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Abstract. We propose a feasible primal-dual path-following interior-point algorithm for
semidefinite least squares problems (SDLS). At each iteration, the algorithm uses only
full Nesterov-Todd steps with the advantage that no line search is required. Under new
appropriate choices of the parameter β which defines the size of the neighborhood of the
central-path and of the parameter θ which determines the rate of decrease of the barrier
parameter, we show that the proposed algorithm is well defined and converges to the optimal
solution of SDLS. Moreover, we obtain the currently best known iteration bound for the
algorithm with a short-update method, namely, O(

√
n log(n/ε)). Finally, we report some

numerical results to illustrate the efficiency of our proposed algorithm.

Keywords: semidefinite least-squares problem; interior-point method; polynomial com-
plexity
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1. Introduction

Let Sn denote the space of n × n real symmetric matrices and S
n
+ the cone of

symmetric positive semidefinite matrices. The semidefinite least-squares (SDLS)

problem is expressed as the following optimization problem:

(P) p∗ = min
X

f(X) =
1

2
‖X − C‖2F s.t. Ai •X = bi, i = 1, . . . ,m, X � 0
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and its Lagrangian dual problem:

(D) d∗ = max
(y,Z)

g(y, Z) = b⊤y − 1

2
‖X‖2F +

1

2
‖C‖2F

s.t. X − Z −
m
∑

i=1

yiAi = C, Z � 0, y ∈ R
m.

Here, b ∈ R
m, C,Ai ∈ S

n, i = 1, . . . ,m, and the inequality M � 0 means that

M ∈ S
n
+. The trace inner-product and the Frobenius norm in S

n are defined, respec-

tively, by

A•B = Tr(AB) =
∑

i,j

aijbij and ‖A‖F = (Tr(A2))1/2 for A = (aij), B = (bij) ∈ S
n.

The SDLS problem provides an attractive class of nonlinear convex programming

[10], [22], [23], [24] which has been proven to be useful in the domain of applied

mathematics and numerical linear algebra. For instance, the nearest correlation ma-

trix, preconditioning of linear systems, and error analysis of such iterative methods

can be reformulated as SDLS [13]. Until now there have been some solution ap-

proaches for SDLS. In [17], Higham proposed an alternating projections method to

solve particular instances of the SDLS (and it could be generalized to any semidefinite

least-squares). Henrion and Malick [16] presented a Matlab package for solving conic

least squares problems. In addition, Krislock [20] presented a numerical solution for

semidefinite constrained least squares problems based on interior-point algorithms.

Later on, Malick [21], proposed a Lagrangian dualization of SDLS and then solved

the latter with a quasi-Newton algorithm.

Interior-point methods (IPMs) play an important role for solving wide problems of

convex programming (see for example [29]). Among them, the so-called primal-dual

IPMs are most efficient from a computational point of view. These methods were

first used for solving linear optimization (LO) [3], [6], [29] and then were extended

successfully for convex quadratic optimization (CQO) and complementarity problems

(CP) [1], [7], [4], [19], semidefinite optimization (SDO) and CQSDO problems [2],

[8], [15], [18], [14], [23], [25], [26], [28], [30].

In this paper, we propose a new feasible primal-dual path-following interior point

algorithm for SDLS. For its analysis, we propose new appropriate choices of the

parameter β which defines the size of the neighborhood of the central-path and

of the parameter θ which determines the rate of decrease of the barrier parameter.

Under these two defaults, we show that the algorithm is well defined and converges to

the optimal solution of SDLS. Moreover, we prove that the polynomial complexity of

this short-step algorithm is O(
√
n log(n/ε)). Finally, some numerical tests on several
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different examples of SDLS problems are included to illustrate the effectiveness of

this algorithm. Next, some notations used throughout the paper are specified. Let

S
n
++ denote the set of n×n symmetric positive definite matrices. Furthermore X � 0

(X ≻ 0) means that X ∈ S
n
+ (X ∈ S

n
++), λmax(X) and λmin(X) stand for the largest

and the smallest eigenvalue of the matrixX . The trace of an n×nmatrix A = (aij) is

denoted by Tr(A) =
n
∑

i=1

aii and the determinant is denoted by detA. The symmetric

positive definite square root of any symmetric positive definite matrix X is denoted

by X1/2. Finally, if h(x) > 0 is a real valued function of a real nonnegative variable,

the notation h(x) = O(x) means that h(x) 6 kx for some positive constant k. The

abbreviation A ∼ B means that A and B are similar, i.e., A = PBP−1 for some

nonsingular matrix P . Finally, I, 0n×n, and e denote the identity and zero matrices

of order n, and the vector of ones, respectively.

The remaining part of the paper is organized as follows. In Section 2, the generic

primal-dual path-following interior-point (IP) algorithm for SDLS is presented. In

Section 3, the detailed proofs of the complexity results are stated. In Section 4, some

numerical results are reported. A conclusion and future works end Section 5.

2. The primal-dual IP algorithm for SDLS

Before describing our generic algorithm for solving SDLS, some auxiliary results

are required.

In the sequel, we will denote by

FP = {X ∈ S
n
+ : Ai •X = bi, i = 1, . . . ,m},

F 0
P = {X ∈ FP : X ∈ S

n
++},

FD =

{

(y, Z) ∈ R
m × S

n
+ :

m
∑

i=1

yiAi + Z −X = −C

}

,

F 0
D = {(y, Z) ∈ FD : Z ∈ S

n
++},

the feasible and the strictly feasible sets of P and D, respectively.

Theorem 2.1 (Weak duality [11]). Let X ∈ FP and (y, Z) ∈ FD. Then

f(X)− g(y, Z) = X • Z > 0,

where the expressions f(X)− g(y, Z) and X •Z are called, respectively, the duality
gap and the complementarity condition for P and D. Moreover, if X •Z = 0, then X

is an optimal solution of P and (y, Z) is an optimal solution of D.
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Theorem 2.2 (Strong duality [11]). If F 0
P

6= ∅ and F 0
D

6= ∅, then the sets of
optimal solutions of P and D are nonempty and bounded and we have

p∗ = d∗.

Lemma 2.1 ([14]). If X,Z ∈ S
n
+ and X • Z = 0, then XZ = 0.

Moreover, X ∈ FP and (y, Z) ∈ FD are optimal solutions for P and D if they
satisfy the following optimality conditions:

(2.1)















X − Z −
m
∑

i=1

yiAi = C, X � 0, Z � 0,

Ai •X = bi, i = 1, . . . ,m,

XZ = 0.

In the sequel of this paper, we assume that both problems P and D satisfy the
following conditions:

⊲ Interior-Point-Condition (IPC), i.e., F 0
P
× F 0

D
6= ∅.

⊲ The matrices Ai, i = 1, . . . ,m, are linearly independent.

2.1. The central-path. To the problem P , we associate the following perturbed
optimization problem:

(Pµ) min
X

fµ(X) s.t. X ∈ FP ,

where

fµ(X) =

{

f(X)− µ ln detX if X ∈ F 0
P
,

∞ otherwise.

The function (− ln detX) is called the logarithmic barrier function associated with

the cone Sn+ and µ > 0 is the barrier parameter. This function has been studied

by many authors in the context of continuous convex programming [9], [12], [17].

The study of SDLS by IPMs presents a great similarity with SDO and CQSDO. By

incorporating the concept of recession cones and if the IPC condition holds, then the

problem Pµ has a unique optimal solution X(µ) for all µ > 0. The problem Pµ is a

continuous convex optimization problem. So the necessary and sufficient conditions

for X(µ) to be an optimal solution for Pµ is the existence of a vector y(µ) ∈ R
m

such that:

(2.2)







X − C − µX−1 −
m
∑

i=1

yiAi = 0,

Ai •X = bi, i = 1, . . . ,m.

Set

Z(µ) = µX−1.
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Then

X(µ)Z(µ) = µI.

Therefore the system (2.2) can be rewritten equivalently as

(2.3)















X(µ)− Z(µ)−
m
∑

i=1

yi(µ)Ai = C, X ≻ 0, Z ≻ 0,

Ai •X(µ) = bi, i = 1, . . . ,m,

X(µ)Z(µ) = µI, µ > 0.

The µ-central of P and D is defined by the solution (X(µ), y(µ), Z(µ)) of the sys-

tem (2.3) for all µ > 0. The set

C = {(X(µ), y(µ), Z(µ)) | µ > 0}

of µ-centers of (2.3) is called the central-path of P and D. If µ 7→ 0 then the limit

of the central-path exists and since the limit points satisfy the complementarity

condition in (2.1), it yields an optimal solution of both P and D, see [9], [12], [24].

2.2. The Nesterov-Todd (NT) search directions. Now we describe a full

NT-step produced by the proposed algorithm for a given µ > 0. Applying Newton’s

method for system (2.3) for a given strictly feasible point (X ≻ 0, y, Z ≻ 0). Then the

Newton direction at this point is the unique solution of the following linear system:

(2.4)















∆X −∆Z −
m
∑

i=1

∆yiAi = 0,

Ai •∆X = 0, i = 1, . . . ,m,

∆XZ +X∆Z = µI −XZ, µ > 0.

The system (2.4) may give as a solution a search direction which is not necessarily

symmetric. Since we want X and Z to be symmetric matrices, one must symmetrize

the perturbed complementarity equation XZ = µI. Based on different symmetriza-

tion schemes, several search directions have been proposed in the literature of SDO

problems such as Kojima et al. [19], Helmberg et al. [15], Monteiro [23], Nesterov-

Todd (NT) [25], [27] and Alizadeh et al. [8]. Here we will use an invertible matrix P

introduced by Nesterov and Todd, and replacing the equation:

∆XZ +X∆Z = µI −XZ

in system (2.4) by the following equation:

∆X + P∆ZP⊤ = µZ−1 −X,
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we then obtain the system

(2.5)















∆X −∆Z −
m
∑

i=1

∆yiAi = 0,

Ai •∆X = 0, i = 1, . . . ,m,

∆X + P∆ZP⊤ = µZ−1 −X, µ > 0,

where

P = X1/2(X1/2ZX1/2)−1/2X1/2 (= Z−1/2(Z1/2XZ1/2)1/2Z−1/2), P ∈ S
n
++.

Moreover, we define D = P 1/2. The matrix D can be used to rescale X and Z to

the same symmetric positive definite matrix V , defined by

(2.6) V =
1√
µ
D−1XD−1 =

1√
µ
DZD.

Moreover, the scaled directions DX and DZ are defined by

(2.7) DX =
1√
µ
D−1∆XD−1, DZ =

1√
µ
D∆ZD.

Set (Dy)i = ∆yi. Now, due to (2.6) and (2.7), the system (2.5) becomes

(2.8)















D2DXD2 −DZ −
m
∑

i=1

(Dy)iĀi = 0,

Āi •DX = 0, i = 1, . . . ,m,

DX +DZ = PV ,

where

(2.9) Āi =
1√
µ
DAiD, i = 1, . . . ,m, and PV = V −1 − V.

Note that:

⊲ The matrices Āi, i = 1, . . . ,m, are linearly independent.

⊲ The directions DX and DZ are symmetric with DX •DZ > 0. The latter follows

from the first and the second equations of the system (2.5) and the expression

in (2.7) that

DX •DZ =
1

µ
∆X •∆X =

1

µ
‖∆X‖2F > 0.

Hence, the directions DX and DZ are not orthogonal, unlike the cases of LO

and SDO. This makes the analysis of the proposed algorithm slightly different.
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The resolution of the system (2.8) gives us the symmetric directions DX and DZ .

Then, via (2.7), we compute (∆X,∆y,∆Z). Hence, a new full NT-step iteration

is constructed according to

X+ = X +∆X, y+ = y +∆y, Z+ = Z +∆Z.

Also, according to (2.9), we introduce a proximity measure as follows:

δ(V ) := δ(X,Z;µ) =
‖PV ‖F

2
.

It is clear that δ(V ) = 0 ⇔ V −1 = V ⇔ XZ = µI. Hence, the value of δ(V ) can be

considered as a measure for the distance between a given point (X ≻ 0, y, Z ≻ 0)

and the central-path C.

2.3. Algorithm. The primal-dual IP algorithm for solving SDLS works as fol-

lows. First, we use a suitable threshold (default) value β > 0 with 0 < β < 1

and we suppose that a strictly feasible initial point (X0 ≻ 0, y0, Z0 ≻ 0) such

that δ(X0, Z0;µ0) 6 β for certain µ0 is known. Using the obtained search direc-

tions from (2.5) and taking a full NT-step, the algorithm produces a new iterate

(X+, y+, Z+) = (X + ∆X, y + ∆y, Z + ∆Z). Then, the barrier parameter value µ

is reduced by the factor (1 − θ) with 0 < θ < 1 and solves system (2.5), and so

targets a new µ-center and so on. This procedure is repeated until the stopping

criterion nµ 6 ε is satisfied for a given accuracy parameter ε. The generic form of

the algorithm is stated in Algorithm 1.

Begin Algorithm 1

Initialization

a precision parameter ε > 0, a proximity parameter β, 0 < β < 1 (default

β = 1/
√
2);

a parameter θ, 0 < θ < 1 (default θ = 1/(3
√
n));

a strictly feasible point (X0, y0, Z0) and µ0 = (X0 • Z0)/n s.t. δ(X0, Z0;µ0) 6 β;

k = 0;

While nµ > ε do

⊲ µ := (1 − θ)µ;

⊲ compute (∆X,∆y,∆Z) via system (2.8) and use (2.7);

⊲ update X := X +∆X, y := y +∆y, Z := Z +∆Z;

⊲ k := k + 1;

endWhile

endAlgorithm
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3. The analysis of the algorithm

In this section, we will prove with the defaults β = 1/
√
2 and θ = 1/(3

√
n) that

the algorithm solves the SDLS in polynomial time. For the analysis of the algorithm,

we introduce the following symmetric matrix:

DXZ =
1

2
(DXDZ +DZDX).

We cite some useful lemmas in [5], [14] which will be used later.

Lemma 3.1 ([14], Lemma 6.1). Let X(α) = X + α∆X, Z(α) = Z + α∆Z such

that X ≻ 0 and Z ≻ 0. If

det(X(α)Z(α)) > 0 ∀ 0 6 α 6 α,

then

X(α) ≻ 0 and Z(α) ≻ 0.

Lemma 3.2 ([14], Lemma 6.2). Let A ∈ S
n and let B ∈ R

n×n be an anti-

symmetric matrix, i.e. B = −B⊤. If A ≻ 0 then det(A + B) > 0. Moreover, if

λi(A+B) are real for i = 1, . . . , n, then

0 < λmin(A) 6 λmin(A+B) 6 λmax(A+B) 6 λmax(B)

which implies that (A+B) ≻ 0.

Lemma 3.3 ([5]). Let (DX , DZ) be a solution of the system (2.8) and µ > 0. If

δ = δ(X,Z;µ) then

(3.1) 0 6 DX •DZ 6 2δ2.

In addition the spectral norm of DXZ satisfies

(3.2) ‖DXZ‖2 6
1

4
‖DX +DZ‖2F = δ2

and

(3.3) ‖DXZ‖2F 6
‖PV ‖4F

8
.
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3.1. Feasibility and local quadratic convergence of the algorithm. In this

subsection, a sufficient condition of the strict feasibility of the full NT-step and the

local quadratic convergence of the proximity measure near the central-path C are
stated.

Lemma 3.4. If δ = δ(X,Z;µ) < 1, then the full NT-step is strictly feasible.

P r o o f. We will show that X(1) ≻ 0 and Z(1) ≻ 0. Then according to

Lemma 3.1, we just show that det(X(α)Z(α)) > 0 with 0 6 α 6 1. We have

X(α)Z(α) = (X + α∆X)(Z + α∆Z) = XZ + α(∆XZ +X∆Z) + α2∆X∆Z.

By using (2.6) and (2.7), we have

X(α)Z(α) = µDV 2D−1 + α(µDDXV D−1 + µDV DZD
−1) + α2µDDXDZD

−1

= µD[V 2 + α(DXV + V DZ) + α2DXDZ ]D
−1

∼ µ[V 2 + α(DXV + V DZ) + α2DXDZ ].

Then

(3.4) X(α)Z(α) ∼ B(α) +M(α),

where

B(α) = µ
[

V 2 +
1

2
α(DXV + V DZ + V DX +DZV ) +

1

2
α2(DXDZ +DZDX)

]

and

M(α) = µ
[1

2
α(DXV + V DZ − V DX −DZV ) +

1

2
α2(DXDZ −DZDX)

]

.

It is easy to see that the matrix B(α) is symmetric and the matrix M(α) is anti-

symmetric. By Lemma 3.2, one has det(X(α)Z(α)) > 0 if the matrix B(α) ≻ 0 with

0 6 α 6 1. For this, we write B(α) in the form

B(α) = µ
[

V 2 +
1

2
α((DX +DZ)V + V (DZ +DX)) + α2DXZ

]

= µ
[

V 2 +
1

2
α(PV V + V PV ) + α2DXZ

]

.

Using (2.9), we have

(3.5) B(α) = µ[(1− α)V 2 + α(I + αDXZ)].

By Lemma 3.2, B(α) ≻ 0 if α < 1 and ‖DXZ‖2 < 1. As δ < 1, by (3.2) in Lemma 3.3,

it follows that ‖DXZ‖2 < 1. Next, since X(0) ≻ 0, Z(0) ≻ 0, Lemma 3.1, implies

that X(1) ≻ 0 and Z(1) ≻ 0. But since X(1) = X+ and Z(1) = Z+, we have X+ ≻ 0

and Z+ ≻ 0. This completes the proof. �
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Next, we proceed to show the local quadratic convergence of the full NT-step on

the proximity measure. First, we mention that the expression of V+ is defined as

V+ =
1√
µ
D−1X+D

−1 =
1√
µ
DZ+D.

From this we have V 2
+ = µ−1D−1X+Z+D and X+Z+ ∼ µV 2

+.

Lemma 3.5. One has

λmin(V
2
+) > (1− δ2),

where λmin(V
2
+) is the smallest eigenvalue of V

2
+.

P r o o f. From (3.4) in the proof of Lemma 3.4, setting α = 1 and as X+ = X(1)

and Z+ = Z(1) we deduce that

X+Z+ ∼ µV 2
+ ∼ B(1) +M(1).

Also setting α = 1 in (3.5), we have

X+Z+ ∼ µ(I +DXZ) +M(1).

Hence,

λmin(V
2
+) = λmin

(

(I +DXZ) +
1

µ
M(1)

)

.

Since the matrix (I + DXZ) is symmetric and the matrix M(1) is anti-symmetric,

then by Lemma 3.2 we get

λmin(V
2
+) > λmin(I +DXZ) > 1− |λmin(DXZ)| > 1− |λmax(DXZ)| = 1− ‖DXZ‖2.

Due to (3.2) in Lemma 3.3, we conclude that

λmin(V
2
+) > 1− δ2.

This gives the required result. �

Lemma 3.6. If δ = δ(X,Z;µ) < 1, then

δ+ := δ(V+) = δ(X+, Z+;µ) 6
δ2

√

2(1− δ2)
.

Moreover, if δ(X,Z;µ) < 1/
√
2, then δ(X+, Z+;µ) < δ2, which shows the local

quadratic convergence of the proximity measure.
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P r o o f. One has

δ2+ =
1

4
‖PV+

‖2F =
1

4
‖V −1

+ − V+‖2F 6
1

4
‖V −1

+ ‖22‖(I − V 2
+)‖2F

=
1

4
λ2
max(V

−1
+ )‖I − V 2

+‖2F =
1

4

1

λ2
min(V+)

‖I − V 2
+‖2F

=
1

4

1

λmin(V 2
+)

‖I − V 2
+‖2F .

Due to Lemma 3.5, we get

δ2+ 6
1

4(1− δ2)
‖I − V 2

+‖2F .

Next we show that

‖I − V 2
+‖2F 6 ‖DXZ‖2F .

From V 2
+ = µ−1D−1X+Z+D, X+ = X(1), Z+ = Z(1), (3.4) and (3.5), we have

I − V 2
+ = I − 1

µ
D−1X(1)Z(1)D

∼ I − 1

µ
D−1[B(1) +M(1)]D ∼

(

−DXZ − 1

µ
M(1)

)

.

Then

‖I − V 2
+‖2F = Tr

(

DXZ +
1

µ
M(1)

)2

= Tr
(

D2
XZ − 1

µ2
M(1)M(1)⊤ +

2

µ
(DXZM(1))

)

.

AsM(1) = −M(1)⊤ and DXZ ∈ S
n, then the matrix (DXZM(1)) is anti-symmetric,

which implies that Tr(DXZM(1)) = 0. Hence, we have

‖I − V 2
+‖2F = Tr

(

D2
XZ − 1

µ2
M(1)M(1)⊤

)

6 Tr(D2
XZ) = ‖DXZ‖2F .

Therefore,

‖I − V 2
+‖2F 6 ‖DXZ‖2F .

By (3.3) in Lemma 3.3, we deduce that

δ2+ 6
1

4(1− δ2)
‖DXZ‖2F 6

1

4(1− δ2)

‖PV ‖4F
8

6
16δ4

32(1− δ2)
=

δ4

2(1− δ2)
.

Finally, we get δ+ = δ(X+, Z+;µ) 6 δ2/
√

2(1− δ2). This proves the lemma. �

381



The next lemma shows the influence of a full NT-step on the duality gap and gives

an upper bound for it.

Lemma 3.7. If δ(X,Z;µ) < 1/
√
2 after a full NT-step. Then

X+ • Z+ 6 µ(n+ 1).

P r o o f. One has

X+ • Z+ = Tr(V 2
+) = Tr(B(1) +M(1))

= Tr(µ(I +DXZ) +M(1))

= µTr
(

(I +DXZ) +
1

µ
M(1)

)

.

Because Tr(M(1)) = 0, since the matrix M(1) is anti-symmetric, it follows that

X+ • Z+ = µ(n+Tr(DXZ)) = µ
(

n+
1

2
Tr(DXDZ +DZDX)

)

= µ(n+DX •DZ).

Due to (3.1) we deduce that

X+ • Z+ 6 µ(n+ 2δ2).

As δ < 1/
√
2, it is implied that

X+ • Z+ 6 µ(n+ 1).

This proves the lemma. �

The next lemma investigates the effect of a full NT-step on the proximity measure

followed by an update of the parameter µ. For convenience, we define the matrix U by

U =
1√
µ+

D−1X+D
−1 =

1√
µ+

DZ+D =
1√
1− θ

V+,

where µ+ = (1− θ)µ.

Lemma 3.8. Let µ+ = (1− θ)µ where 0 < θ < 1. Then

δ2(X+, Z+;µ+) 6 (1− θ)δ2+ +
θ2(n+ 1)

4(1− θ)
+

θ

2

with δ+ = δ(X+, Z+;µ). In addition, if δ = δ(X,Z;µ) < 1/
√
2, θ = 1/(3

√
n) and

n > 2, then

δ2(X+, Z+;µ+) <
1

2
.
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P r o o f. We have U = 1/
√
1− θV+. Then

4δ2(X+, Z+;µ+) = 4δ2(U) = ‖PU‖2F = ‖U−1 − U‖2F
=

∥

∥

∥

√
1− θV −1

+ − 1√
1− θ

V+

∥

∥

∥

2

F

=
∥

∥

∥

√
1− θ(V −1

+ − V+)−
θ√
1− θ

V+

∥

∥

∥

2

F

= Tr
(√

1− θ(V −1
+ − V+)−

θ√
1− θ

V+

)2

= (1− θ)‖V −1
+ − V+‖2F +

θ2

1− θ
‖V+‖2F − 2θTr((V −1

+ − V+)V+)

= (1− θ)‖V −1
+ − V+‖2F +

θ2

1− θ
‖V+‖2F − 2θTr(I − V 2

+)

= (1− θ)4δ2+ +
θ2

1− θ
‖V+‖2F − 2θn+ 2θ‖V+‖2F .

As V 2
+ = µ−1D−1X+Z+D and according to Lemma 3.7, we get:

‖V+‖2F = Tr(V 2
+) =

1

µ
X+ • Z+ 6 (n+ 1).

By some simplifications we obtain

δ2(X+, Z+;µ+) 6 (1− θ)δ2+ +
θ2(n+ 1)

4(1− θ)
+

θ

2
.

As δ < 1/
√
2, Lemma 3.6 implies that δ2+ < δ4 < 1

4 . Therefore,

δ2(X+, Z+;µ+) 6
1

4
+

θ2(n+ 1)

4(1− θ)
+

θ

4
.

Let θ = 1/(3
√
n). Then θ2 = 1

9n
−1 and we have

δ2(X+, Z+;µ+) 6
1

4
+

1
9 (n+ 1)/n

4(1− θ)
+

θ

4
.

Since 1
9 (n+ 1)/n 6 1

6 for n > 2, this implies that

δ2(X+, Z+;µ+) 6 f(θ) =
1

4
+

1

24(1− θ)
+

θ

4
.

For n > 2 we get 0 6 θ 6 1/
√
18. Because

f ′(θ) =
1

4
+

1

24(θ − 1)2
> 0,
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then f(θ) is strictly increasing on the compact interval [0, 1/
√
18]. This implies that

f(θ) 6 f
( 1√

18

)

≃ 0.3634 <
1

2
,

and so δ(X+, Z+;µ+) < 1/
√
2. This completes the proof. �

A consequence of Lemma 3.8 is that under our defaults the algorithm is well

defined, since the conditions (X ≻ 0, y, Z ≻ 0) and δ(X,Z;µ) < 1/
√
2 are maintained

throughout the algorithm.

3.2. Iterations bound. The next lemma gives an upper bound for the total

number of iterations produced by the algorithm.

Lemma 3.9. Let {Xk, yk, Zk} be the sequence generated by the algorithm and
µ = µk with µ0 = 1

2 . Then

Xk • Zk 6 εifk >
1

θ
log

(n

ε

)

.

P r o o f. Lemma 3.7, and because (n + 1) 6 2n for all n > 1, this implies

that Xk • Zk 6 2n(1 − θ)kµ0. Then the inequality Xk • Zk 6 ε is satisfied if

2n(1− θ)kµ0 6 ε. Taking the logarithms, we obtain k log(1− θ) 6 log ε− log(2nµ0).

Using log(1− θ) 6 −θ for 0 < θ < 1, we have

kθ > log
(2nµ0

ε

)

.

Let µ0 = 1
2 . This fulfills the required claim and thus proves the lemma. �

Theorem 3.1. Let θ = 1/(3
√
n) and β = 1/

√
2. Then the previous algorithm

requires O(
√
n log(n/ε)) iterations to obtain an ε-approximate solution of P .

P r o o f. Let θ = 1/(3
√
n). Using Lemma 3.9, the proof is straightforward. �
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4. Numerical results

To evaluate the performance of our IP algorithm, we consider some examples of

SDLS problems of different sizes; each example is followed by a table containing the

computational results obtained by the algorithm. We implemented the algorithm

in Matlab (R2013b) and the experiments were conducted on a Pentium 4 3.0 GHz

PC with 2GB of RAM. In the implementation, we use ε = 10−6, θ = 1/(3
√
n) and

β = 1/
√
2, and we start with a feasible point (X0, y0, Z0) such that the IPC holds

and δ(X0, Z0;µ0) < 1/
√
2 is satisfied. The number of iterations required and the

time executed by the algorithm are denoted by “Iter” and “CPU” respectively. Also,

we display the following notations in the tables: “µ-Th = (X0 • Z0)/n” and “µ-Pra”

mean the theoretical choice of the parameter µ and the relaxed practical choice of µ,

respectively. We note here that the source of Example 4.1 is taken from [16] and the

others are inspired by [5], with modifications.

E x am p l e 4.1 (Nearest correlation matrix problems (NCM)). This example of

SDLS is constructed from the following nearest correlation matrix problem:

min
X

1

2
‖X − C‖2F s.t. Ai •X = bi, i = 1, . . . ,m, X � 0,

with

A1 =





1 0 0

0 0 0

0 0 0



 , A2 =





0 0 0

0 1 0

0 0 0



 , A3 =





0 0 0

0 0 0

0 0 1



 ,

C =





1 0.5 1

0.5 1 0.25

1 0.25 1



 , b = e.

In this example, the triplet starting point is taken as

X0 = I, Z0 =





2 −0.5 −1

−0.5 2 −0.25

−1 −0.25 1



 , y0 = [−2,−2,−1]⊤.

The obtained numerical results are summarized in Table 1.

θ/µ µ-Th = 1.6667 µ-Pra = 0.5

Iter CPU Iter CPU

1/(3
√
n) 73 0.1045 67 0.0909

Table 1. Numerical results for Example 4.1.
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The obtained approximate primal-dual optimal solution is:

X∗ =





1 0.4910 0.9684

0.4910 1 0.2582

0.9684 0.2582 1



 , Z∗ =





0.0350 −0.0090 −0.0316

−0.0090 0.0023 0.0082

−0.0316 0.0082 0.0285



 ,

y∗ = [−0.0350,−0.0023,−0.0285]⊤.

The optimal values for both problems P and D are p∗ = d∗ = 0.0011.

E x am p l e 4.2. Consider the SDLS problem with

A1 =









0 1 0 0

1 2 0 −1

0 0 −2 −1

0 −1 −1 −2









, A2 =









0 0 −2 0

0 2 1 2

−2 1 −2 1

0 2 1 2









, A3 =









2 2 −1 −1

2 0 2 1

−1 2 0 1

−1 1 1 −2









,

C =









−2 −3 3 1

−3 −4 −3 −2

3 −3 4 −1

1 −2 −1 2









, b = [−2, 2, 0]⊤.

For this example, the triplet starting point is taken as

X0 = Z0 = I and y0 = e.

The obtained numerical results are summarized in Table 2.

θ/µ µ-Th = 1 µ-Pra1 = 0.5 µ-Pra2 = 0.05 µ-Pra3 = 0.005

Iter CPU Iter CPU Iter CPU Iter CPU

1/(3
√
n) 84 0.2051 80 0.1966 67 0.1256 55 0.1042

Table 2. Numerical results for Example 4.2.

The approximated primal-dual optimal solution for this example is:

X∗ =









0.0574 −0.0368 −0.0554 −0.0304

−0.0368 0.0648 0.0536 0.1540

−0.0554 0.0536 0.2056 0.1688

−0.0304 0.1540 0.1688 0.4996









,

Z∗ =









0.1081 0.1681 0.0311 −0.0557

0.1681 0.2615 0.0483 −0.0867

0.0311 0.0483 0.0089 −0.0160

−0.0557 −0.0867 −0.0160 0.0287









,

y∗ = [0.8458, 1.0559, 0.9747]⊤.
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The optimal values for both problems: The optimal values for both problems P
and D are p∗ = d∗ = 53.2101.

E x am p l e 4.3. Consider the following SDLS with

A1 =





























2 1 0 1 1 1 2 1

1 0 0 2 1 2 1 0

0 0 2 1 0 2 1 0

1 2 1 0 1 1 2 2

1 1 0 1 2 0 1 1

1 2 2 1 0 0 2 1

2 1 1 2 1 2 2 2

1 0 0 2 1 1 2 0





























, A2 =





























0 1 1 2 2 0 1 1

1 0 2 1 2 0 1 1

1 2 1 2 2 1 1 1

2 1 2 0 1 1 0 1

2 2 2 1 1 1 0 0

0 0 1 1 1 0 2 2

1 1 1 0 0 2 2 1

1 1 1 1 0 2 1 0





























,

A3 =





























2 1 2 1 1 0 1 0

1 2 2 1 2 1 1 1

2 2 2 0 1 1 1 2

1 1 0 0 1 2 0 1

1 2 1 1 1 0 2 0

0 1 1 2 0 1 1 1

1 1 1 0 2 1 2 1

0 1 2 1 0 1 1 2





























, A4 =





























2 1 1 2 1 0 1 1

1 2 2 1 1 1 0 2

1 2 1 0 1 2 2 2

2 1 0 0 2 1 1 0

1 1 1 2 0 1 0 1

0 1 2 1 1 1 1 0

1 0 2 1 0 1 2 2

1 2 2 0 1 0 2 0





























,

C = −





























6 4 4 6 5 1 5 3

4 4 6 5 6 4 3 4

4 6 6 3 4 6 5 5

6 5 3 0 5 5 3 4

5 6 4 5 4 2 3 2

1 4 6 5 2 2 6 4

5 3 5 3 3 6 8 6

3 4 5 4 2 4 6 2





























, b = [8, 4, 12, 8]⊤.

The triplet starting point is taken as

X0 = Z0 = I and y0 = e.

The obtained numerical results are summarized in Table 3.

θ/µ µ-Th = 1 µ-Pra1 = 0.5 µ-Pra2 = 0.05 µ-Pra2 = 0.005

Iter CPU Iter CPU Iter CPU Iter CPU

1/(3
√
n) 127 1.2560 122 1.2086 103 1.0923 85 0.8650

Table 3. Numerical results for Example 4.3.
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The obtained approximate primal-dual optimal solution is given by

X∗ =





























0.5143 0.0935 0.2653 −0.0822 −0.0149 0.0667 0.1155 −0.0981

0.0935 0.4440 0.1279 0.1464 0.1198 0.2706 0.1422 0.0587

0.2653 0.1279 0.4490 −0.1267 −0.0689 0.0553 0.0632 0.2285

−0.0822 0.1464 −0.1267 0.2143 0.0729 0.1745 0.0587 0.0516

−0.0149 0.1198 −0.0689 0.0729 0.3292 −0.0809 0.3082 0.0623

0.0667 0.2706 0.0553 0.1745 −0.0809 0.3255 −0.0461 0.0138

0.1155 0.1422 0.0632 0.0587 0.3082 −0.0461 0.3455 0.1314

−0.0981 0.0587 0.2285 0.0516 0.0623 0.0138 0.1314 0.4684





























,

Z∗ =





























0.0098 −0.0085 −0.0164 −0.0338 0.0334 0.0304 −0.0228 0.0159

−0.0085 0.0121 −0.0034 0.0081 −0.0480 −0.0180 0.0401 −0.0069

−0.0164 −0.0034 0.0946 0.1375 0.0157 −0.0829 −0.0387 −0.0531

−0.0338 0.0081 0.1375 0.2143 −0.0290 −0.1435 −0.0138 −0.0868

0.0334 −0.0480 0.0157 −0.0290 0.1908 0.0695 −0.1602 0.0261

0.0304 −0.0180 −0.0829 −0.1435 0.0695 0.1096 −0.0342 0.0620

−0.0228 0.0401 −0.0387 −0.0138 −0.1602 −0.0342 0.1415 −0.0068

0.0159 −0.0069 −0.0531 −0.0868 0.0261 0.0620 −0.0068 0.0363





























,

y∗ = [1.0363, 0.8497, 1.2161, 0.9999]⊤.

The optimal values for both problems: The optimal values for both problems P
and D are p∗ = d∗ = 678.1406.

E x am p l e 4.4. Consider the SDLS of variable size (n = 2m) and with

C[i; j] =

{

1 if i = j and i 6 m,

0 otherwise,
Ai[j; k] =

{

1 if j = k = i or j = k = i+m,

0 otherwise,

b[i] = 2, i = 1, . . . ,m.

The triplet starting point is taken as

X0[i; j] =































5

4
if i = j = 1, . . . ,m,

3

4
if i = j = m+ 1, . . . , n,

0 otherwise,

Z0[i; j] =































5

6
if i = j = 1, . . . ,m,

4

3
if i = j = m+ 1, . . . , n,

0 otherwise,

y0[i] = − 7

12
, i = 1, . . . ,m.
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The obtained approximate primal-dual optimal solution is given by:

X∗[i; j] =











1.5 if i = j = 1, . . . ,m,

0.5 if i = j = m+ 1, . . . , n,

0 otherwise,

Z∗ = 0n×n, y∗[i] = 0.5, i = 1, . . . ,m.

The obtained numerical results for this example are summarized in Table 4.

Size µ µ-Th = 1.0208 µ-Pra1 = 0.5

(m,n) θ Iter CPU Iter CPU

(5, 10) 1/(3
√
n) 145 2.6305 139 2.6019

(10, 20) 1/(3
√
n) 218 58.2806 209 69.0568

(25, 50) 1/(3
√
n) 368 6.4202e + 03 353 5.9039e + 03

Size µ µ-Pra2 = 0.05 µ-Pra3 = 0.005

(m,n) θ Iter CPU Iter CPU

(5, 10) 1/(3
√
n) 118 2.2160 98 1.9398

(10, 20) 1/(3
√
n) 179 65.4664 149 49.3058

(25, 50) 1/(3
√
n) 306 3.6451e + 03 258 4.0128e + 03

Table 4. Numerical results for Example 4.4.

5. Conclusion and future work

We have proposed a full NT-step feasible primal-dual short-step IP algorithm for

SDLS and derived its polynomial time complexity; namely, O(
√
n log(n/ε)), which

is as good as the complexity obtained for the LO, SDO and CQSDO cases. The

analysis of the algorithm is inspired by the one used for CQSDO [5]. The efficiency

of the algorithm is proven by solving SDLS problems of different sizes. However,

in a numerical implementation, getting an initial starting point for problems of the

large size remains a serious problem. The analysis of the algorithm with other search

directions remains a good topic of research. Also, the application of kernel functions

with large-step algorithms is a good subject of research.
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