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Abstract. The purpose of the paper is to introduce and study a new class of operators
on semi-Hilbertian spaces, i.e. spaces generated by positive semi-definite sesquilinear forms.
Let H be a Hilbert space and let A be a positive bounded operator on H. The semi-
inner product 〈h | k〉A := 〈Ah | k〉, h, k ∈ H, induces a semi-norm ‖·‖A. This makes H
into a semi-Hilbertian space. An operator T ∈ BA(H) is said to be (n,m)-A-normal if

[Tn, (T ♯A)m] := Tn(T ♯A)m − (T ♯A)mTn = 0 for some positive integers n and m.

Keywords: semi-Hilbertian space; A-normal operator; (n,m)-normal operator; (n,m)-
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1. Introduction and preliminaries

Throughout this paper, let (H, 〈·|·〉) be a complex Hilbert space equipped with

the norm ‖·‖. Let B(H) denote the C∗-algebra of all bounded linear operators on H

and let B(H)+ be the cone of positive operators of B(H) defined as

B(H)+ := {A ∈ B(H) : 〈Ah | h〉 > 0 ∀h ∈ H}.

For every T ∈ B(H) its range is denoted by R(T ), its null space by N (T ), and

its adjoint by T ∗. IfM is a linear subspace of H, thenM stands for its closure in

the norm topology of H. We denote the orthogonal projection onto a closed linear

subspaceM of H by P
M
. The positive operator A ∈ B(H) defines a positive semi-

definite sesquilinear form 〈·|·〉A : H × H → C given by 〈h | k〉A = 〈Ah | k〉. Note

that 〈·|·〉A defines a semi-inner product on H, and the semi-norm induced by it is
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given by ‖h‖A =
√

〈h | h〉A for every h ∈ H. Observe that ‖h‖A = 0 if and only if

h ∈ N (A). Then ‖·‖A is a norm if and only if A is injective, and the semi-normed

space (H, ‖·‖A) is a complete space if and only if R(A) is closed.

The above semi-norm induces a semi-norm on the subspace BA(H) of B(H) con-

sisting of all T ∈ B(H) so that for some c > 0 and for all h ∈ H, ‖Th‖A 6 c‖h‖A.

Indeed, if T ∈ BA(H), then

‖T ‖A := sup
{‖Th‖A

‖h‖A
, h /∈ N (A)

}

.

For T ∈ B(H), an operator S ∈ B(H) is called an A-adjoint operator of T if for every

h, k ∈ H we have 〈Th | k〉A = 〈h | Sk〉A, that is, AS = T ∗A. If T is an A-adjoint of

itself, then T is called an A-selfadjoint operator.

Generally, the existence of an A-adjoint operator is not guaranteed. The set of all

operators that admit A-adjoints is denoted by BA(H). An application of the Douglas

theorem (see [13]) shows that

BA(H) = {T ∈ B(H) : R(T ∗A) ⊆ R(A)}

= {T ∈ B(H) : ∃ c > 0: ‖ATx‖ 6 c‖Ax‖ ∀x ∈ H}.

Note that BA(H) is a subalgebra of B(H), which is neither closed nor dense in

B(H). Moreover, the inclusions BA(H) ⊆ BA(H) ⊆ B(H) hold with equality if A

is one-to-one and has a closed range. If T ∈ BA(H), the reduced solution of the

equation AX = T ∗A is a distinguished A-adjoint operator of T , which is denoted

by T ♯A . Note that T ♯A = A†T ∗A in which A† is the Moore-Penrose inverse of A. It

was observed that the A-adjoint operator T ♯A satisfies

AT ♯A = T ∗A, R(T ♯A) ⊆ R(A)

and

N (T ♯A) = N (T ∗A).

For T, S ∈ BA(H), it is easy to see that ‖TS‖A 6 ‖T ‖A‖S‖A and (TS)♯A = S♯AT ♯A .

Notice that if T ∈ BA(H), then T ♯A ∈ BA(H), (T ♯A)♯A = P
R(A)TPR(A) and

((T ♯A)♯A)♯A = T ♯A . (For more detail on the concepts cited above see [5], [4], [6].)

In [17] it was observed that if T ∈ BA(H) is such that TA = AT , then T ♯A = PT ∗.

For an arbitrary operator T ∈ BA(H), we can write

ReA(T ) :=
1

2
(T + T ♯A) and ImA(T ) :=

1

2i
(T − T ♯A).
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The concept of n-normal operators as a generalization of normal operators on

Hilbert spaces has been introduced and studied by Jibril (see [15]) and Alzuraiqi

et al. (see [3]). The class of n-power normal operators is denoted by [nN]. An

operator T is called n-power normal if [T n, T ∗] = 0 (equivalently T nT ∗ = T ∗T n).

Very recently, several papers have appeared on n-normal operators. We refer the

interested reader to [12], [11], [16] for the complete details.

In [1] and [2], the authors introduced and studied the classes of (n,m)-normal

powers and (n,m)-power quasinormal operators as follows: An operator T ∈ B(H)

is said to be (n,m)-power normal if T n(Tm)∗ = (Tm)∗T n and it is said to be (n,m)-

power quasinormal if T n(T ∗)mT = (T ∗)mTT n where n, m are two nonnegative

integers. We refer the interested reader to [11] for the complete details on (n,m)-

power normal operators.

The classes of normal, (α, β)-normal, and n-power quasinormal operators, isome-

tries, partial isometries, unitary operators etc. on Hilbert spaces have been gener-

alized to semi-Hilbertian spaces by many authors in many papers. (See, for more

details, [5]–[7], [9], [10], [14], [17], [18], [21].)

An operator T ∈ BA(H) is said to be

(1) A-normal if T ♯AT = TT ♯A (see [17]),

(2) (α, β)-A-normal if β2T ♯AT >A TT ♯A >A α2T ♯AT for 0 6 α 6 1 6 β (see [9]),

(3) (A, n)-power-quasinormal if T n(T ♯AT ) = (TT ♯A)T n (see [14]),

(4) an A-isometry if T ♯AT = P
R(A) (see [5]),

(5) A-unitary if T ♯AT = (T ♯A)♯AT ♯A = P
R(A), i.e. T and T ♯A are A-isometries

(see [5]).

From now on, A denotes a positive operator on H, i.e. A ∈ B(H)+.

This paper is devoted to the study of some new classes of operators on semi-

Hilbertian spaces called (n,m)-A-normal operators and (n,m)-A-quasinormal oper-

ators. Some properties of these classes are investigated.

2. (n,m)-A-normal operators

In this section, the class of (n,m)-A-normal operators as a generalization of the

classes of A-normal operators is introduced. In addition, we study several properties

of members of this class of operators.

Definition 2.1. Let T ∈ BA(H). We say that T is (n,m)-A-normal if

(2.1) [T n, (T ♯A)m] := T n(T ♯A)m − (T ♯A)mT n = 0

for some positive integers n and m. The set of all operators which are (n,m)-A-

normal is denoted by [(n,m)N]A.
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R em a r k 2.1. We make the following observations:

(1) Every A-normal operator is an (n,m)-A-normal for all n,m ∈ N.

(2) If n = m = 1, every (1, 1)-A-normal operator is an A-normal operator.

(3) If T ∈ [(1,m)N]A then T ∈ [(n,m)N]A and if T ∈ [(n, 1)N]A then T ∈ [(n,m)N]A.

(4) If T ∈ [(n,m)N]A then T ∈ [(2n,m)N]A ∩ [(n, 2m)N]A ∩ [(2n, 2m)N]A.

R em a r k 2.2. In the following example we present an operator that is (n,m)-A-

normal for some positive integers n and m but is not an A-normal operator.

E x am p l e 2.1. Let T =

(
2 0

1 −2

)

and A =

(
1 0

0 2

)

be operators acting on

two-dimensional Hilbert space C2. A simple calculation shows that T ♯A =

(
2 2

0 −2

)

.

Moreover, T ♯AT 6= TT ♯A and T ♯AT 2 = T 2T ♯A . Therefore T is a (2, 1)-A-normal but

not an A-normal operator.

In [17], Theorem 2.1 it was observed that if T ∈ BA(H) then T is A-normal if and

only if

‖Th‖A = ‖T ♯Ah‖A ∀h ∈ H and R(TT ♯A) ⊆ R(A).

In the following theorem, we generalize this characterization to (n,m)-A-normal

operators.

Theorem 2.1. Let T ∈ BA(H). Then T is an (n,m)-A-normal operator for some

positive integers n and m if and only if T satisfies the conditions:

〈(T ♯A)mh | (T ♯A)nh〉A = 〈(T nh | Tmh〉A ∀h ∈ H,(1)

R(T n(T ♯A)m) ⊆ R(A).(2)

P r o o f. Assume that T is an (n,m)-A-normal operator and we need to proof

that T satisfies the conditions (1) and (2). In fact, we have

〈[T n, (T ♯A)m]h | h〉A = 0 ⇒ 〈T n(T ♯A)mh | h〉A − 〈(T ♯A)mT nh | h〉A = 0

⇒ 〈(T ♯A)mh | T ∗nAh〉 − 〈A(T ♯A)mT nh | h〉 = 0

⇒ 〈(T ♯A)mh | (T ♯A)nh〉A − 〈T nh | Tmh〉A = 0

⇒ 〈(T ♯A)mh | (T ♯A)nh〉A = 〈T nh | Tmh〉A.

Moreover, the condition [T n, (T ♯A)m] = 0 implies that T n(T ♯A)m = (T ♯A)mT n.

Therefore

R(T n(T ♯A)m) = R((T ♯A)mT n) ⊆ R(T ♯A) ⊆ R(A).
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Conversely, assume that T satisfies the conditions (1) and (2) and we prove that T

is an (n,m)-A-normal operator. From the condition (1), a simple computation

shows that

〈(T ♯A)mh | (T ♯A)nh〉A − 〈T nh | Tmh〉A = 0

⇒ 〈T n(T ♯A)mh | h〉A − 〈(T ♯A)mT nh | h〉A = 0

⇒ 〈[T n, (T ♯A)m]h | h〉A = 0,

which implies that R([T n, (T ♯A)m]) ⊆ N (A).

On the other hand, since the condition (2) holds, it follows that

R([T n, (T ♯A)m]) ⊆ R(A) = N (A)⊥.

We deduce that [T n, (T ♯A)m] = 0 which means that the operator T is (n,m)-A-

normal. �

R em a r k 2.3. If n = m = 1, then Theorem 2.1 coincides with Theorem 2.1 of [17].

The following proposition discusses the relation between (n,m)-A-normal opera-

tors and (m,n)-A-normal operators.

Proposition 2.1. Let T ∈ BA(H) be such that N (A)⊥ is an invariant subspace

of T . Then the following statements are equivalent.

(1) T is an (n,m)-A-normal operator.

(2) T is an (m,n)-A-normal operator.

P r o o f. (1)⇒ (2) Assume that T is an (n,m)-A-normal operator. It follows that

T n(T ♯A)m − (T ♯A)mT n = 0.

Then

T n(T ♯A)m − (T ♯A)mT n = 0

⇒ [(T ♯A)♯A ]m(T n)♯A − (T n)♯A [(T ♯A)♯A ]m = 0

⇒ (P
R(A)TPR(A))

m(T n)♯A − (T n)♯A(P
R(A)TPR(A))

m = 0

⇒ P
R(A)(T

m(T n)♯A − (T n)♯ATm) = 0.

This means that (Tm(T n)♯A − (T n)♯ATm)h ∈ N (A) for all h ∈ H.

On the other hand, this fact and R(T ♯An) ⊂ R(T ♯A) ⊂ R(A) and the assumption

that N (A)⊥ is an invariant subspace for T imply that (Tm(T n)♯A − (T n)♯ATm)h ∈

R(A) for all h ∈ H. Consequently, (Tm(T n)♯A − (T n)♯ATm)h = 0 for all h ∈ H.

Therefore [Tm, (T ♯A)n] = 0. Hence T ♯A is an (m,n)-A-normal operator.

(2) ⇒ (1) By the same way hence we omit it. �
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It is well known that if T ∈ BA(H) is A-normal, then T n is A-normal. In the

following theorem, we extend this result to an (n,m)-A-normal operator as follows.

Theorem 2.2. Let T ∈ BA(H). If T is an (n,m)-A-normal operator then the

following statements hold:

(i) T j is A-normal where j is the least common multiple of n and m, i.e.

j = LCM(n,m),

(ii) T nm is an A-normal operator.

P r o o f. (i) Assume that T is (n,m)-A-normal that is T n(T ♯A)m = (T ♯A)mT n.

Let j = pn and j = qm. By computation we get

T j(T j)♯A = T pn((T ♯A)qm = (T n)p((T ♯A)m)q

= T n . . . T n

︸ ︷︷ ︸

p-times

(T ♯A)m . . . (T ♯A)m
︸ ︷︷ ︸

q-times

= (T ♯A)m . . . (T ♯A)m
︸ ︷︷ ︸

q-times

T n . . . T n

︸ ︷︷ ︸

p-times

= (T ♯A)qmT np = (T qm)♯AT np = (T j)♯AT j,

which means that T j is A-normal.

(ii) This statement is proved in the same way as the statement (i). �

Proposition 2.2. Let T ∈ BA(H), X = T n + (T ♯A)m, Y = T n − (T ♯A)m and

Z = T n(T ♯A)m. The following statements hold:

(1) T is (n,m)-A-normal if and only if [X,Y ] = 0.

(2) If T ∈ [(n,m)N]A, then [Z,X ] = [Z, Y ] = 0.

(3) T ∈ [(n,m)N]A if and only if [T
n, X ] = 0.

(4) T ∈ [(n,m)N]A if and only if [T
n, Y ] = 0.

P r o o f. (1)

[X,Y ] = XY − Y X = 0 ⇔ ((T n + (T ♯A)m)(T n − (T ♯A)m))

− ((T n − (T ♯A)m)(T n + (T ♯A)m)) = 0

⇔ T 2n − T n(T ♯A)m + (T ♯A)mT n − (T ♯A)2m

− T 2n − T n(T ♯A)m + (T ♯A)mT n − (T ♯)2m = 0

⇔ T n(T ♯A)m − (T ♯)mT n = 0

⇔ [T n, (T ♯A)m] = 0.

Hence [X,Y ] = 0 if and only if T is (n,m)-A-normal.

Proofs of the statements (2), (3) and (4) are straightforward. �
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Proposition 2.3. Let T, V ∈ BA(H) be such thatN (A)⊥ is an invariant subspace

for both T and V. If T is an (n,m)-A-normal operator and V is an A-isometry, then

V TV ♯A is an (n,m)-A-normal operator.

P r o o f. Since V is an A-isometry then V ♯AV = P
R(A). Moreover from the fact

that N (A)⊥ is an invariant subspace for T we have P
R(A)T = TP

R(A) which implies

that T ♯AP
R(A) = P

R(A)T
♯A since P ♯A

R(A)
= P

R(A). In a similar way we have

V P
R(A) = P

R(A)V and V ♯AP
R(A) = P

R(A)V
♯A .

It is easy to check that

(V TV ♯A)j = (V TV ♯A)(V TV ♯A) . . . (V TV ♯A)
︸ ︷︷ ︸

j-times

= (V TP
R(A)TV

♯A) . . . (V TV ♯A)

= P
R(A)V T 2V ♯A . . . (V TV ♯A)

...

= P
R(A)V T jV ♯A .

The same arguments yield

(V TV ♯A)♯Aj = (V TV ♯A)♯A(V TV ♯A)♯A . . . (V TV ♯A)♯A
︸ ︷︷ ︸

j-times

= (P
R(A)V P

R(A)T
♯AV ♯A) . . . (P

R(A)V P
R(A)T

♯AV ♯A)

...

= P
R(A)V (T ♯A)jV ♯A .

From the above calculation, we deduce that

〈{(V TV ♯A)♯A}mh | {(V TV ♯A)♯A}nh〉A(2.2)

= 〈P
R(A)

V (T ♯A)mV ♯Ah | P
R(A)

V (T ♯A)nV ♯Ah〉A

= 〈(T ♯A)mV ♯Ah | (T ♯A)nV ♯Ah〉A.

It is also easy to show that

〈(V TV ♯A)nh | (V TV ♯A)mh〉A = 〈P
R(A)V T nV ♯Ah | P

R(A)V TmV ♯Ah〉A(2.3)

= 〈T nV ♯Ah | TmV ♯Ah〉A.
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Since T is (n,m)-A-normal, by combining (2.2) and (2.3) we have

〈{(V TV ♯A)♯A}mh | {(V TV ♯A)♯A}nh〉A = 〈(V TV ♯A)nh | (V TV ♯A)mh〉A ∀h ∈ H.

On the other hand, we have

R((V TV ♯A)n{(V TV ♯A)♯A}m) = R(P
R(A)

V T nV ♯AP
R(A)

V (T ♯A)mV ♯A)

= R(P
R(A)V T n(T ♯A)mV ♯A)

⊆ R(P
R(A)) ⊆ R(A).

In view of Theorem 2.1, it follows that V TV ♯A is (n,m)-A-normal operator. �

Proposition 2.4. Let T ∈ BA(H) and S ∈ BA(H) be such that TS = ST and

ST ♯A = T ♯AS. If T is (n, n)-A-normal, the following statements hold:

(1) If S is an A-self adjoint, then TS is an (n, n)-A-normal operator.

(2) If S is an A-normal operator, then TS is an (n, n)-A-normal operator.

P r o o f. (1) Let h ∈ H, under the assumption that S is A-self-adjoint (AS = S∗A)

and the statement (1) of Theorem 2.1 we have

〈(TS)♯Anh | (TS)♯Anh〉A = 〈(S)♯An(T )♯Anh | (S)♯An(T )♯Anh〉A

= 〈A(S)♯An(T )♯Anh | (S)♯An(T )♯Anh〉

= 〈(S∗)nA(T )♯Anh | (S)♯An(T )♯Anh〉

= 〈A(S)n(T )♯Anh | (S)♯An(T )♯Anh〉

= 〈A(T )♯AnSnh | (S)♯An(T )♯Anh〉

= 〈(T )♯AnSnh | A(S)♯An(T )♯Anh〉

= 〈(T )♯AnSnh | (T )♯AnSnh〉A

= 〈T nSnh | T nSnh〉A

= 〈(TS)nh | (TS)nh〉A.

On the other hand, we have

R((TS)n(TS)♯An) = R(T nT ♯AnSnS♯An) ⊆ R(A).

This means that TS is an (n, n)-A-normal operator by Theorem 2.1.
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(2) Let S be an A-normal operator then SS♯A = S♯AS and because T is an (n, n)-A-

normal operator we get the relations

〈(ST )♯Anh | (ST )♯Anh〉A = 〈S♯AnT ♯Anh | S♯AnT ♯Anh〉A

= 〈AS♯AnT ♯Anh | S♯AnT ♯Anh〉

= 〈S∗nAT ♯Anh | S♯AnT ♯Anh〉

= 〈T ♯Anh | SnS♯AnT ♯Anh〉A

= 〈T ♯Anh | (S♯A)nSnT ♯Anh〉A

= 〈SnT ♯Anh | SnT ♯Anh〉A

= 〈T ♯AnSnh | T ♯AnSnh〉A

= 〈T nSnh | T nSnh〉A (since T is (n, n)-A-normal)

= 〈(TS)nh | (TS)nh〉A.

On the other hand, based on the (n, n)-A-normality of T we get the inclusion

R((TS)n(TS)♯An) = R(T nSnT ♯AnS♯An) ⊆ R(T nT ♯An) ⊆ R(A).

From the items (1) and (2) of Theorem 2.1, the operator TS is an (n, n)-A-

normal operator. �

In the following proposition, we study the relation between the classes [(2,m)N]A
and [(3,m)N]A.

Proposition 2.5. Let T ∈ BA(H) be such that T ∈ [(2,m)N]A ∩ [(3,m)N]A for

some positive integer m, then T ∈ [(n,m)N]A for all positive integers n > 4.

P r o o f. It is obvious from Definition 2.1 that if T ∈ [(2,m)N]A then T ∈

[(4,m)N]A. However, T ∈ [(2,m)N]A ∩ [(3,m)N]A implies that T ∈ [(5,m)N]A.

Assume that T ∈ [(n,m)N]A for n > 5, that is,

T n(T ♯A)m = (T ♯A)mT n.

Then we have

[T n+1, (T ♯A)m] = T n+1(T ♯A)m − (T ♯A)mT n+1

= T (T ♯A)mT n − (T ♯A)mT n+1

= T (T ♯A)mT 2T n−2 − (T ♯A)mT n+1

= T 3(T ♯A)mT n−2 − (T ♯A)mT n+1

= (T ♯A)mT n+1 − (T ♯A)mT n+1 = 0.

This means that T ∈ [(n+ 1,m)N]A. The proof is complete. �
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Proposition 2.6. Let T ∈ BA(H). If T ∈ [(n,m)N]A ∩ [(n + 1,m)N]A, then

T ∈ [(n+2,m)N]A for some positive integers n and m. In particular T ∈ [(j,m)N]A
for all j > n.

P r o o f. Let T ∈ [(n,m)N]A ∩ [(n+ 1,m)N]A, then it follows that

T n(T ♯A)m − (T ♯A)mT n = 0 and T n+1(T ♯A)m − (T ♯A)mT n+1 = 0.

Note that

[T n+2, (T ♯A)m] = T n+2(T ♯A)m − (T ♯A)mT n+2

= TT n+1(T ♯A)m − (T ♯A)mT n+2

= T (T ♯A)mT n+1 − (T ♯A)mT n+2

= TT n(T ♯A)mT − (T ♯A)mT n+2

= (T ♯A)mT n+2 − (T ♯A)mT n+2 = 0.

Hence T ∈ [(n+2,m)N]A. By repeating this process we can prove that T ∈ [(j,m)N]A
for all j > n. �

Proposition 2.7. Let T ∈ BA(H). If T ∈ [(n,m)N]A ∩ (n+ 1,m)N]A is one-to-

one, then T ∈ [(1,m)N]A.

P r o o f. Let T ∈ [(n,m)N]A ∩ [(n+ 1,m)N]A, then it follows that,

T n(T (T ♯A)m − (T ♯A)mT ) = 0.

Since T is one-to-one, then so is T n and it follows that T (T ♯A)m − (T ♯A)mT = 0.

Therefore T ∈ [(1,m)N]A. �

Proposition 2.8. Let T ∈ BA(H). The following statements are equivalent.

(1) If T ∈ [(n, 2)N]A ∩ [(n, 3)N]A for some positive integer n, then T ∈ [(n,m)N]A

for all positive integers m > 4.

(2) If T ∈ [(n,m)N]A ∩ [(n,m+ 1)N]A, then T ∈ [(n,m+2)N]A for some positive

integers n, m. In particular T ∈ [(n, j)N]A for all j > m.

P r o o f. The proof follows by applying Proposition 2.1 and Proposition 2.5. �

Proposition 2.9. Let T ∈ BA(H) . If T ∈ [(n,m)N]A ∩ [(n,m + 1)N]A is such

that T ♯A is one-to one, then T ∈ [(n, 1)N]A = [nN]A.
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P r o o f. Since T ∈ [(n,m)N]A ∩ [(n,m+ 1)N]A, it follows that

(T ♯A)m(T nT ♯A − T ♯AT n) = 0.

If T ♯A is one-to-one, then so is (T ♯A)m and we obtain T nT ♯A − T ♯AT n = 0. Conse-

quently T ∈ [(n, 1)N]A. �

In [19], Theorem 2.4 it was proved that if T is (n,m)-power normal such that Tm

is a partial isometry, then T is (n +m,m)-power normal. In the following theorem

we extend this result to (n,m)-A-normal operators.

Theorem 2.3. Let T ∈ BA(H) be (n,m)-A-normal for some positive integers n

and m. The following statements hold:

(1) If n > m and Tm(T ♯A)mTm = Tm, then T ∈ [(n+m,m)N]A.

(2) If m > n and (T ♯A)nT n(T ♯A)n = (T ♯A)n, then T ∈ [(n,m+ n)N]A.

P r o o f. (1) Under the assumption that Tm(T ♯A)mTm = Tm, it follows that

Tm(T ♯A)mT n = T n and T n(T ♯A)mTm = T n for n > m,

which means that T n(T ♯A)mTm = Tm(T ♯A)mT n. Since T is (n,m)-A normal, we get

(T ♯)mT n+m = T n+m(T ♯A)m.

So, T ∈ [(m+ n,m)N]A.

(2) In same way, under the assumption (T ♯A)nT n(T ♯A)n = (T ♯A)n, it follows that

(T ♯A)nT n(T ♯A)m = (T ♯A)m and (T ♯A)mT n(T ♯A)n = (T ♯A)m for m > n,

which means that (T ♯A)nT n(T ♯A)m = (T ♯A)mT n(T ♯A)n. Since T is (n,m)-A normal,

we get

(T ♯)m+nT n = T n(T ♯A)n+m.

So, T ∈ [(n,m+ n)N]A and the proof is complete. �

Proposition 2.10. Let T ∈ BA(H) be an (n,m)-A-normal operator for some

positive integers n andm. Then T satisfies the relation T 2n(T ♯A)2m = (T n(T ♯A)m)2.

P r o o f. Since T is an (n,m)-A-normal operator, it follows that

T 2n(T ♯A)2m = T nT n(T ♯A)m(T ♯A)m = T n(T ♯A)m
︸ ︷︷ ︸

T n(T ♯A)m
︸ ︷︷ ︸

= (T n(T ♯A)m)2.

�
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The idea of the following proposition is inspired by [20].

Proposition 2.11. Let T ∈ BA(H) be such that AT = TA. If T is an n-normal

operator, then T is an (n,m)-A-normal operator for m ∈ N.

P r o o f. Indeed, since T n is normal and TmT n = T nTm, it follows from the

Fuglede theorem (see [14]) that T ∗mT n = T nT ∗m. Taking in consideration that

under the assumptions we have P
R(A)T = TP

R(A) and T ♯A = P
R(A)T

∗. Then

[T n, (T ♯A)m] = T n(T ♯A)m − (T ♯A)mT n

= T n(P
R(A)T

∗)m − (P
R(A)T

∗)mT n

= P
R(A)[T

n, T ∗m] = 0.

Therefore T is (n,m)-A-normal. �

Corollary 2.1. Let T ∈ BA(H) be such that AT = TA. If T is an (n,m)-normal

operator, then T is a (j, r)-A-normal operator where r ∈ N and j is the least common

multiple of n and m.

P r o o f. Since T is (n,m)-normal, it was observed in [11], Lemma 4.4 that T j

is a normal operator where j = LCM(n,m). By applying Proposition 2.11 we get

that T is a (j, r)-A-normal operator. �

3. (n,m)-A-quasinormal operators

In [8] the author has introduced the class of (n,m)-A-quasinormal operators as

follows. An operator T ∈ BA(H) is said to be (n,m)-A-quasinormal if T satisfies

[T n, (T ♯A)mT ] := T n(T ♯A)mT − (T ♯A)mTT n = 0

for some positive integers n andm. This class of operators is denoted by[(n,m)QN]A.

R em a r k 3.1. Clearly, the class of (n,m)-A-quasinormal operators includes the

class of (n,m)-A-normal one, i.e. the following inclusion holds

[(n,m)N]A ⊂ [(n,m)QN]A.

We give an example to show that there exists an (n,m)-A-quasinormal operator

which is not (n,m)-A-normal for some positive integers n and m.
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E x am p l e 3.1. Let T be a unilateral shift, that is, if H = l2, the matrix

T =








0 0 0 . . .

1 0 0 . . .

0 1 0 . . .

. . . . . . . . . . . .








and A = Il2 (the identity operator).

It is easily verified that [T 2, T ♯A ] 6= 0 and [T 2, T ♯AT ] = 0. So that T is not a

(2, 1)-A-normal operator but it is a (2, 1)-A-quasinormal operator.

The following theorem gives a characterization of (n,m)-A-quasinormal operators.

Theorem 3.1. Let T ∈ BA(H). Then T is an (n,m)-A-quasinormal operator for

some positive integers n and m if and only if T satisfies the following conditions:

〈(T ♯A)mTh | (T ♯A)nh〉A = 〈T nTh | Tmh〉A ∀h ∈ H,(1)

R(T n(T ♯A)mT ) ⊆ R(A).(2)

P r o o f. We omit the proof, since the techniques are similar to those of Theo-

rem 2.1. �

R em a r k 3.2. Theorem 3.1 is an improved version of [8], Lemma 4.4.

Proposition 3.1. Let T ∈ BA(H) and S ∈ BA(H) be (n,m)-A-normal operators.

Then their product ST is an (n,m)-A-normal operator if the conditions ST = TS,

ST ♯A = T ♯AS and TS♯A = S♯AT are satisfied.

P r o o f. It is

(TS)n((TS)♯A)m(TS) = T nSn(T ♯A)m(S♯A)mTS = T n(T ♯A)mTSn(S♯A)mS

= (T ♯A)mTT n(S♯A)mSSn = ((TS)♯A)m(TS)(TS)n.

Therefore TS is an (n,m)-A-quasinormal operator. �

R em a r k 3.3. Proposition 3.1 is an improved version of [8], Proposition 4.5.

Proposition 3.2. Let T ∈ BA(H). If T ∈ [(n,m)QN]A ∩ [(n+ 1,m)QN]A, then

T ∈ [(n+ 2,m)QN]A.
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P r o o f. Assume that T ∈ [(n,m)QN]A ∩ [(n+ 1,m)QN]A, it follows that

T n+1(T ♯A)mT − (T ♯A)mTT n+1 = 0 and T n(T ♯A)mT − (T ♯A)mTT n = 0.

On the other hand, we have

T n+2(T ♯A)mT − (T ♯A)mTT n+2 = T (T ♯A)mTT n+1 − (T ♯A)mTT n+2

= T n+1(T ♯A)mTT − (T ♯A)mTT n+2

= (T ♯A)mTT n+2 − (T ♯A)mTT n+2 = 0.

�

In [19] it was proved that if T ∈ [(n,m)QN] such that Tm is a partial isome-

try, then T ∈ [(n + m,m)QN] for n > m. We extend this result to the class of

[(n,m)QN]A as follows.

Theorem 3.2. Let T ∈ BA(H) be such that T ∈ [(n,m)QN] for some positive

integers n and m. If Tm(T ♯A)mTm = Tm for n > m, then T ∈ [(n+m,m)QN]A.

P r o o f. (1) Assume that Tm satisfies Tm(T ♯A)mTm = Tm for m > n, then we

have

(3.1) Tm(T ♯A)mTTm−1 = Tm.

Multiplying (3.1) from the left by T n−m and from the right by T we get

(3.2) T n((T ♯A)mT )Tm = T n+1.

Multiplying (3.1) from the right by T n−m+1 we get

(3.3) Tm((T ♯A)mT )T n = T n+1.

Combining (3.2), (3.3) and using the fact that T ∈ [(n,m)QN] we obtain

T n+m((T ♯A)mT ) = ((T ♯A)mT )T n+m.

Therefore T ∈ [(n+m,m)QN]A as required. �

Proposition 3.3. Let T ∈ BA(H), n and m positive integers. The following

statements hold:

(1) If T ∈ [(n,m)QN]A ∩ [(n + 1,m)QN]A such that T is one-to-one, then

T ∈ [(1,m)QN]A.

(2) If T ∈ [(n,m)QN]A ∩ [(n,m + 1)QN]A such that T ∗ is one-to-one and

R(T ♯A)mT ) = R(A), then T ∈ [(n, 1)N]A.
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P r o o f. (1) Under the assumption T ∈ [(n,m)QN]A∩[(n+1,m)QN]A, it follows

that

T n(T (T ♯A)mT − (T ♯A)mTT ) = 0.

If T is injective, then so is T n and we have T (T ♯A)mT − (T ♯A)mTT = 0. Hence,

T ∈ [(1,m)QN]A.

(2) Since T ∈ [(n,m)QN]A ∩ [(n,m+ 1)QN]A, we have

T n(T ♯A)m+1T − (T ♯A)m+1TT n = 0

⇒ T nT ♯A(T ♯A)mT − T ♯A(T ♯A)mTT n = 0

⇒ (T nT ♯A − T ♯AT n)(T ♯A)mT = 0

⇒ (T nT ♯A − T ♯AT n) ≡ 0 on R((T ♯A)mT ) = R(A).

On the other hand, since T ∈ BA(H), we have T (N (A)) ⊆ N (A). Moreover, by the

assumption that T ∗ is injective we obtain N (T ♯A) = N (A). If h ∈ N (A) it follows

from the above observation that

(T nT ♯A − T ♯AT n)h = T nT ♯Ah− T ♯AT nh = 0.

Consequently, (T nT ♯A − T ♯AT n) = 0 on H. Therefore T ∈ [(n, 1)N]A. �

Proposition 3.4. Let T ∈ BA(H) be such that T ∈ [(2,m)QN]A ∩ [(3,m)QN]A

for some positive integer m, then T ∈ [(n,m)QN]A for all positive integers n > 4.

P r o o f. We prove the assertion by using the mathematical induction. Since T ∈

[(2,m)QN]A ∩ [(3,m)QN]A, it follows immediately that

T 4(T ♯A)mT − (T ♯A)mTT 4 = 0 and T 5(T ♯A)mT − (T ♯A)mTT 5 = 0.

Now assume that the result is true for n > 5, that is,

T n(T ♯A)mT − (T ♯A)mTT n = 0,

then

T n+1(T ♯A)mT − (T ♯A)mTT n+1 = T (T ♯A)mTT n − (T ♯A)mTT n+1

= T 3(T ♯A)mTT n−2 − (T ♯A)mTT n+1

= (T ♯A)mTT n+1 − (T ♯A)mTT n+1 = 0.

Therefore T ∈ [(n+ 1,m)QN]A. The proof is complete. �
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Now we discuss the (n,m)-A-quasinormality of an operator under some commu-

tation conditions on its real and imaginary part.

Theorem 3.3. Let T ∈ BA(H) be such that R(Tm−1) is dense. If TA = AT .

Then the following statements are equivalent.

(1) T ∈ [(n,m)QN]A.

(2) Cm,A commutes with ReA(T
n) and ImA(T

n), where Cm,A =
√

(T ♯A)mTm.

P r o o f. Since T is (n,m)-A-quasinormal, it follows that

T n(T ♯A)mT = (T ♯A)mTT n.

Hence,

T n(T ♯A)mTm = (T ♯A)mTmT n.

From the conditions that TA = AT and N (A)⊥ is an invariant subspace for T , we

observe that

TP
R(A) = TP

R(A), T ♯AP
R(A) = T ♯AP

R(A) and T ♯A = P
R(A)T

∗.

Therefore, Cm,A is a nonnegative definite operator and by elementary calculation

we get

C2
m,AReA(T

n) = ReA(T
n)C2

m,A.

Consequently,

Cm,AReA(T
n) = ReA(T

n)Cm,A.

In a similar way we can prove that Cm,AImA(T
n) = ImA(T

n)Cm,A. Conversely,

assume that Cm,AReA(T
n) = ReA(T

n)Cm,A and Cm,AImA(T
n) = ImA(T

n)Cm,A.

Then

C2
m,AReA(T

n) = ReA(T
n)C2

m,A and C2
m,AImA(T

n) = ImA(T
n)C2

m,A.

Hence

C2
m,A(ReA(T

n) + iImA(T
n)) = (ReA(T

n) + iImA(T
n))C2

m,A,

and therefore

C2
m,AT

n = T nC2
m,A.

On the other hand, we have

C2
m,AT

n = T nC2
m,A ⇔ (T ♯A)mTmT n − T n(T ♯A)mTm = 0

⇔ ((T ♯A)mTT n − T n(T ♯A)mT )Tm−1 = 0

⇔ (T ♯A)mTT n − T n(T ♯A)mT = 0 (R(Tm−1) = H).

Therefore T ∈ [(n,m)QN]A. �
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Theorem 3.4. Let T ∈ BA(H) be such that R(Tm−1) is dense and TA = AT .

If T satisfies the conditions

(i) Bm,A commutes with ReA(T
m) and ImA(T

m),

(ii) C2
m,AT

n = T nB2
m,A, where Bm,A =

√

Tm(T ♯A)m.

Then T is an (m,m)-A-quasinormal operator.

P r o o f. Since

Bm,AReA(T
m) = ReA(T

m)Bm,A and Bm,AImA(T
m) = ImA(T

m)Bm,A,

it follows that

{

B2
m,AT

m +B2(Tm)♯A = TmB2
m,A + (Tm)♯AB2

m,A,

B2
m,AT

m −B2
m,A(T

m)♯A = TmB2
m,A − (Tm)♯AB2

m,A.

This gives

B2
m,AT

m = TmB2
m,A = C2

m,AT
m.

On the other hand, we have

B2
m,AT

m = C2
m,AT

m ⇒ Tm(T ♯A)mTm − (T ♯A)mTmTm = 0

⇒ (Tm(T ♯A)mT − (T ♯A)mTTm)Tm−1 = 0

⇒ Tm(T ♯A)mT − (T ♯A)mTTm = 0 on R(Tm−1) = H.

Therefore Tm(T ♯A)mT − (T ♯A)mTTm = 0 and T is an (m,m)-A-quasinormal

operator. �

Proposition 3.5. Let T ∈ BA(H) be (n,m)-A-quasinormal, then

(T ♯A)2mT 2n = ((T ♯A)mT n)2.

P r o o f. Since T is (n,m)-A-quasinormal, it follows that

T n(T ♯A)mT = (T ♯A)mTT n.

On the other hand, we have

(T ♯A)2mT 2n = (T ♯A)m(T ♯A)mT nT n = (T ♯A)m(T ♯A)mTT nT n−1

= (T ♯A)mT n(T ♯A)mT n = ((T ♯A)mT n)2.

�
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