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Abstract. We investigate the lattice L(V) of subspaces of an m-dimensional vector
space V over a finite field GF(q) with a prime power q = p

n together with the unary
operation of orthogonality. It is well-known that this lattice is modular and that the or-
thogonality is an antitone involution. The lattice L(V) satisfies the chain condition and
we determine the number of covers of its elements, especially the number of its atoms. We
characterize when orthogonality is a complementation and hence when L(V) is orthomod-
ular. For m > 1 and p ∤ m we show that L(V) contains a (2m + 2)-element (non-Boolean)
orthomodular lattice as a subposet. Finally, for q being a prime and m = 2 we characterize
orthomodularity of L(V) by a simple condition.
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1. Introduction

The lattice of subspaces of a given vector space was studied by several authors from

various points of view. In particular, for (possibly infinite-dimensional) vector spaces

over the field of complex numbers such lattices serve as an algebraic axiomatization

of the logic of quantum mechanics. It was shown that such lattices are orthomodular

and, if the vector space has finite dimension, even modular. The question arises

whether something similar holds for vector spaces over finite fields. An attempt in
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this direction was done by Eckmann and Zabey (see [4]). An interesting structure

in such a lattice is the sublattice of closed subspaces. Unfortunately, this lattice

need not be a sublattice of the lattice of all subspaces and, moreover, this lattice

even need not be orthomodular. These facts imply that these lattices in general

cannot be used in the logic of quantum mechanics (see [4]). However, subspaces of

finite-dimensional vector spaces turn out to be closed. It comes out that in such a

case the lattice of subspaces sometimes has a nice structure and hence may be used in

the axiomatization of logics similarly as lattices of topologically closed subspaces of

Hilbert spaces over the complex numbers are used in the logic of quantum mechanics.

Throughout the paper we consider finite-dimensional vector spaces V over a finite

field GF(q). Assume dimV = m > 1 and q = pn for some prime p.

The paper is organized in the following way. First we derive some conditions which

are satisfied by the lattice L(V) of subspaces of V together with the unary operation

of orthogonality and we obtain a certain relationship between m and q. Then we

characterize those V for which L(V) is orthomodular. The lattice L(V) turns out

to be orthomodular if and only if orthogonality is a complementation. We show that

L(V) contains Boolean subalgebras of size 2m and that in case p ∤ m, L(V) contains

a (2m + 2)-element (non-Boolean) orthomodular lattice as a subposet.

In the whole paper let N denote the set of all positive integers. Let V denote
the universe of V. Without loss of generality assume V = (GF(q))m. For ~a =

(a1, . . . , am), ~b = (b1, . . . , bm) ∈ V and M ⊆ V , put

~a~b :=

m
∑

i=1

aibi,

~a ⊥ ~b :⇔ ~a~b = 0,

M⊥ := {~x ∈ V : ~x ⊥ ~y for all ~y ∈ M},

〈M〉 := linear subspace of V generated by M,

L(V) := set of all linear subspaces of V,

L(V) := (L(V),+,∩,⊥, {~0}, V ).

If not stated explicitly otherwise, whenever we consider a unary operation on L(V),

this will be ⊥. As usual, by a basis of V we mean a linearly independent generating

set of V. It is well-known that any m linearly independent vectors of V form a

basis of V. Moreover, it is well-known that L(V) is a modular lattice with an

antitone involution, see e.g. Theorems 15 and 16 in [3]. Moreover, this lattice is

paraorthomodular (see [5] for this concept and for several corresponding results)

because it satisfies the condition

U ⊆ W and U⊥ ∩W = {~0} imply U = W,
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see [3] for the proof. It is well-known that every bounded modular lattice with an

antitone involution which is, moreover, a complementation is already orthomodular.

Recall from [1] that an orthomodular lattice is a bounded lattice (L,∨,∧, ′, 0, 1) with

an antitone involution which is a complementation such that

x 6 y implies y = x ∨ (x′ ∧ y)

(x, y ∈ L). The above arguments show that L(V) is orthomodular if and only if ⊥

is a complementation. Hence we want to investigate when ⊥ is a complementation.

For n > 1 letMn denote the modular lattice with the Hasse diagram (see Figure 1).

a1 a2 an−1 an

0

1

. . .

Figure 1.

Theorem 1. The lattice L(V) is orthomodular if and only if V does not contain

a nontrivial self-orthogonal vector.

P r o o f. We use the fact that L(V) is orthomodular if and only if ⊥ is a comple-

mentation. Since

dim(U + U⊥) + dim(U ∩ U⊥) = dimU + dimU⊥ = m

for all U ∈ L(V), we have U + U⊥ = V if and only if U ∩ U⊥ = {~0}. Hence ⊥

is a complementation if and only if U ∩ U⊥ = {~0} for all U ∈ L(V). If ⊥ is not

a complementation then there exist some U ∈ L(V) and some ~a ∈ V \ {~0} with

~a ∈ U ∩ U⊥. But then ~a is a nontrivial self-orthogonal vector of V . If, conversely,

V possesses a nontrivial self-orthogonal vector ~b then ~b 6= ~0 and ~b ∈ 〈{~b}〉 ∩ 〈{~b}〉⊥,

and hence 〈{~b}〉 ∩ 〈{~b}〉⊥ 6= {~0}, i.e. ⊥ is not a complementation. �

If V does not contain a nontrivial self-orthogonal vector then L(V) is orthomodular

because ⊥ is an orthocomplementation and L(V) is modular. This is the case in the

following example.

E x am p l e 2. Assume (q,m) = (3, 2). Then the Hasse diagram of L(V) looks

as in Figure 2,
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A B C D

{~0}

V

Figure 2.

where

A := {(0, 0), (0, 1), (0, 2)}, B := {(0, 0), (1, 0), (2, 0)},

C := {(0, 0), (1, 1), (2, 2)}, D := {(0, 0), (1, 2), (2, 1)}.

Hence (L(V),+,∩) ∼= M4. Moreover,

U A B C D

U⊥ B A D C

and hence L(V) is orthomodular. This is in accordance with the fact that V has no

nontrivial self-orthogonal vector.

On the contrary, we have the following situation.

E x am p l e 3. Assume (q,m) = (5, 2). Then L(V) is not orthomodular since

U⊥ = U for

U = {(0, 0), (1, 3), (2, 1), (3, 4), (4, 2)}.

This is in accordance with the fact that (1, 2) is a nontrivial self-orthogonal vector

of V .

It turns out that V contains a nontrivial self-orthogonal vector in case m > 4.

Proposition 4. There exists a unique m(q) ∈ {2, 3, 4} such that L(V) is ortho-

modular if and only if m < m(q). We have m(q) = 2 for even q.

P r o o f. By Theorem 1, we must show that there exists a unique m(q) ∈ {2, 3, 4}

such that V contains a self-orthogonal vector ~a = (a1, . . . , am) if and only if

m > m(q). Obviously,

m(q) = min{k ∈ N : there exist a1, . . . , ak ∈ (GF(q)) \ {0} with a21 + . . .+ a2k = 0}

and because of Lagrange’s four-squares theorem saying that every non-negative in-

teger is the sum of four squares, there exist a, b, c, d ∈ Z with a2 + b2 + c2 + d2 = p.

Hence (a, b, c, d) is a nontrivial self-orthogonal vector of V . This shows m(q) 6 4.

For even q, (1, 1, 0, . . . , 0) is a nontrivial self-orthogonal vector of V . �
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E x am p l e 5. Assume (q,m) = (2, 2). Then the Hasse diagram of L(V) looks

as in Figure 3,

A B C

V

{~0}

Figure 3.

where

A := {(0, 0), (0, 1)}, B := {(0, 0), (1, 0)}, C := {(0, 0), (1, 1)}.

Hence (L(V),+,∩) ∼= M3. Moreover,

U A B C

U⊥ B A C

and hence L(V) is not orthomodular. This is in accordance with the fact that (1, 1)

is a nontrivial self-orthogonal vector of V .

In some cases, we can find a smaller upper bound for m(q).

Theorem 6. Let V be an m-dimensional vector space over the field GF(q).

(i) If 4 | p− 1 then m(q) = 2.

(ii) If 16 | (p+ 5)(p− 1) then m(q) 6 3.

P r o o f. In both cases we construct a suitable nontrivial self-orthogonal vector

of V .

(i) If 4 | p− 1 then
(−1

p

)

= (−1)(p−1)/2 = 1

and hence there exists some a ∈ Z with a2 ≡ −1 (mod p). This shows that (a, 1) is

a nontrivial self-orthogonal vector of V .

(ii) If 16 | (p+ 5)(p− 1) then

(−2

p

)

=
(−1

p

)(2

p

)

= (−1)(p−1)/2(−1)(p+1)(p−1)/8 = (−1)(p+5)(p−1)/8 = 1

and hence there exists some b ∈ Z with b2 ≡ −2 (mod p). This shows that (b, 1, 1)

is a nontrivial self-orthogonal vector of V . �
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For small numbers q we can compute m(q) as follows.

E x am p l e 7. The following table shows the values of m(q) for small q and a

corresponding nontrivial self-orthogonal vector of minimal dimension.

q m(q)
Nontrivial self-orthogonal vector

of minimal dimension
2 2 (1, 1)

3 3 (1, 1, 1)

4 2 (1, 1)

5 2 (1, 2)

7 3 (1, 2, 3)

8 2 (1, 1)

9 2 (1, x)

11 3 (1, 1, 3)

13 2 (2, 3)

16 2 (1, 1)

17 2 (1, 4)

Here we used GF(9) ∼= Z3/(x
2 + 1) and neither GF(9) ∼= Z3/(x

2 + x − 1) nor

GF(9) ∼= Z3/(x
2 − x− 1).

Our next task is the description of L(V) = (L(V),+,∩, {~0}, V ). We determine

the number of d-dimensional linear subspaces of V as well as the number of covers

in L(V). For this reason, we introduce the numbers an as follows:

Put a0 := 1 and

an :=

n
∏

i=1

(qi − 1) for all n ∈ N.

Recall from [2] that a lattice with 0 is called atomistic if every of its elements is a

join of atoms.

Proposition 8. Let d ∈ {0, . . . ,m} and V be anm-dimensional vector space over

GF(q). Then the following statements hold:

(i) L(V) is an atomistic modular lattice.

(ii) For every element U ∈ L(V), all maximal chains between {~0} and U have the

same length (chain condition).

(iii) V has exactly am/(adam−d) d-dimensional linear subspaces.

(iv) If d < m then every d-dimensional linear subspace of V is contained in exactly

qm−d − 1

q − 1
= 1 + q + q2 + . . .+ qm−d−1

(d+ 1)-dimensional linear subspaces of V.
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(v) If d > 0 then every d-dimensional linear subspace of V contains exactly

qd − 1

q − 1
= 1 + q + q2 + . . .+ qd−1

(d− 1)-dimensional linear subspaces of V.

(vi) The lattice L(V) has exactly

qm − 1

q − 1
= 1 + q + q2 + . . .+ qm−1

atoms, namely the one-dimensional linear subspaces of V.

(vii) If m = 2 then (L(V),+,∩) ∼= Mq+1.

P r o o f. Let us recall Theorem 23 in [3]. It says that if d 6 e 6 m then every d-

dimensional subspace of V is included in am−d/(am−eae−d) e-dimensional subspaces

of V. Now (i) and (ii) are well-known, (iii) is Theorem 1 in [3], (iv) is the special

case e := d + 1 of Theorem 23 in [3], (v) is a special case of (iii) when considering

the number of (d − 1)-dimensional linear subspaces of a d-dimensional vector space

over GF(q), (vi) is the special case d := 0 of (iv), and (vii) follows from (vi). �

Of course, the lattice L(V) = (L(V),+,∩, {~0}, V ) is complemented in each case

even when ⊥ is not a complementation.

There is a natural question if conditions (i)–(vii) of Proposition 8 determine an

m-dimensional vector space V over GF(q). In other words, we have the following

problem: Let m and n be positive integers, m > 2, q = pn with a prime p and

L = (L,∨,∧) a lattice satisfying the following conditions:

(1) L is complemented,

(2) L is modular,

(3) L is atomistic,

(4) L has height m,

(5) L has 1 + q + q2 + . . .+ qm−1 atoms,

(6) every element of L of height d > 0 covers 1 + q + q2 + . . .+ qd−1 elements,

(7) every element of L of height d < m is covered by 1 + q + q2 + . . . + qm−d−1

elements.

Does this imply L ∼= L(V) = (L(V),+,∩) for some m-dimensional vector space V

over GF(q)?

The positive answer to this question follows from the known results collected

in [6], Chapter IV.5. All the concepts used here are taken from [6]. Namely, having

a vector space V = (V,+, ·), the lattice L(V) = (L(V),+,∩, {~0}, V ) is known to be

isomorphic to L(V′) whereV′ is the projective space derived fromV in the canonical
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way. However, V′ can be coordinatized and hence L(V) ∼= L(V′) is an Arguesian

lattice since V′ satisfies Desargues’s law. Thus, for L satisfying (1)–(7) it holds:

(8) L is a finite simple complemented Arguesian lattice of height greater than 2

(the complementation not necessarily coincides with ⊥).

Conversely, assume L to satisfy (8). Then L is modular, of finite height and comple-

mented, i.e. it is a geometric lattice and hence it is coordinatizable over a division

ring, that is, over a skew field (see [6], Theorem 15). But this skew field is finite since

so is L. Hence L satisfies (1)–(7) since finite skew fields are fields by Wedderburn’s

theorem. Altogether, L is a finite simple complemented modular lattice of height

greater than 2 and either its height is greater than 3 or L is Arguesian.

The following concept will be used in the sequel.

Definition 9. An m-element subset {~b1, . . . ,~bm} of an m-dimensional vector

space V over GF(q) is called an orthogonal basis of V if

~bi~bj

{

6= 0 if i = j,

= 0 otherwise.

E x am p l e 10. Let V be an m-dimensional vector space over GF(q). Then

⊲ {(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)} is an orthogonal basis of V for ar-

bitrary p,

⊲ {(0, 1, . . . , 1), (1, 0, 1, . . . , 1), . . . , (1, . . . , 1, 0)} is an orthogonal basis of V if and

only if p | m− 2.

Lemma 11. Let B = {~b1, . . . ,~bm} be an orthogonal basis of V and I ⊆

{1, . . . ,m}. Then

(i) B is a basis of V,

(ii) 〈{~bi : i ∈ I}〉⊥ = 〈{~bi : i ∈ {1, . . . ,m} \ I}〉.

P r o o f. Assume a1, . . . , am ∈ GF(q) and put ~a := a1~b1 + . . .+ am~bm.

(i) If ~a = ~0 then ai~bi~bi = ~a~bi = ~0~bi = 0 for all i = 1, . . . ,m and hence a1 = . . . =

am = 0 showing the independence of ~b1, . . . ,~bm.

(ii) The following statements are equivalent:

~a ∈ 〈{~bi : i ∈ I}〉⊥,

~a~bi = 0 for all i ∈ I,

ai~bi~bi = 0 for all i ∈ I,

ai = 0 for all i ∈ I,

~a ∈ 〈{~bi : i ∈ {1, . . . ,m} \ I}〉.

�
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Denote by 2
k the finite Boolean lattice (Boolean algebra) having just k atoms.

In what follows we will check when L(V) for an m-dimensional vector space V over

GF(q) contains a subalgebra isomorphic to 2k for some k 6 m.

Lemma 12. Let {~b1, . . . ,~bm} be an orthogonal basis of V. Then the subalgebra

of L(V) generated by {〈{~b1}〉, . . . , 〈{~bm}〉} is isomorphic to 2m. Since 2m contains

subalgebras isomorphic to 2i for every i = 1, . . . ,m, this is also true for L(V).

P r o o f. Let S denote the subuniverse of L(V) generated by {〈{~b1}〉, . . . , 〈{~bm}〉}.

Using Lemma 11 it is easy to see that S = {〈{~bi : i ∈ I}〉 : I ⊆ {1, . . . ,m}} and that

I 7→ 〈{~bi : i ∈ I}〉 is an isomorphism from

(2{1,...,m},∪,∩, I 7→ {1, . . . ,m} \ I, ∅, {1, . . . ,m}}

to S := (S,+,∩,⊥, {~0},V). This shows S ∼= 2
m. The rest of the proof is clear. �

As shown by Proposition 4, if the dimension of V is small enough then L(V) is

an orthomodular lattice. Now we show when L(V) contains an orthomodular lattice

isomorphic to a horizontal sum of Boolean algebras also for an arbitrary dimension

of V that is not a multiple of p.

Let Li = (Li,∨i,∧i,
′i , 0, 1) (i = 1, 2) be nontrivial orthomodular lattices satisfying

L1 ∩ L2 = {0, 1}. Then their horizontal sum L1 + L2 = (L,∨,∧, ′, 0, 1) is defined by

L := L1 ∪ L2,

x ∨ y :=

{

x ∨i y if i ∈ {1, 2} and x, y ∈ Li,

1 otherwise,

x ∧ y :=

{

x ∧i y if i ∈ {1, 2} and x, y ∈ Li,

0 otherwise,

x′ := x′i if i ∈ {1, 2} and x ∈ Li

(x, y ∈ L). It is well-known that the horizontal sum of two orthomodular lattices is

again an orthomodular lattice.

Theorem 13. Let V be an m-dimensional vector space over the field GF(q) for

q = pn with p prime and assume p ∤ m. Then there exists a subset S of V such that
(S,⊆,⊥, {~0}, V ) is an orthomodular lattice isomorphic to the horizontal sum of the

Boolean algebras 2m and 2
2. The presented set S is a subuniverse of L(V) if and

only if m = 2.

149



P r o o f. Put

N := {1, . . . ,m}, ~ei := (0, . . . , 0, 1, 0, . . . , 0) with 1 at place i for all i ∈ N,

UI := 〈{~ei : i ∈ I}〉 for all I ⊆ N, W := 〈{(1, . . . , 1)}〉,

S := {UI : I ⊆ N} ∪ {W,W⊥}.

From Lemma 12 we have that {UI : I ⊆ N} is a subuniverse of L(V) and I 7→ UI is

an isomorphism from (2N ,∪,∩, I 7→ N \ I, ∅, N) to ({UI : I ⊆ N},+,∩,⊥, {~0}, V ).

Clearly, UI 6⊆W ,W⊥ 6⊆UI for all I ∈ 2N\{∅, N}. This shows that in (S,⊆,⊥, {~0}, V )

the following statements hold for all I ∈ 2N \ {∅, N}:

W ∨ UI = V, W ∧ UI = {~0},

W⊥ ∨ UI = V, W⊥ ∧ UI = {~0}.

Moreover, dimW = 1 and dimW⊥ = m− 1. Since p ∤ m we have W 6⊆ W⊥. In case

m = 2 we have for i = 1, 2

W ∨ U{i} = W + U{i} = V,

W ∧ U{i} = W ∩ U{i} = {~0},

W⊥ ∨ U{i} = W + U{i} = V,

W⊥ ∧ U{i} = W ∩ U{i} = {~0}

and hence S is a subuniverse of L(V). If, however, m > 2 then

W + U{1} $ V = W ∨ U{1}

since dim(W + U{1}) = 2 < m. This shows that in this case S is not a subuniverse

of L(V). �

The following example shows a lattice of the form L(V) that is not orthomodular,

yet it contains a non-Boolean but orthomodular lattice as a subposet.

E x am p l e 14. Assume (q,m) = (2, 3). Then the Hasse diagram of L(V) looks

as in Figure 4, where

A := {(0, 0, 0), (0, 0, 1)},

B := {(0, 0, 0), (0, 1, 0)},

C := {(0, 0, 0), (0, 1, 1)},

D := {(0, 0, 0), (1, 0, 0)},

E := {(0, 0, 0), (1, 0, 1)},

F := {(0, 0, 0), (1, 1, 0)},

G := {(0, 0, 0), (1, 1, 1)},
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H := {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1)},

I := {(0, 0, 0), (0, 0, 1), (1, 0, 0), (1, 0, 1)},

J := {(0, 0, 0), (0, 0, 1), (1, 1, 0), (1, 1, 1)},

K := {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0)},

L := {(0, 0, 0), (0, 1, 0), (1, 0, 1), (1, 1, 1)},

M := {(0, 0, 0), (0, 1, 1), (1, 0, 0), (1, 1, 1)},

N := {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}.

A B
C D E

F G

H I
J K L

M N

V

{~0}

Figure 4.

Moreover,
U A B C D E F G

U⊥ K I M H L J N

Since C + C⊥ = M 6= V , ⊥ is not a complementation and hence L(V) is not

orthomodular. This is in accordance with the fact that (1, 1, 0) is a nontrivial self-

orthogonal vector of V . We have p ∤ m. Hence we can apply Theorem 13. The set S
of Theorem 13 equals {{~0}, A,B,D,G,H, I,K,N, V } and the Hasse diagram of the

orthomodular lattice (S,⊆,⊥ , {~0}, V ) is visualized in Figure 5.

A B D G

H I K N

V

{~0}

Figure 5.

Since D +G = M /∈ S, S is not a subuniverse of L(V). One can easily see that

this lattice is the horizontal sum of the Boolean lattices 23 and 2
2.
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If V does not contain a nontrivial self-orthogonal vector then L(V) is orthomodular

because ⊥ is an orthocomplementation and L(V) is modular. This is the case in the

following example.

E x am p l e 15. In Example 2 we have p ∤ m. Hence we can apply Theorem 13.
The set S of Theorem 13 coincides with L(V) and is therefore trivially a subuniverse

of L(V).

In the rest of paper, we will investigate the lattice L(V) for two-dimensional

vector spaces V over GF(q). For n > 1 let MOn denote the modular ortholattice

with atoms a1, a2, . . . , an, a
⊥
1 , a

⊥
2 , . . . , a

⊥
n and the Hasse diagram (see Figure 6)

a1 a2 a
⊥

2
a
⊥

1

0

1

. . .

Figure 6.

Proposition 16. Let V be a 2-dimensional vector space over the field GF(q)

for some q = pn, without loss of generality assume V = (GF(q))2, and put M :=

{(x, y) ∈ N2 : x 6 y 6 1
2p}. Then

(i) If there exists some (x, y) ∈ M with p | (x2+y2) then L(V) is not orthomodular.

(ii) If q = p then L(V) is orthomodular if and only if p ∤ (x2+y2) for all (x, y) ∈ M .

(iii) If L(V) is orthomodular then L(V) ∼= MO(q+1)/2.

P r o o f. (i) If there exists some (x, y) ∈ M with p | (x2 + y2) then (x, y) is a

nontrivial self-orthogonal vector of V and hence L(V) is not orthomodular according

to Theorem 1.

(ii) Assume q = p. Then GF(q) ∼= Zp. According to Theorem 1, L(V) is ortho-

modular if and only if V does not contain a nontrivial self-orthogonal vector. Now

(a, b) ∈ Z2
p is a nontrivial self-orthogonal vector if and only if (a, b) 6= (0, 0) and

a2 + b2 = 0 in Zp. If (a, b) is a nontrivial self-orthogonal vector then a 6= 0 and

b 6= 0 in Zp. Since modulo p all nonzero elements of Zp are given by 1 if p = 2 and

by ±1,±2,±3, . . . ,± 1
2 (p − 1) otherwise, all squares of nonzero elements are given

modulo p by 1 if p = 2 and by 12, 22, 32, . . . , (12 (p− 1))2 otherwise.

(iii) This follows from (vii) of Proposition 8. �

For small q we list all 2-dimensional vector spaces V over GF(q) and indicate for

which of them L(V) is orthomodular.
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E x am p l e 17. For m = 2 we have

q (L(V),+,∩) L(V) Nontrivial self-orthogonal vector
2 ∼= M3 not orthomodular (1, 1)
3 ∼= M4

∼= MO2

4 ∼= M5 not orthomodular (1, 1)
5 ∼= M6 not orthomodular (1, 2)
7 ∼= M8

∼= MO4

8 ∼= M9 not orthomodular (1, 1)
9 ∼= M10 not orthomodular (1, x)
11 ∼= M12

∼= MO6

13 ∼= M14 not orthomodular (2, 3)
16 ∼= M17 not orthomodular (1, 1)
17 ∼= M18 not orthomodular (1, 4)

Here we used GF(9) ∼= Z3/(x
2 + 1) and neither GF(9) ∼= Z3/(x

2 + x − 1) nor

GF(9) ∼= Z3/(x
2 − x− 1).

A c k n ow l e d g em e n t. The authors are grateful to Gábor Czédli for his valu-

able remarks.

References

[1] L.Beran: Orthomodular Lattices. Algebraic Approach. Mathematics and Its Applica-
tions 18 (East European Series). D.Reidel, Dordrecht, 1985. zbl MR doi

[2] G.Birkhoff: Lattice Theory. American Mathematical Society Colloquium Publica-
tions 25. AMS, Providence, 1979. zbl MR doi

[3] I. Chajda, H. Länger: The lattice of subspaces of a vector space over a finite field. Soft
Comput. 23 (2019), 3261–3267. zbl doi

[4] J.-P.Eckmann, P. C. Zabey: Impossibility of quantum mechanics in a Hilbert space over
a finite field. Helv. Phys. Acta 42 (1969), 420–424. zbl MR

[5] R.Giuntini, A. Ledda, F. Paoli: A new view of effects in a Hilbert space. Stud. Log. 104
(2016), 1145–1177. zbl MR doi

[6] G.Grätzer: General Lattice Theory. Birkhäuser, Basel, 2003. zbl MR doi

Authors’ addresses: Ivan Chajda, Palacký University Olomouc, Faculty of Science,
Department of Algebra and Geometry, 17. listopadu 12, 771 46 Olomouc, Czech Repub-
lic, e-mail: ivan.chajda@upol.cz; Helmut Länger, TU Wien, Fakultät für Mathematik
und Geoinformation, Institut für Diskrete Mathematik und Geometrie, Wiedner Haupt-
straße 8-10, 1040 Wien, Austria, and Palacký University Olomouc, Faculty of Science, De-
partment of Algebra and Geometry, 17. listopadu 12, 771 46 Olomouc, Czech Republic,
e-mail: helmut.laenger@tuwien.ac.at.

153

https://zbmath.org/?q=an:0558.06008
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0784029
http://dx.doi.org/10.1007/978-94-009-5215-7
https://zbmath.org/?q=an:0505.06001
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0598630
http://dx.doi.org/10.1090/coll/025
https://zbmath.org/?q=an:07092395
http://dx.doi.org/10.1007/s00500-019-03866-y
https://zbmath.org/?q=an:0181.56601
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0246600
https://zbmath.org/?q=an:1417.06008
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3567676
http://dx.doi.org/10.1007/s11225-016-9670-3
https://zbmath.org/?q=an:1152.06300
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2451139
http://dx.doi.org/10.1007/978-3-0348-7633-9

