + 2ω2γ(1− αγ)(α − β2γ)c4

+ 2ω2β2γ2(1− αγ)c5 + 2ω2(1− αγ)c6

+ 2ω2(1− αγ)αγc7 + 2ω2β2γ2(1− αγ)c8

+ ω2γ2(α − β2γ)2c9 + 2ω2β2γ3(α− β2γ)c10

+ 2ω2γ(α− β2γ)c11 + 2αω2γ2(α− β2γ)c12

+ 2ω2β2γ3(α− β2γ)c13 + ω2β4γ4c14 + 2ω2β2γ2c15

+ 2αω2β2γ3c16 + 2ω2β4γ4c17 + ω2c18 + 2αω2γc19

+ 2ω2β2γ2c20 + α2ω2γ2c21 + 2αω2β2γ3c22 + ω2β4γ4c23,
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where

c1 = tr(LU), c2 = tr(L2U), c3 = tr(L⊤L),(3.8)

c4 = tr(L⊤L2), c5 = tr(L⊤L3), c6 = tr(L⊤U),

c7 = tr(L⊤LU), c8 = tr(L⊤L2U), c9 = tr((L2)⊤L2),

c10 = tr((L2)⊤L3), c11 = tr((L2)⊤U), c12 = tr((L2)⊤LU),

c13 = tr((L2)⊤L2U), c14 = tr((L3)⊤L3), c15 = tr((L3)⊤U),

c16 = tr((L3)⊤LU), c17 = tr((L3)⊤L2U), c18 = tr(U⊤U),

c19 = tr(U⊤LU), c20 = tr(U⊤L2U), c21 = tr(U⊤L⊤LU),

c22 = tr(U⊤L⊤L2U), c23 = tr(U⊤(L2)⊤L2U).

Now put f = tr(T⊤T ). Thus we have

∂f

∂ω
= − 2(1− ω)n+ 2(1− 2ω)αγc1 + 2(1− 2ω)β2γ2c2 + 2ω(1− αγ)2c3

+ 4ωγ(1− αγ)(α− β2γ)c4 + 4ωβ2γ2(1− αγ)c5 + 4ω(1− αγ)c6

+ 4αγω(1− αγ)c7 + 4ωβ2γ2(1− αγ)c8 + 2ωγ2(α− β2γ)2c9

+ 4ωβ2γ3(α− β2γ)c10 + 4ωγ(α− β2γ)c11 + 4αωγ2(α − β2γ)c12

+ 4ωβ2γ3(α− β2γ)c13 + 2ωβ4γ4c14 + 4ωβ2γ2c15 + 4αωβ2γ3c16

+ 4ωβ4γ4c17 + 2ωc18 + 4αωγc19 + 4ωβ2γ2c20

+ 2α2ωγ2c21 + 4αωβ2γ3c22 + 2ωβ4γ4c23,

∂f

∂γ
= 2αω(1− ω)c1 + 4ωγβ2(1− ω)c2 − 2αω2(1− αγ)c3

+ 2ω2(α − 2β2γ − 2α2γ + 3αγ2β2)c4 + 2ω2β2(2γ − 3αγ2)c5

− 2αω2c6 + 2αω2(1− 2αγ)c7 + 2ω2β2(2γ − 3αγ2)c8

+ 2ω2γ(α2 − 3αγβ2 + 2γ2β4)c9 + 2ω2β2γ2(3α− 4β2γ)c10

+ 2ω2(α − 2β2γ)c11 + 2αω2γ(2α− 3β2γ)c12

+ 2ω2β2γ2(3α− 4β2γ)c13 + 4ω2β4γ3c14 + 4ω2β2γc15

+ 6αω2β2γ2c16 + 8ω2β4γ3c17 + 2αω2c19 + 4ω2β2γc20

+ 2α2ω2γc21 + 6αω2β2γ2c22 + 4ω2β4γ3c23,

∂f

∂α
= 2ωγ(1− ω)c1 − 2ω2γ(1− αγ)c3 + 2ω2γ(−2αγ + β2γ2 + 1)c4

− 2ω2β2γ3c5 − 2ω2γc6 + 2ω2γ(1− 2αγ)c7

− 2ω2β2γ3c8 + 2ω2γ2(α− β2γ)c9 + 2ω2β2γ3c10

+ 2ω2γc11 + 2ω2γ2(2α− β2γ)c12 + 2ω2β2γ3c13

+ 2ω2β2γ3c16 + 2ω2γc19 + 2αω2γ2c21 + 2ω2β2γ3c22,
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∂f

∂β
= 4ωβγ2(1− ω)c2 − 4ω2βγ2(1 − αγ)c4 + 4ω2βγ2(1− αγ)c5

+ 4ω2βγ2(1− αγ)c8 − 4ω2βγ3(α− β2γ)c9 + 4ω2βγ3(α− 2β2γ)c10

− 4ω2βγ2c11 − 4αω2βγ3c12 + 4ω2βγ3(α− 2β2γ)c13 + 4ω2β3γ4c14

+ 4ω2βγ2c15 + 4αω2βγ3c16 + 8ω2β3γ4c17

+ 4ω2βγ2c20 + 4αω2βγ3c22 + 4ω2β3γ4c23.

In view of the above, the optimal parameters of the new method can be calculated

using the following theorem.

Theorem 3.4. Let T = M−1N ∈ R
n×n be the iteration matrix of the TAOR

method. Then the optimal parameters of the new method providing argmin ‖T ‖F

are given by solving the nonlinear system

(3.8)



















































∂f

∂ω
= 0,

∂f

∂γ
= 0,

∂f

∂α
= 0,

∂f

∂β
= 0.

Now, by applying a suitable optimization method, the following algorithm is pro-

posed to solve (1.1) iteratively.

Proposed Algorithm.

Algorithm 3.5.

Step 0. Given an initial vector x(0) ∈ R
n, a tolerance δk. Set k = 0.

Step 1. Compute (3.8).

Step 2. Solve (3.9) by the Newton method to obtain γ∗, ω∗, α∗ and β∗.

Step 3. Compute r(k) = b−Ax(k).

Step 4. Compute x(k+1) = x(k) + ω∗(I + α∗γ∗L+ (β∗)2(γ∗)2L2)A−1
D r(k).

Step 5. If the stopping condition is satisfied, stop and x(k+1) is the solution.

If not, set k ← k + 1 and go to Step 3.

We remind that the stopping condition can be a fixed number of iterations, a

residual threshold and so on; we consider δk as a residual threshold in the above

algorithm.
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4. Numerical results

In order to elucidate the credibility of the established results in this paper, we

present some numerical results in this part. All computations have been carried out

on a computer with an Intel Core i7-4770K CPU @ 3.50GHz processor and 24GB

RAM using Matlab R2018b. Further, the right-hand side b in (1.1) was selected

such that b = Ae where e = (1, . . . , 1)⊤. In all of the following experiments, the

initial guess is taken to be the zero vector and the iterations are terminated if the

current iteration satisfies either the residual condition

(4.1) δk ≡ ‖r
(k)‖2 6 10−6‖r(0)‖2,

or the number of iterations exceeds 20 000 [17]. Here x(k) refers to the kth ap-

proximate solution. Notation “Fail” in tables means that the corresponding iterative

method was stopped after 20 000 iterations while the computed approximate solution

did not satisfy (4.1). In this section, we report some numerical results to compare the

performance of the proposed method with the iterative schemes (2.2), (2.4) and (2.7).

Let H = 1
2 (A+A⊤) and S = 1

2 (A−A⊤) be the Hermitian and the skew-Hermitian

parts of the matrix A. Let also λmax and λmin be the largest and smallest eigenvalues

of H , respectively. It was shown in [11] that the optimal parameter value of the HSS

iterative method can be calculated by

αmin = argmin(̺(S(α)−1H(α))) =
λmax + λmin

2
,

where S(α) = αI + S and H(α) = H − αI. It should be noted that in the im-

plementation of the HSS iterative method we considered the optimal value of the

parameter α.

We mainly work with three test problems that have previously been examined in

literature. Their results are shown in Tables 1–13 in which they report the optimal

parameters of the TAOR method, the number of iterations (denoted by Iter), the

error value (denoted by Err), the spectral radius of the iteration matrix and the CPU

time for the convergence (denoted by CPU). It should be noted that the calculated

time is in seconds. Also, the optimal values of parameters for the proposed iterative

method ω∗, γ∗, α∗ and β∗ are presented.

E x am p l e 4.1 ([14], [19]). Consider the two-dimensional convection diffusion

equation

−(uxx + uyy) + q(ux + uy) + pu = f(x, y), (x, y) ∈ Ω,

u(x, y) = 0, u(x, y) ∈ ∂Ω,
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where Ω = (0, 1)×(0, 1), ∂Ω denotes the boundary of Ω, q is a positive constant and p

is a real number. By applying the five-point finite difference scheme to the diffusive

terms and the central difference scheme to the convective terms with the equidistant

step size h = 1/(m+1), we arrive at the system of linear equations Bx = d, where B

is a matrix of order n = m2 of the form

B = Tx ⊗ Im + Im ⊗ Ty + pIn,

where

Tx = tridiag(−1− r, 4,−1 + r) and Ty = tridiag(−1− r, 0,−1 + r)

and r = (qh)/2 is the mesh Reynolds number. We point out that for q = 0, the

problem reduces to the test example in [14]. We present the results for the following

two cases:

Case I. Set q = 0. Let p = 10 and A = B.

n ω∗ γ∗ α∗ β∗

100 0.9998 0.9917 1.0068 0.9914

400 0.9998 0.9944 1.0043 0.9882

900 0.9998 0.9935 1.0052 0.9890

2500 0.9998 0.9928 1.0059 0.9895

10000 0.9998 0.9191 1.0867 1.0688

40000 0.9998 0.9190 1.0868 1.0688

90000 0.9998 0.9190 1.0868 1.0688

Table 1. The calculated optimal parameters of the TAOR method for Case I from Ex-
ample 4.1.

n ωrand γrand
100 0.5033 0.2465

400 0.9559 0.8190

900 0.7035 0.0434

2500 0.0928 0.0587

10000 0.0172 0.0159

40000 0.7939 0.5119

90000 0.6174 0.0547

Table 2. The considered random parameters of the AOR and QAOR methods for Case I
from Example 4.1.

Case II. Set p = −1. Let q = 20, 30, 40, 50 and A = B+0.5∗(BL−B⊤

L ) where BL

is the strictly lower part of B.
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n Method AOR QAOR HSS TAOR

100 Iter 29 48 8 8

CPU 0.0013 0.0016 0.0024 0.0011

Err 9.078e− 07 9.620e− 07 3.494e− 07 3.642e− 07
400 Iter 10 30 8 8

CPU 0.0015 0.0024 0.0037 0.0012

Err 2.792e− 07 7.531e− 07 4.702e− 07 5.268e− 07
900 Iter 20 40 8 8

CPU 0.0040 0.0071 0.0065 0.0012

Err 6.621e− 07 7.052e− 07 5.114e− 07 5.821e− 07
2500 Iter 199 219 8 8

CPU 0.3472 0.4096 0.0186 0.0016

Err 9.834e− 07 9.398e− 07 5.447e− 07 6.269e− 07
10000 Iter 1113 1132 8 8

CPU 49.3042 54.4283 0.0817 0.0029

Err 9.937e− 07 9.974e− 07 5.699e− 07 6.602e− 07
40000 Iter 15 35 8 8

CPU 9.0873 29.4522 0.4045 0.0092

Err 6.717e− 07 8.234e− 07 5.826e− 07 6.773e− 07
90000 Iter 24 44 8 8

CPU 58.8077 94.7962 1.2531 0.0208

Err 7.369e− 07 7.526e− 07 5.868e− 07 6.830e− 07

Table 3. Numerical results of Case I from Example 4.1 for different values of n.
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Figure 1. Example 4.1 Case II with q = 20.
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The first case has been also examined in [19]. In Table 3, we compare the TAOR

method with the AOR, QAOR and HSS iterative methods from the points of view

of the number of iterations, CPU time and error for this case. As Table 3 states, all

of the iterative methods mentioned are convergent. The results reported in Table 3

show that the TAOR method is superior to other iterative methods and, also, that

for the larger matrix dimension, this superiority can be seen better.
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Figure 2. Example 4.1 Case II with q = 30 and m = 10.
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Figure 3. Example 4.1 Case II with q = 40.
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Figure 4. Example 4.1 Case II with q = 50 and m = 20.

n Optimal parameter q = 20 q = 30 q = 40 q = 50

100 ω∗ 0.4578 0.3156 0.2138 0.1845

γ∗ 0.8253 0.5747 0.5551 0.2022

α∗ 0.5331 0.6894 0.7192 1.7352

β∗ 0.4748 0.5777 0.5188 1.2288

400 ω∗ 0.6553 0.5269 0.4231 0.3377

γ∗ 0.8226 0.9562 0.8191 0.7676

α∗ 0.6359 0.4823 0.5177 0.5303

β∗ 0.5543 0.4298 0.4574 0.4487

900 ω∗ 0.7357 0.6449 0.5481 0.4831

γ∗ 0.8499 0.8167 1.3253 0.7668

α∗ 0.6741 0.6308 0.3573 0.5723

β∗ 0.5722 0.5507 0.3165 0.5114

2500 ω∗ 0.8003 0.7468 0.6914 0.6365

γ∗ 0.8802 0.8166 0.6463 0.8347

α∗ 0.7046 0.7095 0.8383 0.6099

β∗ 0.5838 0.5990 0.7209 0.5330

Table 4. The calculated optimal parameters of the TAOR method for Case II from
Example 4.1.

The results of the second case of Example 4.1 are reported in Tables 4–6. As can

be seen from Table 6, there are cases where each of the methods (2.2), (2.4) and (2.7)

does not converge with respect to the stopping criterion (4.1), while in all these cases
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our proposed method is convergent. Furthermore, the TAOR method has the least

CPU time among other methods. For further details, we plotted the convergence

histories of iterations in Figures 1–4.

n q = 20 q = 30 q = 40 q = 50

100 (ωrand, γrand) (0.7867,0.1953) (0.5296,0.2243) (0.8425,0.4311) (0.0334,0.0064)

400 (ωrand, γrand) (0.9574,0.2061) (0.5406,0.1644) (0.9202,0.5358) (0.5128,0.1277)

900 (ωrand, γrand) (0.4331,0.2129) (0.2075,0.1970) (0.7576,0.1954) (0.4819,0.1509)

2500 (ωrand, γrand) (0.8969,0.3820) (0.0037,0.0016) (0.3231,0.3136) (0.2782,0.2663)

Table 5. The considered random parameters of the AOR and QAOR methods for Case II
from Example 4.1.

n q Method AOR QAOR HSS TAOR

100 20 Iter Fail 307 58 44

CPU - 0.0022 0.0183 0.0011

Err - 9.773e− 07 7.266e− 07 6.860e− 07

30 Iter Fail Fail 81 50

CPU - - 0.0245 0.0011

Err - - 8.157e− 07 8.878e− 07

40 Iter Fail Fail 129 74

CPU - - 0.0379 0.0012

Err - - 9.990e− 07 8.604e− 07

50 Iter 548 563 268 85

CPU 0.0032 0.0031 0.0775 0.0013

Err 9.790e− 07 9.756e− 07 9.908e− 07 9.536e− 07

400 20 Iter 155 100 88 49

CPU 0.0071 0.0043 0.0933 0.0014

Err 7.508e− 07 7.409e− 07 9.647e− 07 6.251e− 07

30 Iter 172 132 93 60

CPU 0.0071 0.0054 0.0978 0.0014

Err 8.822e− 07 9.891e− 07 7.817e− 07 9.010e− 07

40 Iter Fail 120 108 70

CPU - 0.0055 0.1157 0.0015

Err - 9.985e− 07 8.433e− 07 7.163e− 07

50 Iter Fail Fail 135 70

CPU - - 0.1412 0.0015

Err - - 9.909e− 07 8.611e− 07

Table 6. Numerical results of Case II from Example 4.1 for different values of n and q.
(First part.)
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n q Method AOR QAOR HSS TAOR

900 20 Iter 241 375 140 100

CPU 0.0439 0.0660 0.3222 0.0025

Err 9.480e− 07 8.391e− 07 9.836e− 07 6.425e− 07

30 Iter 299 375 126 69

CPU 0.0471 0.0646 0.2843 0.0021

Err 7.111e− 07 7.728e− 07 7.146e− 07 5.581e− 07

40 Iter 1020 171 127 77

CPU 0.1560 0.0279 0.2858 0.0021

Err 9.993e− 07 9.365e− 07 7.818e− 07 8.877e− 07

50 Iter 315 203 137 90

CPU 0.0527 0.0342 0.3067 0.0024

Err 9.447e− 07 9.020e− 07 9.598e− 07 8.654e− 07

2500 20 Iter 402 902 Fail 402

CPU 0.7996 1.8080 - 0.0169

Err 8.928e− 07 9.873e− 07 - 9.463e− 07

30 Iter Fail Fail 243 189

CPU - - 1.7284 0.0080

Err - - 6.659e− 07 9.534e− 07

40 Iter 369 532 209 116

CPU 0.7345 1.0901 1.5403 0.0058

Err 8.073e− 07 8.117e− 07 7.902e− 07 4.404e− 07

50 Iter 318 436 198 109

CPU 0.6302 0.8661 1.4156 0.0051

Err 7.425e− 07 9.419e− 07 9.613e− 07 8.539e− 07

Table 6. Numerical results of Case II from Example 4.1 for different values of n and q.
(Continuation.)

In the following example, we consider the case that the coefficient matrix A is

randomly constructed. This can be helpful for monitoring the behavior of iterations

when A is full. We use rand(‘state’, i) (with i = 72), so that the data can be

reproduced in full accuracy.

E x am p l e 4.2. In this example, we work with a randomly generated linear

problem with A = rand(n, n) + n ∗ eye(n).

The performance of the iterative schemes mentioned is reported in Tables 7–10 for

Example 4.2. Here, we observe that all of the examined iterative schemes are conver-

gent, but our proposed iterative scheme has a faster rate of convergence. As the nu-

merical results show, the spectral radius of iteration matrix and CPU time of our pro-

posed method is far less than those of the AOR, QAOR and HSS iterative methods.
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n ω∗ γ∗ α∗ β∗

100 0.9996 3.1000 0.3146 0.3064

400 0.9999 3.6789 0.2657 0.2615

900 1 4.4918 0.2177 0.2139

2500 1 4.5095 0.2168 0.2131

Table 7. The calculated optimal parameters of the TAOR method for Example 4.2.

n ωrand γrand

100 0.3741 0.3014

400 0.6192 0.0752

900 0.7260 0.1739

2500 0.4370 0.1213

Table 8. The considered random parameters of the AOR and QAOR methods for Ex-
ample 4.2.

n AOR QAOR HSS TAOR

100 0.6358 0.7354 0.1219 0.0925

400 0.3901 0.6235 0.1163 0.0947

900 0.2807 0.5834 0.1146 0.0946

2500 0.5655 0.6976 0.1133 0.0948

Table 9. The spectral radius of the iteration matrix for Example 4.2 for different values of n.

n Method AOR QAOR HSS TAOR

100 Iter 25 36 6 6

CPU 0.0012 0.0013 0.0084 0.0011

Err 9.855e− 07 9.463e− 07 9.296e− 07 8.756e− 07

400 Iter 11 21 6 7

CPU 0.0017 0.0019 0.0348 0.0016

Err 7.549e− 07 9.830e− 07 7.240e− 07 1.330e− 07

900 Iter 9 20 6 7

CPU 0.0080 0.0127 0.0940 0.0072

Err 5.011e− 07 6.129e− 07 6.692e− 07 1.318e− 07

2500 Iter 19 29 6 7

CPU 0.1187 0.1741 1.3830 0.0452

Err 6.964e− 07 7.271e− 07 6.263e− 07 1.343e− 07

Table 10. Numerical results of Example 4.2 for different values of n.
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E x am p l e 4.3 ([12], [14]). Let m be a specified positive integer and n = m2.

Consider the system (1.1) with A = M +µIn ∈ R
n×n, whereM = S⊗Im+Im⊗S ∈

R
n×n and S = tridiag{−1, 4,−1} ∈ R

m×m.

The numerical results for Example 4.3 are presented in Tables 11, 12 and 13. The

results in Table 13 are reported to illustrate the behavior of the TAOR method in

comparison with the other iterative methods.

n ω∗ γ∗ α∗ β∗

10000 0.9980 0.9978 0.9905 0.9429

40000 0.9980 0.9978 0.9904 0.9427

90000 0.9980 0.9978 0.9904 0.9426

Table 11. The calculated optimal parameters of the TAOR method for Example 4.3.

n ωrand γrand

10000 0.8147 0.7380

40000 0.1270 0.1160

90000 0.6324 0.0617

Table 12. The considered random parameters of the AOR and QAOR methods for Exam-
ple 4.3.

n Method AOR QAOR HSS TAOR

10000 Iter 20 48 13 14

CPU 0.6582 1.5454 0.1615 0.0042

Err 9.096e− 07 9.543e− 07 5.860e− 07 3.844e− 07

40000 Iter 204 232 13 14

CPU 181.8223 207.7043 0.6171 0.0151

Err 9.901e− 07 9.655e− 07 6.065e− 07 4.004e− 07

90000 Iter 36 64 13 14

CPU 109.6729 168.8760 1.9214 0.0387

Err 8.605e− 07 8.766e− 07 6.133e− 07 4.058e− 07

Table 13. Numerical results of Example 4.3 for different values of n.

5. Conclusion

A new iterative method for solving linear systems (TAOR) which includes 4 param-

eters is presented in this paper. We have shown both theoretically and numerically

that by choosing appropriate parameters, the method proposed converges properly.

Then we have established how one can optimize the parameters of the TAOR method
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to reach a better convergence rate. In this article, we compared numerically our new

method with the HSS, QAOR and AOR methods from the points of view of the spec-

tral radius, the error, the number of iterations and the CPU time. As the numerical

results show, the spectral radius of the new proposed method is smaller than that

of these methods. Since the smaller spectral radius leads to faster convergence, our

method converges faster than the methods mentioned. Moreover, the CPU time of

the TAOR iterative method is remarkably smaller than the time of the other methods

for different dimensions. In this regards, the new proposed method is more powerful

and efficient than the AOR, QAOR and HSS methods.
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