
Czechoslovak Mathematical Journal

Tao Tian; Liming Xiong; Zhi-Hong Chen; Shipeng Wang
Degree sums of adjacent vertices for traceability of claw-free graphs

Czechoslovak Mathematical Journal, Vol. 72 (2022), No. 2, 313–330

Persistent URL: http://dml.cz/dmlcz/150403

Terms of use:
© Institute of Mathematics AS CR, 2022

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/150403
http://dml.cz


Czechoslovak Mathematical Journal, 72 (147) (2022), 313–330

DEGREE SUMS OF ADJACENT VERTICES FOR TRACEABILITY

OF CLAW-FREE GRAPHS

Tao Tian, Fuzhou, Liming Xiong, Beijing, Zhi-Hong Chen, Indianapolis,

Shipeng Wang, Beijing

Received December 24, 2019. Published online February 3, 2022.

Abstract. The line graph of a graph G, denoted by L(G), has E(G) as its vertex set,
where two vertices in L(G) are adjacent if and only if the corresponding edges in G have
a vertex in common. For a graph H , define σ2(H) = min{d(u) + d(v) : uv ∈ E(H)}.
Let H be a 2-connected claw-free simple graph of order n with δ(H) > 3. We show that, if
σ2(H) >

1

7
(2n − 5) and n is sufficiently large, then either H is traceable or the Ryjáček’s

closure cl(H) = L(G), where G is an essentially 2-edge-connected triangle-free graph that
can be contracted to one of the two graphs of order 10 which have no spanning trail.
Furthermore, if σ2(H) >

1

3
(n − 6) and n is sufficiently large, then H is traceable. The

bound 1
3
(n− 6) is sharp. As a byproduct, we prove that there are exactly eight graphs in

the family G of 2-edge-connected simple graphs of order at most 11 that have no spanning
trail, an improvement of the result in Z.Niu et al. (2012).
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1. Introduction

We follow Bondy and Murty (see [1]) for undefined terms and notation. We

consider finite, undirected and loopless graphs only, but we allow multiple edges.

For a vertex x of G, NG(x) is the neighborhood of x in G, and dG(x) or d(x) is

the degree of x in G. For a vertex set S ⊆ V (G), we define NG(S) =
⋃
x∈S

NG(x)

and NG[S] =
⋃
x∈S

NG(x) ∪ S. By κ(G), we denote the connectivity of G. A graph is

claw-free if it has no induced subgraph isomorphic toK1,3. A graph G is hamiltonian
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(or traceable) if it has a Hamilton cycle (or Hamilton path), i.e., a spanning cycle

(or a spanning path). The circumference of G, denoted by c(G), is the length of the

longest cycle of G.

Degree conditions are by now known as the classical approach to hamiltonian

problems. In [7], Dirac proved that if the degree of each vertex of a graph is at

least half of the order, i.e., the number of vertices, (at least three), of the graph (the

Dirac condition), then it contains a Hamilton cycle. In addition to Dirac’s minimum

degree condition, various degree conditions such as the minimum degree sum of an

independent set (the Ore condition—on two independent vertices, the Bondy and

Chvátal condition—on at least two independent vertices) and the maximum degree

of pairs of vertices with distance two (the Fan condition) have been studied for the

hamiltonicity of graphs, circumferences of graphs or other structural properties of

graphs (see the surveys [8], [9]). Here, we study a particular type of conditions,

inspired by the early work of Brualdi and Shanny from the 1980s. In [3], they

considered a degree sum condition on adjacent pairs of vertices of graphs guaranteeing

that their line graphs are hamiltonian. The line graph of a graphG, denoted by L(G),

has E(G) as its vertex set, where two vertices in L(G) are adjacent if and only if the

corresponding edges in G have a vertex in common.

For a graph G, let

σ2(G) = min{d(u) + d(v) : uv ∈ E(G)}.

It is easy to obtain a corollary of Dirac’s theorem that every connected graph G of

order n > 3 with σ2(G) > 1
2 (3n − 2) (or σ2(G) > 1

2 (3n − 3)) is hamiltonian (or

traceable). The bounds 1
2 (3n − 2) and 1

2 (3n − 3) are sharp. The counterexamples

hamiltonian (or traceable) graphs can be seen from the graphs Gm = (m+1)K1∨Km

(or G1
m = (m+2)K1∨Km). One easily checks that Gm with n = |V (Gm)| = 2m+1,

δ(Gm) = 1
2 (n− 1), and σ2(Gm) = 1

2 (3n− 3), while Gm is not hamiltonian since the

number of the components of Gm − V (Km) is m + 1. Similarly, the nontraceable

graphs G1
m with n = |V (G1

m)| = 2m+2, δ(G1
m) = 1

2 (n−2), and σ2(G
1
m) = 1

2 (3n−4).

The above discussion reveals that considering degree sum conditions on adjacent

pairs of vertices for general graphs does not provide anything relevant in the sense of

essentially new and more general results. However, if we consider claw-free graphs,

this picture changes. This was first observed by Chen (see [6]) who considered the

Brualdi-Shanny condition for guaranteeing the hamiltonicity of claw-free graphs.

Before stating the results, we need the following terminology and notation.

A graph is triangle-free if it has no K3. As in [1], κ
′(G) denotes the edge-connectivity

of G. An edge cut X of G is essential if G−X has at least two nontrivial components.

For an integer k > 0, a graph G is essentially k-edge-connected if G is connected
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and does not have an essential edge-cut X with |X | < k. Note that a graph G is

essentially k-edge-connected if and only if L(G) is k-connected or complete.

Next, we review some key concepts that we use throughout the paper. The first

concept yields a way to shift attention and considerations from a claw-free graph H

to a closely related line graph L(G) of a triangle-free graph G. This will enable us

to show the validity of statements about the hamiltonicity and traceability of H by

proving equivalent statements about G. Since we will mainly deal with the latter,

we find it convenient to use H for the original claw-free graph for which we establish

hamiltonicity and traceability results.

Ryjáček in [13] introduced the closure operation of a claw-free graph H , which

becomes a very useful tool in investigating the hamiltonicity or traceability in claw-

free graphs. A vertex v ∈ V (H) is locally connected if the neighborhood of v induces

a connected subgraph in H . The closure of a claw-free graph H , denoted by cl(H), is

obtained from H by recursively joining all pairs of nonadjacent vertices in the neigh-

borhood of each locally connected vertex as long as it is possible. The closure cl(H)

remains a claw-free graph and its connectivity is no less than the connectivity of H .

A claw-free graph H is said to be closed if H = cl(H). The following theorem

summarizes the basic properties of cl(H).

Theorem 1.1 ([13]). Let H be a claw-free graph and cl(H) its closure. Then

(i) cl(H) is well-defined and κ(cl(H)) > κ(H);

(ii) there is a triangle-free graph G such that cl(H) = L(G);

(iii) both the graphs H and cl(H) have the same circumference.

Let G be a connected graph. For X ⊆ E(G), the contraction G/X is the graph

obtained from G by identifying the two ends of each edge e ∈ X and deleting the

resulting loops. Even when G is simple, G/X may not be simple. If Γ is a connected

subgraph of G, then we write G/Γ for G/E(Γ) and use vΓ for the vertex in G/Γ to

which Γ is contracted, and vΓ is called a contracted vertex if Γ 6= K1.

A (closed) trail Ψ is called a spanning (closed) trail in G if V (G) = V (Ψ), and is

called a dominating (closed) trail if E(G − V (Ψ)) = ∅. Let Q0(r, k) be the family

of k-edge-connected graphs of order at most r that do not admit a spanning closed

trail. For a given integer p > 0 and a given real number ε, we use “n ≫ L(p, ε)” for

“n is sufficiently large related to p and ε”. In [6], Chen proved the following result.

Theorem 1.2 ([6]). Let p > 0 be a given integer and ε be a given number, and

k ∈ {2, 3}. Suppose H is a k-connected claw-free simple graph of order n with

δ(H) > 3. If σ2(H) > (2n+ ε)/p and n ≫ L(p, ε), then either H is hamiltonian or

cl(H) = L(G), where G is an essentially k-edge-connected triangle-free graph that

can be contracted to a graph in Q0(5p− 10, k) and p > 3.
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As a special case of Theorem 1.2 with fixed given values of p and ε, Chen in [6] has

shown that if σ2(H) > 1
4 (2n− 4), then either H is hamiltonian or H is a member of

a well-defined class of exceptional graphs. In [19], Tian and Xiong extended Chen’s

result and proved the case σ2(H) > 2
5n− 1.

Motivated by the results above, in this paper, we give best possible degree sum

conditions of adjacent vertices for claw-free graphs H with δ(H) > 3 to be traceable.

First, we obtain the following analogue of Theorem 1.2 for traceability.

Corollary 1.3. Let p > 0 be a given integer and ε be a given number, and

k ∈ {2, 3}. Suppose H is a k-connected claw-free simple graph of order n with

δ(H) > 3. If σ2(H) > (2n+ ε)/p and n ≫ L(p, ε), then either H is traceable or

cl(H) = L(G), where G is an essentially k-edge-connected triangle-free graph that

can be contracted to a graph in R0(5p− 10, k) and p > 4.

F1 F2

Figure 1. Two graphs of order 10 that have no spanning trail.

G1 G2 G3

G4 G5 G6

Figure 2. Six graphs of order 11 that have no spanning trail.

Here R0(r, k) denotes the family of k-edge-connected graphs of order at most r

that do not admit a spanning trail, which will be used for describing the exceptional

classes for the traceability results that will follow. Since some graphs in Q0(r, k)

have spanning trails, such as K2,3 for k = 2 and the Petersen graph for k = 3,

R0(r, k) ⊆ Q0(r, k). Let F1 and F2 be the graphs depicted in Figure 1, and let

G1, G2, . . . , G6 be the graphs that are depicted in Figure 2. By Theorem 2.4 of

Section 2, we know that R0(11, 2) = {F1, F2, G1, G2, . . . , G6}. As an application of

Corollary 1.3, we get the following result.
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Theorem 1.4. Let H be a 2-connected claw-free simple graph of order n and

δ(H) > 3. If σ2(H) > 1
7 (2n−5) and n is sufficiently large, then either H is traceable

or cl(H) = L(G), where G is an essentially 2-edge-connected triangle-free graph

that can be contracted to either F1 or F2 such that all vertices of degree two are

contracted vertices.

For a graph G, we put Di(G) = {v ∈ V (G) : dG(v) = i}. For F ∈ {F1, F2}, let

D2(F ) = {v1, v2, . . . , v6}. Let F(n, s) be the family of essentially 2-edge-connected

graphs in which each graph is obtained from those F by replacing each vi ∈ D2(F )

by a triangle-free subgraph of size si > s such that n = 12 +
6∑

i=1

si. Note that each

graph in F(n, s) may be contractible to F1 or F2.

Let RF (n, s) be the set of 2-connected claw-free graphs H whose Ryjáček’s closure

is the line graph of a graph G in F(n, s), i.e., cl(H) = L(G).

Theorem 1.4 in fact can be deduced from the following result.

Theorem 1.5. Let H be a 2-connected claw-free simple graph of order n with

δ(H) > 3. If σ2(H) > 1
7 (2n−5) and n is sufficiently large, then either H is traceable

or σ2(H) 6 1
3 (n− 6) and H ∈ RF (n,

1
14 (2n− 19)).

Theorem 1.5 implies the following result immediately.

Corollary 1.6. Let H be a 2-connected claw-free simple graph of order n.

If δ(H) > 1
14 (2n − 5) and n is sufficiently large, then either H is traceable or

δ(H) 6 1
6 (n− 6) and H ∈ RF (n,

1
14 (2n− 19)).

An edge e = uv ∈ E(G) is called a pendant edge of G if min{d(u), d(v)} = 1.

For F(n, s), if s = 1
6 (n − 12), then let F(n, 1

6 (n − 12)) be the family of essentially

2-edge-connected graphs in which each graph is obtained from those F ∈ {F1, F2} by

adding 1
6 (n− 12) pendant edges to each vertex of degree two in F . From our proof

of Theorem 1.5 (which is given in Section 4), we also obtain the following results.

Theorem 1.7. Let H be a 2-connected claw-free simple graph of order n with

δ(H) > 3. If σ2(H) > 1
3 (n− 6) and n is sufficiently large, then either H is traceable

or σ2(H) = 1
3 (n− 6) and H ∈ RF (n,

1
6 (n− 12)).

From Theorem 1.7, we immediately get the following corollary.

Corollary 1.8. Let H be a 2-connected claw-free simple graph of order n. If

δ(H) > 1
6 (n − 6) and n is sufficiently large, then either H is traceable or δ(H) =

1
6 (n− 6) and H ∈ RF (n,

1
6 (n− 12)).
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Remark 1.9. Let G∗ be a graph obtained from the graph G1 of Figure 2

by adding 1
7 (n − 14) > 2 pendant edges (for a suitable choice of n) at each ver-

tex of degree two in G1. Then σ2(L(G
∗)) = 1

7 (2n − 14) < 1
7 (2n − 5). Clearly,

L(G∗) /∈ RF (n,
1
14 (2n − 19)). Note that G∗ cannot be contracted to a graph in

{F1, F2}. This example shows that the bound
1
7 (2n− 5) in Theorems 1.4 and 1.5 is

asymptotically sharp.

Corollary 1.6 is a substantial improvement of the “δ(H) > 1
3 (n − 2)” theorem

obtained by Matthews and Sumner in [11] if H is a 2-connected claw-free graph of

sufficiently large order n. Corollary 1.6 is also an improvement of the “δ(H) > 1
7n+4”

theorem obtained by Wang and Xiong in [21].

The remainder of this paper is organized as follows. In Section 2, we present some

auxiliary results and give a brief discussion of Catlin’s reduction. In Section 3, we give

a brief discussion of the core of essentially 2-edge-connected graphs and present some

useful results. In Section 4, the proofs of Corollary 1.3 and Theorem 1.5 are given.

2. Preliminaries and auxiliary results

Niu, Xiong and Zhang in [12] defined the smallest graph in a collection of graphs

as a graph that has the least order and subject to that it has the least size amongst

all graphs of that order in the collection. In particular, they considered the smallest

order and size of 2-edge-connected graphs without spanning trails as follows.

Theorem 2.1 ([12]). If G is a 2-edge-connected simple graph of order at most 10,

then either G has a spanning trail or G ∈ {F1, F2}.

In [21], Wang and Xiong proved the following two useful results.

Theorem 2.2 ([21]). Let G be a 2-connected graph with circumference c(G).

(a) If c(G) 6 5, then G has a spanning trail that starts from any given vertex.

(b) If c(G) 6 7, then G has a spanning trail.

The following result is needed in our proof of Theorem 1.5.

Theorem 2.3 ([21]). Let G be a 2-edge-connected simple graph. Then for any

subset S ⊆ V (G) with |S| 6 6 and E(G−S) = ∅, either G has a trail passing through

all vertices of S or G ∈ {F1, F2}.

Using Theorem 2.2, Theorem 2.1 can be extended as follows.

Theorem 2.4. If G is a 2-edge-connected simple graph of order at most 11, then

either G has a spanning trail or G ∈ {F1, F2, G1, G2, . . . , G6}.
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Since all graphs depicted in Figures 1 and 2 are not 3-edge-connected, Theorem 2.4

implies the following result.

Corollary 2.5. If G is a 3-edge-connected simple graph of order at most 11,

then G has a spanning trail.

The following theorem shows the relationship between a graph and its line graph.

Theorem 2.6 ([10]). LetG be a graph with |E(G)| > 1. Then the line graph L(G)

of G is traceable if and only if G has a dominating trail.

Theorem 2.7 ([2]). Let H be a claw-free graph. Then H is traceable if and only

if cl(H) is traceable.

2.1. Catlin’s reduction method. Let O(G) be the set of vertices of odd degree

inG. A graph in which each vertex has even degree is called an even graph. A graphG

is collapsible if for every even subset R ⊆ V (G), there is a spanning connected

subgraph ΓR of G with O(ΓR) = R.

In [4], Catlin showed that every graph G has a unique collection of maximal

collapsible subgraphs Γ1,Γ2, . . . ,Γc. The reduction of G is G
′ = G/

( c⋃
i=1

Γi

)
, the

graph obtained from G by contracting each Γi into a single vertex vi (1 6 i 6 c). So

each Γi is the preimage of a vertex vi in G. A graph G is reduced if G′ = G.

A graph is supereulerian if it contains a spanning closed trail. The family of

supereulerian graphs is denoted by SL. The graph K1 is regarded as a collapsible

and supereulerian graph.

Theorem 2.8 ([4], [5]). Let G be a connected graph and let G′ be the reduction

of G.

(a) G is collapsible if and only if G′ = K1, and G ∈ SL if and only if G′ ∈ SL.

(b) G has a dominating closed trail if and only if G′ has a dominating closed trail

containing all the contracted vertices of G′.

(c) If G is a reduced graph, then G is simple and triangle-free with δ(G) 6 3. For

any subgraph Ψ of G, Ψ is reduced and either Ψ ∈ {K1,K2,K2,t (t > 2)} or

|E(Ψ)| 6 2|V (Ψ)| − 5.

Theorem 2.9 ([22]). Let G be a connected graph of order n and let G′ be the

reduction of G. Then G has a spanning trail if and only if G′ has a spanning trail.
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2.2. Proof of Theorem 2.4. In a graph G, let C = v0v1v2 . . . vc(G)−1v0 denote

the longest cycle containing the vertices v0, v1, . . . , vc(G)−1 of G. For convenience, in

the following, the subscripts are taken modulo c(G). For any vi, vj ∈ V (C) (with

vi 6= vj), without loss of generality, we assume that i < j. We use vi
→

Cvj to denote

the segment vivi+1 . . . vj−1vj of C, i.e., vi
→

Cvj is a trail (path) along the edges of C

starting from the vertex vi and terminating at the vertex vj . Note that vi
→

Cvj contains

the vertices vi and vj exactly once.

P r o o f of Theorem 2.4. Let G be a 2-edge-connected simple graph of or-

der at most 11. If G has a spanning trail, then we are done. In the following,

we assume that G has no spanning trail. Assume first that G has a triangle.

Then we let G′ be the reduction of G. By Theorem 2.8 (c), G′ is triangle-free.

Then, since |V (G)| 6 11, we obtain that |V (G′)| 6 9. Now, since G is 2-edge-

connected, G′ is also 2-edge-connected. By Theorem 2.1, G′ has a spanning

trail. Then by Theorem 2.9, G has a spanning trail, a contradiction. There-

fore, we next assume that G is triangle-free. If |V (G)| 6 10, then by The-

orem 2.1, G is isomorphic to one of the graphs F1 and F2 depicted in Fig-

ure 1. Hence, in the remainder of the proof, we only need to consider the

case when |V (G)| = 11. We distinguish two cases based on the connectivity

κ(G) of G.

Case 1 : κ(G) > 2. Since G has no spanning trail then by Theorem 2.2, c(G) > 8.

Therefore, 8 6 c(G) 6 9; otherwise G − C has at most one vertex and we can

find a spanning trail of G, a contradiction. Here, C = v0v1v2 . . . vc(G)−1v0 denotes

a longest cycle of G (c(G) = 8 or 9). By deleting all the chords of C, the resulting

2-connected graph G0 is a spanning subgraph of G. Thus, G0 has no spanning trail;

otherwise G has a spanning trail, a contradiction.

Claim 2.10. V (G0 − C) is an independent set.

P r o o f. It suffices to prove |V (D)| = 1 for each component D of G0 − C. Let D

be a component of G0 − C with the most vertices. Suppose that |V (D)| > 1. Let

u1u2 . . . uk (2 6 k 6 3) be the maximal path in D. Because G0 is triangle-free and

2-connected, u1vi ∈ E(G0) for some vi ∈ V (C) and G0 has a spanning trail unless

c(G0) = 8 and |V (D)| = 2. Then c(G0) = 8 and D = K2. Since G0 is 2-connected,

we assume that xy is an edge ofD with vi ∈ NG0
(x)∩V (C), vj ∈ NG0

(y)∩V (C) (and

vi 6= vj). Put G
∗ = G0[E(G0 − x − y) ∪ {xvi, xy, yvj}]. Then G∗ is a 2-connected

spanning subgraph of G0 and vixyvj is an induced path of length 3 of G
∗. Let

G̃ = G∗/{xy}. Then by Theorem 2.1, either G̃ has a spanning trail or G̃ ∈ {F1, F2}.

In the first case, G∗ has a spanning trail, thus G0 has a spanning trail as well.
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Then G has a spanning trail, a contradiction. In the second case, so if G̃ ∈ {F1, F2},

then by the construction of G̃, G∗ has a cycle of length 9, a contradiction. Hence,

|V (D)| = 1, as required. �

Using Claim 2.10, let V (G0 −C) = {u1, u2, . . . , ut}. Then since |V (G0)| = 11 and

8 6 c(G0) 6 9, 2 6 t 6 3. We prove another claim.

Claim 2.11. For any two vertices x, y ∈ V (G0 − C), |NG0
(x) ∩NG0

(y)| 6 1.

P r o o f. We establish the claim by contradiction. We assume that vi, vj ∈

NG(x)∩NG(y) (with vi 6= vj). Then G
τ = G0[E(C)∪ {xvi, xvj , yvi, yvj}] is a span-

ning even subgraph of G0[V (C) ∪ {x, y}]. Since 8 6 |V (C)| 6 9, G0 − C − x − y

has at most one vertex. Then G0 has a spanning trail containing all edges of G
τ ,

a contradiction. �

Since κ(G) > 2, for any x ∈ V (G0 − C), |NG0
(x) ∩ V (C)| > 2, and we consider

exactly two edges ex, e
′
x that are incident with x. Let E1 = {ex, e′x : x ∈ V (G0−C)}

and G⋆ = G0

[
E
(
G0−

t⋃
i=1

{ui}
)
∪E1

]
. Then G⋆ is a 2-connected spanning subgraph

of G0 and G⋆ has no spanning trail; otherwise, G0 has a spanning trail and thus G

has a spanning trail as well, a contradiction. Let V1 be the set of all vertices of odd

degree in G⋆. Then V1 ⊆ V (C). Since |V1| 6 6, |V1| ∈ {0, 2, 4, 6}, and it suffices to

consider the cases when |V1| = 4 or 6 (since, if |V1| = 0 or 2, it is immediate that G⋆

has a spanning trail, a contradiction).

We distinguish the two remaining subcases for Case 1.

Subcase 1.1 : |V1| = 6. Then c(G⋆) = 8 and |V (G⋆−C)| = 3. Moreover, NG⋆(x)∩

NG⋆(y) = ∅ for any x, y ∈ V (G⋆ − C) with x 6= y. Since |V (C)| = 8 and |V1| = 6,

there exist at least three consecutive vertices of V1 on C. Without loss of generality,

we assume that vi, vi+1, . . . , vi+l ∈ V1 ∩ V (C) with 2 6 l 6 5.

First suppose that V1 has exactly three consecutive vertices on C. Then l = 2

and V1 = {vi, vi+1, vi+2, vi+4, vi+5, vi+6}. Then, since G⋆ − {vivi+1, vi+4vi+5} is

connected and has exactly two vertices of odd degree, G⋆ has a spanning trail,

a contradiction.

Next suppose that V1 has at least four consecutive vertices on C. Then 3 6 l 6 5.

Since G⋆ is triangle-free, G⋆ − {vivi+1, vi+2vi+3} is connected and has exactly two

vertices of odd degree. Then G⋆ has a spanning trail, a contradiction.

Subcase 1.2 : |V1| = 4. We prove another claim.

Claim 2.12. For any pair of distinct vertices vi, vj ∈ V1, vi, vj are nonadjacent

on C.
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P r o o f. We establish the claim by contradiction. We assume that vi, vi+1 ∈ V1.

Then G⋆ −{vivi+1} has exactly two vertices of odd degree. Then G
⋆ has a spanning

trail, a contradiction. �

Using Claim 2.12 and by 8 6 c(G⋆) 6 9, without loss of generality, we assume

that V1 = {vi, vi+2, vi+4, vi+6}. Note that |V (G⋆−C)| 6 3 and |NG⋆(x)∩V (C)| = 2

for any x ∈ V (G⋆ − C). Then by Claim 2.11 and by V1 = {vi, vi+2, vi+4, vi+6}, it

is easy to check that G⋆ is isomorphic to one of the graphs in {G1, G2, G3, G4} as

depicted in Figure 2.

Since joining any two nonadjacent vertices of a graph in {G1, G2, G3, G4} by an

edge results in a triangle or a spanning trail of the new graph, G = G0 = G⋆. Hence,

in this situation G ∈ {G1, G2, G3, G4}. This completes the proof for Case 1.

Case 2 : κ(G) = 1. Let B1, B2, . . . , Bt(t > 2) be the blocks of G. Since G is

triangle-free, |V (Bi)| > 4 for 1 6 i 6 t. We first prove two claims.

Claim 2.13. Each end-block of G has at least 5 vertices.

P r o o f. If there exists an end-block Bi of G with 4 vertices, then G[V (Bi)] is

a cycle of length 4. Obviously, G/Bi is a 2-edge-connected triangle-free simple graph

of order 8. By Theorem 2.1, G/Bi has a spanning trail. Since Bi and G/Bi have

a vertex in common, the spanning trail of G/Bi can be extended to be a spanning

trail of G, a contradiction. �

Claim 2.14. t = 2.

P r o o f. We establish the claim by contradiction. Without loss of generality, we

assume that B1 and Bt are two end-blocks of G and Bk is a third distinct block of G.

By Claim 2.13, |V (B1)| > 5 and |V (Bt)| > 5. Since both B1 and Bt have at most

one vertex in common with Bk, 11 = |V (G)| > |V (B1)| + |V (Bt)| + |V (Bk)| − 2 >

5 + 5 + 4− 2 = 12, a contradiction. �

Since |V (G)| = 11 and t = 2, either |V (B1)| = |V (B2)| = 6 or |V (B1)| = 5 and

|V (B2)| = 7. Then Bi /∈ SL; otherwise, the spanning trail of G/Bi can be extended

to be a spanning trail of G, a contradiction.

First suppose that |V (B1)| = |V (B2)| = 6. Since Bi /∈ SL, c(Bi) 6 5. By

Theorem 2.2 (a), both B1 and B2 have a spanning trail that starts from any given

vertex. Since B1 and B2 have a vertex in common, there exists a spanning trail of G,

a contradiction.

Next suppose that |V (B1)| = 5 and |V (B2)| = 7. Since B1 is 2-connected,

triangle-free and B1 /∈ SL, B1 = K2,3. Since B2 /∈ SL, c(B2) = 6; otherwise,

by Theorem 2.2 (a), both B1 and B2 have a spanning trail that starts from any
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given vertex, there exists a spanning trail of G, a contradiction. We assume that

C = v0v1v2v3v4v5v0 is the longest cycle of B2.

Then V (B1) ∩ V (C) 6= ∅; otherwise, there exists a vertex u ∈ V (B2) \ V (C)

such that V (B1) ∩ V (B2) = {u}. Since B2 is 2-connected, there exists a vertex

vi ∈ NG(u) ∩ V (C). Then T2 = uvi
→

Cvi+5 is a spanning trail of B2. Since B1 has

a spanning trail T1 starting from vertex u, by combining T1 and T2, we can get

a spanning trail of G, a contradiction.

Without loss of generality, we assume that V (B1) ∩ V (C) = {v0} and V (B2) \

V (C) = {u}. Then v0, v1, v5 /∈ NG(u); otherwise, we denote by T1 a spanning trail

of B1 starting from the vertex v0 and by T2 = v0
→

Cv5v0u or v0v5v4v3v2v1u or v0
→

Cv5u

a spanning trail of B2 starting from vertex v0. By combining T1 with T2, we can get

a spanning trail of G, a contradiction. Since G is 2-edge-connected and triangle-free,

NG(u) = {v2, v4}.

Then G has a spanning subgraph isomorphic to the graph G5 or G6 as depicted in

Figure 2. Furthermore, by joining any two nonadjacent vertices of G5 or G6 by an

edge, the new graph contains a triangle or a spanning trail of the new graph. Hence,

G ∈ {G5, G6}. The proof of Theorem 2.4 is completed. �

3. The reduction of the core of a graph and a technical lemma

3.1. The reduction of the core of a graph. Let G be an essentially 2-edge-

connected simple graph with σ2(G) > 5. Then D1(G) ∪ D2(G) is an independent

set. Let E1 be the set of pendant edges in G. For each x ∈ D2(G), there are two

edges e1x and e2x incident with x. Let X2(G) = {e1x : x ∈ D2(G)}. Put

G0 = G/(E1 ∪X2(G)).

In other words, G0 is obtained from G by deleting the vertices inD1(G) and replacing

each path of length 2, whose internal vertex is a vertex in D2(G), by an edge. Note

that G0 may not be simple.

The vertex set V (G0) is regarded as a subset of V (G). A vertex in G0 is nontrivial

if it is obtained by contracting some edge(s) in E1∪X2(G) or it is adjacent to a vertex

in D2(G) in G. For instance, if v ∈ D2(G) and NG(v) = {x, y}, and if xv is a vertex

in G0 obtained by contracting the edge xv, then both xv and y are nontrivial in G0

(although xv is a contracted vertex and y is not a contracted vertex in G0). Since

σ2(G) > 5, all vertices in D2(G0) are nontrivial.

Let X = D1(G) ∪ D2(G). In [20], G0 is denoted by IX(G). Following [14], we

call G0 the core of G.
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Let G′
0 be the reduction of G0. For a vertex v ∈ V (G′

0), let Γ0(v) be the maximum

collapsible preimage of v in G0 and let Γ(v) be the preimage of v in G. Note

that Γ(v) is the graph induced by edge(s) composing of E(Γ0(v)) and some edge(s)

in E1 ∪X2(G), for an example, see Figure 3. A vertex v in G′
0 is a nontrivial vertex

if v is a contracted vertex (i.e., |V (Γ(v))| > 1) or v is adjacent to a vertex in D2(G).

a3

a2

a1
u

x

ν

y1

y

b1

b2

w1

w2

w3

G

C2

E1 = {ua1, ua2, ua3, νb1, νb2}

X2(G) = {νy1, w1w3}

G0 =G/(E1 ∪X2(G))

x

ν

y

u w

G′

0

Γ(w) =K3 and Γ0(w) =C2

Γ0(u) = Γ0(ν) =K1

Γ(u) = Γ(ν) =K1,3

Γ(x) = Γ(y) =K1

Figure 3. The reduction G
′
0 of the core G0 of a graph G.

Using Theorem 2.8, Veldman in [20] and Shao in [14] proved the following theorem.

Theorem 3.1. Let G be a connected and essentially k-edge-connected graph with

σ2(G) > 5, where k ∈ {2, 3} and L(G) is not complete. Let G′
0 be the reduction of

the core G0 of G. Then each of the following holds:

(a) G0 is well-defined, nontrivial, δ(G0) > κ′(G0) > k, and κ′(G′
0) > κ′(G0) > k.

(b) G has a dominating closed trail if and only if G′
0 has a dominating closed trail

containing all the nontrivial vertices, see [20], Lemma 5.

We have the following similar result.

Theorem 3.2. Under the conditions of Theorem 3.1, G has a dominating trail if

and only if G′
0 has a dominating trail containing all the nontrivial vertices.

P r o o f. Clearly, if G has a dominating trail, then G′
0 has a dominating trail

containing all the nontrivial vertices of G′
0. Conversely, we assume that G

′
0 has

a dominating trail T ′ containing all the nontrivial vertices of G′
0. Set G

′
s = G′

0[V (T ′)]
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and U = V (G′
0)−V (T ′). Then U is an independent subset of both V (G′

0) and V (G),

U ∩ NG[D1(G) ∪ D2(G)] = ∅ and T ′ is a spanning trail of G′
s. Set Gs = G0 − U

and Gt = G − (U ∪ D1(G)). By our definitions, Gt is a subdivision of Gs and G′
s

is the reduction of Gs. Since G′
s has a spanning trail, by Theorem 2.9, Gs has

a spanning trail. Since σ2(G) > 5, Gt is a subdivision of Gs with each edge of Gs

subdivided at most once. It follows that Gt has a dominating trail T such that

V (Gt) − V (T ) ⊆ D2(G). Then V (G) − V (T ) ⊆ U ∪ D1(G) ∪ D2(G). Since U ∪

D1(G)∪D2(G) is an independent subset of V (G), T is a dominating trail of G. This

completes the proof. �

In the following, letH = L(G) and assume thatH is not complete. Then |V (H)| =

|E(G)| and σ2(G) = δ(H)+2. If H = L(G) is k-connected with δ(H) > 3, then G is

essentially k-edge-connected with σ2(G) > 5. For each v ∈ V (H), there is an edge xy

in G corresponding to v and dH(v) = dG(x) + dG(y)− 2. We call a path of length k

a k-path. For each edge uv in H , there is a 2-path, P2 = xyz in G such that xy

corresponds to the vertex u and the edge yz corresponds to the vertex v in H . Then

dH(u) + dH(v) = dG(x) + 2dG(y) + dG(z)− 4.

For any 2-path P2 = xyz in G, put dG(P2) = dG(x) + 2dG(y) + dG(z). Set

δ2(G) = min{dG(P2) : P2 is a 2-path in G}.

Thus, for a graph H = L(G),

(3.1) δ2(G) = σ2(H) + 4.

For a given integer p > 0 and a given real number ε, if σ2(H) > (2n+ ε)/p, then the

preimage G of H = L(G) has

(3.2) δ2(G) >
2n+ ε

p
+ 4.

3.2. Notation and a technical lemma. Let G, G0 and G
′
0 be the graphs defined

above. For v ∈ V (G′
0), let Γ0(v) be the collapsible preimage of v in G0 and let Γ(v)

be the preimage of v in G. For convenience, we use the following notation.

⊲ V ∗ = {v ∈ V (G′
0) : |V (Γ(v))| > 3};

⊲ V1 = {v ∈ V (G′
0) : |V (Γ(v))| = 1 and v is not adjacent to any vertices in D1(G)∪

D2(G)};

⊲ V2 = {v ∈ V (G′
0) : |V (Γ(v))| = 2 or |V (Γ(v))| = 1 and v is adjacent to a vertex

in D2(G)};

(Note that V ∗ ∪ V2 is the set of all nontrivial vertices in G′
0.)
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⊲ Φ = G′
0[V1], the subgraph induced by V1 in G′

0 if V1 6= ∅;

⊲ EΦ = E(Φ), which is a matching under the conditions of Lemma 3.3 (see below);

⊲ VΦ = {v ∈ V1 : v is incident with an edge in EΦ};

⊲ V 0
Φ = V1 − VΦ;

⊲ NΦ,2 =
⋃

v∈VΦ∪V2

(NG′

0
(v) ∩ V ∗) if VΦ ∪ V2 6= ∅ (otherwise, NΦ,2 = ∅).

V2

NΦ,2

G′

0

V ∗

x1 y1

xs ys

V1

VΦ V 0

Φ

VΦ = {x1, . . . , xs, y1, . . . , ys}

EΦ = {x1y1, . . . , xsys}

V 0

Φ
= V1 − VΦ

Figure 4. V (G′
0) = V

∗ ∪ V1 ∪ V2 = V
∗ ∪ (VΦ ∪ V

0

Φ) ∪ V2.

In [6], Chen proved a technical lemma that follows.

Lemma 3.3 ([6]). Let G be an essentially 2-edge-connected triangle-free graph

such that G 6= K1,t with size n and σ2(G) > 5, and satisfying (3.2) and n ≫ L(p, ε).

Assume that G′
0 /∈ SL. For V ∗, NΦ,2, V1, V2, Φ, EΦ, VΦ, and V 0

Φ defined above, we

have:

(a) For each v ∈ V ∗, |V (Γ(v))| > 1
2δ2(G) − dG′

0
(v) and |E(Γ(v))| > 1

2δ2(G) −

dG′

0
(v)− 1.

(b) D2(G
′
0) ⊆ V ∗ and so dG′

0
(v) > 3 for v ∈ V1 ∪ V2.

(c) If EΦ 6= ∅ for each xy ∈ EΦ, (NG′

0
(x)−{y})∪ (NG′

0
(y)−{x}) ⊆ NΦ,2 and so EΦ

is a matching.

(d) For each vertex v in V 0
Φ ∪ V2, NG′

0
(v) ⊆ V ∗, and so V 0

Φ ∪ V2 is an independent

set.

(e) If |V1 ∪ V2| > 3, then |V 0
Φ ∪ V2|+

1
2 |VΦ| 6 2|V ∗| − 5. If |V2| > 3 or VΦ 6= ∅, then

|V2|+
1
2 |VΦ| 6 2|NΦ,2| − 5.

(f) |V ∗| 6 p. Furthermore, if |V ∗| = p and G′
0 6= K2,t for t > 2, then |V (G′

0)| 6

2p− 5− 1
2ε.

(g) For v ∈ NΦ,2, |E(Γ(v))| > δ2(G) − 5p− 3 and |V ∗|+ |NΦ,2| 6 p.

(h) If V2 6= ∅, then |NΦ,2| > 3. If VΦ 6= ∅, then |NΦ,2| > 4. Thus, |NΦ,2| > 3 if

|V2 ∪ VΦ| 6= 0.
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4. Proofs of Corollary 1.3 and Theorem 1.5

In this section, we present the proofs of Corollary 1.3 and Theorem 1.5.

P r o o f of Corollary 1.3. If H is traceable, then we are done. Thus, in the

following, we assume that H is not traceable, and so H is not hamiltonian and H

is not complete. By Theorem 1.1, cl(H) is not complete and there exists an

essentially k-edge-connected triangle-free graph G such that cl(H) = L(G) and

|E(G)| = |V (H)|. Let G′
0 be the reduction of the core G0 of G. By Theorem 3.1,

κ′(G′
0) > κ′(G0) > k. SinceH is not traceable, by Theorem 2.6, G has no dominating

trail. By Theorem 3.2, G′
0 has no dominating trail containing all the nontrivial ver-

tices. Then G′
0 has no dominating closed trail containing all the nontrivial vertices.

Then by Theorem 1.2, G′
0 ∈ Q0(5p− 10, k). Note that R0(r, k) ⊆ Q0(r, k). Since G

′
0

has no spanning trail and by Theorem 2.4, G′
0 ∈ R0(5p − 10, k) and |V (G′

0)| > 10.

Then 5p− 10 > 10. We conclude that p > 4. This completes the proof. �

P r o o f of Theorem 1.5. This is a special case of Corollary 1.3 with p = 7, ε = −5

and k = 2. By Theorem 1.1, there is an essentially 2-edge-connected triangle-free

graph G such that the closure cl(H) = L(G) and |E(G)| = |V (H)| = n. Since

δ(H) > 3 and σ2(H) > 1
7 (2n−5), σ2(G) > 5 and δ2(G) > 1

7 (2n−5)+4 = 1
7 (2n+23)

by (3.2).

Suppose that H is not traceable. Then G 6= K1,t; otherwise, by Theorems 2.6

and 2.7, H is traceable, a contradiction. By Corollary 1.3 and Theorem 2.4, G′
0 has

no spanning trail and |V (G′
0)| > 10. Therefore, G′

0 /∈ SL.

Let V ∗, V2, VΦ, V
0
Φ and NΦ,2 be the sets relating to G′

0 as defined in Section 3.

If VΦ ∪ V2 6= ∅, then by the definition, NΦ,2 6= ∅. By Lemma 3.3 (h), |NΦ,2| > 3.

Since NΦ,2 ⊆ V ∗, by Lemma 3.3 (g), |NΦ,2| 6 3. So, |NΦ,2| = 3. Then VΦ = ∅,

otherwise, by Lemma 3.3 (h), |NΦ,2| > 4, a contradiction. Since NΦ,2 ⊆ V ∗, by

Lemma 3.3 (g), 3 6 |V ∗| 6 4. Then |V 0
Φ ∪ V2| 6 3; otherwise, by Lemma 3.3 (e),

|V ∗| > 5, a contradiction. Therefore, |V (G′
0)| = |V 0

Φ ∪ V2| + |V ∗| 6 3 + 4 = 7,

a contradiction. Hence, VΦ = V2 = ∅ and V (G′
0) = V 0

Φ ∪ V ∗. Then V ∗ is the set of

all nontrivial vertices of G′
0. By Lemma 3.3 (f), |V

∗| 6 7. We distinguish the two

cases that |V ∗| 6 6 and |V ∗| = 7.

Case 1 : |V ∗| 6 6. By Lemma 3.3 (d), E(G′
0 − V ∗) = ∅. Note that G′

0 is 2-

edge-connected. Then by Theorem 2.3, either G′
0 has a trail passing through all

vertices of V ∗ or G′
0 ∈ {F1, F2}. For the first case, G′

0 has a dominating trail

containing all vertices of V ∗. Then by Theorems 2.6, 2.7 and 3.2, H is traceable,

a contradiction.

Hence, G′
0 ∈ {F1, F2}. By Lemma 3.3 (b), D2(G

′
0)⊆ V ∗. Then, since |D2(G

′
0)|= 6,

|V ∗| = 6. Let V ∗ = D2(G
′
0) = {v1, v2, . . . , v6}. Then dG′

0
(vi) = 2. By Lemma 3.3 (a)
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and since δ2(G) > 1
7 (2n+23), si = |E(Γ(vi))| >

1
2δ2(G)−dG′

0
(vi)−1 = 1

2δ2(G)−3 >

1
14 (2n− 19). Since n = |E(G)| = |E(G′

0)|+
6∑

i=1

si > 12+6(12δ2(G)− 3) = 3δ2(G)− 6,

δ2(G) 6 1
3 (n + 6). Then by (3.1), σ2(H) = δ2(G) − 4 6 1

3 (n − 6). Thus, G ∈

F(n, 1
14 (2n− 19)), and so σ2(H) 6 1

3 (n− 6) and H ∈ RF (n,
1
14 (2n− 19)).

In particular, if σ2(H) = 1
3 (n−6), then by (3.1), δ2(G) = σ2(H)+4 = 1

3 (n+6). By

Lemma 3.3 (a) and since δ2(G) > 1
3 (n+6), si = |E(Γ(vi))| >

1
2δ2(G)−dG′

0
(vi)− 1 =

1
2δ2(G) − 3 > 1

6 (n − 12). Since n = |E(G)| = |E(G′
0)| +

6∑
i=1

si, si = 1
6 (n − 12)

for vi ∈ V ∗. By Lemma 3.3 (a), |V (Γ(vi))| >
1
2δ2(G) − dG′

0
(vi) = |E(Γ(vi))| + 1.

Thus, |V (Γ(vi))| = |E(Γ(vi))| + 1 and so Γ(vi) is a tree. Since G is essentially

2-edge-connected, Γ(vi) = K1,s, where s =
1
6 (n− 12). Because G ∈ F(n, 1

6 (n− 12)),

H ∈ RF (n,
1
6 (n− 12)), this settles Case 1.

In the following, we show that the case |V ∗| = 7 is impossible.

Case 2 : |V ∗| = 7. Then G′
0 cannot be isomorphic to a K2,t for any t > 2;

otherwise G′
0 has a spanning trail, a contradiction. By Lemma 3.3 (f), |V (G′

0)| 6

2p − 5 − 1
2ε = 2 × 7 − 5 − (−5)

2 = 23
2 . Then |V (G′

0)| 6 11. Then by Theorem 2.4,

G′
0 ∈ {F1, F2, G1, G2, . . . , G6}. By Lemma 3.3 (b), D2(G

′
0) ⊆ V ∗. We distinguish

the following two subcases for Case 2.

Subcase 2.1 : G′
0 ∈ {F1, F2}. Let V ∗ = D2(G

′
0) ∪ {v} = {v1, v2, . . . , v6, v}, where

v ∈ D3(G
′
0). Then dG′

0
(vi) = 2 and dG′

0
(v) = 3. By Lemma 3.3 (a) and since δ2(G) >

1
7 (2n+23), si = |E(Γ(vi))| >

1
2δ2(G)−3 > 1

14 (2n−19), s = |E(Γ(v))| > 1
2δ2(G)−4 >

1
14 (2n−33). Furthermore, since n = 12+s+

6∑
i=1

si > 12+(12δ2(G)−4)+6(12δ2(G)−3) =

7
2δ2(G)− 10, δ2(G) 6 1

7 (2n+ 20), contradicting that δ2(G) > 1
7 (2n+ 23).

Subcase 2.2 : G′
0 ∈ {G1, G2, . . . , G6}. First suppose that G′

0 ∈ {G1, G2, . . . , G5}.

Then V ∗ = D2(G
′
0). Let V

∗ = D2(G
′
0) = {v1, v2, . . . , v7}. Then dG′

0
(vi) = 2. By

Lemma 3.3 (a) and since δ2(G) > 1
7 (2n + 23), si = |E(Γ(vi))| > 1

2δ2(G) − 3 >

1
14 (2n− 19). Furthermore, since n > 13 +

7∑
i=1

si > 13+ 7(12δ2(G)− 3) = 7
2δ2(G)− 8,

δ2(G) 6 1
7 (2n+ 16), contradicting that δ2(G) > 1

7 (2n+ 23).

Next suppose that G′
0 = G6. Since |D2(G

′
0)| = 6 and |V ∗| = 7, there exists one

vertex v ∈ V (G′
0) \ D2(G

′
0) such that v ∈ V ∗. By Lemma 3.3 (d), V 0

Φ is an inde-

pendent set. Then v ∈ D4(G
′
0). Let V

∗ = D2(G
′
0) ∪ {v} = {v1, v2, . . . , v6, v}. Then

dG′

0
(vi) = 2 and dG′

0
(v) = 4. By Lemma 3.3 (a) and since δ2(G) > 1

7 (2n+ 23), si =

|E(Γ(vi))| >
1
2δ2(G) − 3 > 1

14 (2n− 19), s = |E(Γ(v))| > 1
2δ2(G)− 5 > 1

14 (2n− 47).

Furthermore, since n = 14+s+
6∑

i=1

si > 14+(12δ2(G)−5)+6(12δ2(G)−3) = 7
2δ2(G)−9,

δ2(G) 6 1
7 (2n+ 18), contradicting that δ2(G) > 1

7 (2n+ 23).

This settles Case 2 and completes the proof. �
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5. Concluding remark

In this paper, we have been mainly discussing the traceability of 2-connected

claw-free graphs. In order to prove our main results, one of the essential elements we

needed was a characterization of all the 2-edge-connected graphs of order at most 11

that have no spanning trail. This has resulted in a more or less explicit description

of the obstructions that prevent graphs satisfying the degree conditions from being

traceable for given values of p 6 7. For given values of p > 8, it is much harder

to obtain (and write down) such an explicit description, but our main result still

implies that there are only a finite number of these obstructions. In principle, for

a given p, this finite set of obstructions can be found with the help of a computer,

but the numbers grow fast with increasing values of p.

By using Theorems 2.4, 3.2 and a more detailed discussion than in Theorem 1.5,

Tian et al. characterized the traceability of 2-connected claw-free graphs with mini-

mum degree sum of t independent vertices (see [17]) and generalized Dirac conditions

(see [16]), as well as the traceability of 2-connected line graphs among graphs with

the minimum degree sum of a pair of adjacent vertices, see [18].

As far as we know, the smallest 3-edge-connected graph without a spanning trail is

still unknown, but a likely candidate is the cubic (i.e., 3-regular) graph on 28 vertices

that is shown in Figure 5. In [15], the author proved that the cubic graph has no

spanning path. Since this cubic graph is 3-regular, it is easy to prove that it has no

spanning trail. If one would be able to characterize the smallest 3-edge-connected

graphs without spanning trails, then, using a similar approach, one can deduce a best

possible adjacent degree sum condition for the traceability of 3-connected claw-free

graphs.

Figure 5. A 3-edge-connected cubic graph which has no spanning trail.
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