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Abstract. Let

T(q) =Y d(k)q", lal <1,
k=1

where d(k) denotes the number of positive divisors of the natural number k. We present
monotonicity properties of functions defined in terms of T'. More specifically, we prove that

_ log(1—4q)

H(q) =T(q) Tog(2)

is strictly increasing on (0, 1), while

Fq) = %H(Q)

is strictly decreasing on (0,1). These results are then applied to obtain various inequalities,
one of which states that the double inequality

q log(1 —q)
1—gq log(q)

q log(1 —q)
1—gq log(q)

<T(q)<p

, O0<g<1,

holds with the best possible constant factors « = v and 8 = 1. Here, v denotes Euler’s
constant. This refines a result of Salem, who proved the inequalities with a = % and 8 = 1.
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1. INTRODUCTION

In this paper, we study the Taylor series
oo
T(q) = d(k)¢*, gl <1,

where d(k) denotes the number of positive divisors of the natural number k. It is
well-known that the function T has a close connection to Lambert series. We have

o)
q
(1.1) Z g lg| < 1.

k=1

A proof of (1.1) and further information on Lambert series can be found in [6],
Section 58 C. Another series representation for 7" was given by Clausen in 1828,
see [5],

o0

].-l—qk K2
:Zl_qkq . lal < 1.

In 1899, Landau in [8] proved that T can be used to determine the value of a series
involving the classical Fibonacci numbers, defined by Fyp = Fy =1, F,, = F,_1+F,,_2
(n>2),

= 1 5—1\2
ZF—z T(c) — T(c?)) = 1.53537 ..., c=(‘[2 )

k=1

Stimulated by his work on the analysis of data structure, Uchimura in [17] presented
in 1981 the following result:

00 qu
q) . lal <1,
w,; Gae

where (a; q) is the ¢-shifted factorial,
k—1 ] 00
(@;q)s = [J(1 —ad’), (a;0)0 H (1—ag’)

j=0

A related result was given by Merca, see [9]. In 2015, he proved
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and one year later, he showed that there is a relationship between partitions and 7T,

o0

T(q) = (so(k) — se(k))d®, g < 1.

k=1
Here, s,(k) and se(k) denote the number of parts in all partitions of k£ into odd and
even number of distinct parts, respectively; see [10].

The ¢-digamma function is the logarithmic derivative of the g-gamma function,
Yy = T7/Ty. The properties of T'; and v, were investigated by numerous au-
thors. For detailed information on these functions we refer to Askey (see [2]), Salem
(see [13], [14]), Salem and Alzahrani (see [16]) and the references cited therein. In
view of the series representation

q kx
1 7

o0
(x) = —log(1 — q) +1log(q) > 0<qg<1, >0,
k=1

we conclude from (1.1) that 7" can be expressed in terms of 1)4(1),

Yq(1) + log(1 — q)
log(q) '

The work on this paper has been inspired by an interesting double inequality discov-

(1.2) T(q) =

ered by Salem, see [15]. He proved

—q 1
— Y1) <=, O0<qg<l.
qlog(q) o)

1.3 0<1-—
(13) < -

Using (1.2) and (1.3) we obtain elegant upper and lower bounds for T'(q). We have

14) ot 180D gy g

¢ log(1 —q)
1—gq log(q)

1—¢q log(q) '

O0<gxl1

with a = % and 8 = 1. It is natural to ask whether these inequalities can be refined.
More precisely, we look for the largest number o and the smallest number 8 such
that (1.4) is valid. Here, we solve this problem. It turns out that S = 1 is the best
possible constant on the right-hand side of (1.4), but the factor % on the left-hand
side can be replaced by a larger number, namely by Euler’s constant v = 0.57721 ...
This reveals a connection between the divisor function and “the third number of holy
trinity (w, e, ) of mathematical constants”, see [3], page 302.

In the next section, we collect several lemmas. Monotonicity properties of the

functions

(15)  H(q)=T(q) — % and F(q) = %(T(q) - %)
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are given in Section 3. Finally, in Section 4, we apply the monotonicity of F' to
prove (1.4) with « =+, 8 = 1 and we present sharp upper and lower bounds for the
three Taylor series

oo

oo k o)
(1.6) d(k +1) —d(k)g", Y diG)d*, >
k=2

k:l k=1 j=1

k=1 . .
d
1

Jj=

The algebraic and numerical computations have been carried out using the computer
program MAPLE 13.

2. LEMMAS

Throughout the paper, we maintain the notation introduced in this section. The
following nine lemmas play an important role in the proof of Theorem 3.2 given in
Section 3. We define for real numbers ¢ € (0,1), x > 0 and integers n > 1,

n):Zcrq(j) and Dy qu
j=1

j+1 Jj+1
oqu):/ o) dz — g + 1), gqm:/ () Az 2 (9y(3) + polG + 1)

J

X

q

() = m(qx —gzx+ax—1).

We note that elementary properties of the expression ¢* — qx + = — 1 lead to proofs
of the classical arithmetic mean — geometric mean inequality and the inequalities
of Holder and Minkowski; see [4], Chapter 1, Section 14. In Section 3, we show that
the derivative of F' (defined in (1.5)) can be expressed in terms of ¢,. Geometri-
cally, Cy(n) is the error of approximating the integral flnﬂ @q(x) dz using a special
implementation of the rectangular rule. Likewise, Dy (n) is the error of approximating
the same integral using the trapezoidal rule.

Lemma 2.1. Let > 1. Then, ¢ — ¢,(z) is increasing on (0, 1).
Proof. We have for g € (0,1),

(1—-¢")* 0 q° g" ! 1—q 1+g¢

x2(z? — 1)g=! 8_q¢q(x) - z(zx+1) el (a2 - 1)

a:—l
:// (1-y9) s 2dsdt >
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Lemma 2.2. Let g € (0,1).
(i) There exists a number N, > 1 such that @, is strictly concave on [1, N,| and
strictly convex on [N, 00).
(ii) There exists a number M, € (1, Ny) such that @, is strictly increasing on [1, M|
and strictly decreasing on [M,, c0).

Proof. (i) Let z > 1. Differentiation gives

(2.1) ol () = ‘(f_l—qggq)u

with

%@)=U—nm—u1+@f+fﬂbg@_Qu_fa+lizfﬂﬁﬁﬂ>

I—q

We have

ag(z) = 4¢° log?(q)(1 — q)by ()
with log(a)

—lo

byfa) = 2 el = )+ ) +4) 0" 2
Using
—log(q) 5 2
1—gq 14¢

and

x(l—q)(1+q’”)—(1+Q)(1—q’”)=:c(x2—1)/ /t (1—s)s*"2dsdt >0

gives
(1-q)q"

by(e) > —— (1 + )1 —¢*) +¢) 4 2= T+g

It follows that a4 is strictly convex on [1,00). Since

> 0.

1—t)(t2+t+6) . B
2(t13) dt <0 and xlgrgo aqg(x) = oo,

o) =41 -3 +0) [ L

we obtain that there exists a number N, > 1 such that a, is negative on (1, N,) and
positive on (Ng,00). From (2.1) we conclude that ¢, is strictly concave on [1, Nj]
and strictly convex on [Ny, 00).

(if) We have

rooy . —"log(g) (—a(l—q)(1+¢") . 1-—¢
22 #al0) = (1—¢")? ( 1—g* ! log(q))'
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It follows that

o (1) = (qlog(q)+1—¢) >0 and lim ¢ (z) =0.

(1-q)? T30

Since ¢, is strictly decreasing on (1, Ny and strictly increasing on [Ny, o0), there ex-
ists a number M, € (1, N,) such that ¢ > 0 on [1, M) and ¢} < 0 on (M,, oc). This
implies that ¢, is strictly increasing on [1, M,] and strictly decreasing on [My, 00). O

Lemma 2.3. Let g € (0,1). If there exists an integer m > 1 such that Cy(m) > 0,
then Cy(n) = Cy(m) for n = m.

Proof. We claim that M; < m 4+ 1. Suppose that this were false; then
m+1 < M,. An application of Lemma 2.2 (ii) gives for j € {1,...,m}: g4(j) < 0.
Thus, Cy(m) < 0, contradicting our assumption.

Let 7 > 1 be an integer. Then, m+r > My, so Lemma 2.2 (ii) yields o4 (m+7) > 0.
Since

Cylm+7) = Cylm +7 1) = a(m + 1),

we obtain Cy(m) < Cy(m+1) < Cy(m+2) < ... O

Computer plots of the graphs of ¢ — Cy4(1) and ¢ — C,4(39) lead to the num-
bers 0.117 and 0.91 given in the next lemma.

Lemma 2.4.
(i) If ¢ € (0,0.117], then Cy(1) > 0.
(ii) If g € (0.117,0.91], then Cy(39) > 0.

Proof. (i) Let ¢ € (0,0.117]. We have

Ulq)

2
(2.3) Cy(1) = /1 Pq(x) dz — q(2) = (g +1)2log’(q)

with

U(g) = —(1 = ¢* + qlog(q))qlog(q) — (¢ + 1)*(g — 1 — log(q)) log(1 + q).
Applying log(1 4 ¢) < g and g — 1 — log(q) > 0 gives
(2.4) U(q) > —(1 ¢ +qlog(q))qlog(q) —a(q+1)*(¢— 1 —log(q)) = ¢V (- log(q)).

where
Viy) =1+ (1 -2y —y?)e ¥ — (1+2y)e ¥ —e™%.

336



Since 0 < ¢ < 0.117, we get y = —log(q) = —log(0.117) = 2.145 ... Using
V'(y) = (y* —3)e ¥ +dye 2 + 3¢ >0

yields

(2.5) V(y) > V(—1log(0.117)) = 0.0022. ..

From (2.3), (2.4) and (2.5) we obtain C,(1) > 0.
(ii) Let g € (0.117,0.91]. Applying Lemma 2.1 gives that

40
C4(39) :/1 Z% (a) — Wa(q)

is the difference of two increasing functions. Let 0.117 < r < ¢ < s < 0.91. Then,

Cq(39) = Wi(r) — Wa(s) = W(r,s), say.

We set
k k k
=0.117 + — I =0.835 = 0.9
"k ETIER togor t5108
k+1 k+1 k+1
=0.117 1 =0.835 ' =0.9 .
ok ST toqor % T
Then,
17 1299 4999
0.117,0.91) = | [rw. se] U | Ik sk U | I 8-
k=0 k=0 k=0

It follows that there exists an integer m such that

q € [Tm, Sm] with m € {0,1,...,717}, or
q € [r,,sh,] with m € {0,1,...,1299}, or
q€rl, sh] withm e {0,1,...,4999}.

m? m

Then, we have
Cy(39) = W (rm, sm) or Cy(39) = W(rl,,s,) or Cu(39)=W(rl, si).
By direct computation, we find

W(rk, si) >0, k=0,1,...,717,
W(r,,sp) >0, k=0,1,...,1299,
W, sl) >0, k=0,1,...,4999.

This yields C4(39) > 0. O
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Lemma 2.5. Let ¢ € [0.91,1). Then, N, > 14

Proof. Inview of Lemma 2.2 (i), it suffices to show that ¢} (14) < 0. Using (2.1)
we conclude that we have to prove that a,(14) < 0, or, equivalently, G(q) < 0, where

G(q) = —log(q)A(g) +2(1 — q)(¢** — 1)

with
A(q) = 13 — 14q + 56¢** — 56¢*° 4 15¢*® — 14¢*°.

Next, we apply Sturm’s theorem to determine the number of distinct roots of a poly-
nomial in an interval; see [18]. We obtain that A has precisely one zero on [0.91, 1].
Since A(0.91) = 1.76... and A(1) = 0, we conclude that A is positive on [0.91,1).
Using this result and

1
(1-¢)?, 091<qg<1,

1
| 1—
og(q) < 4+ 55

yields
G(q)

F% @Uk*WN®”W“U=%m say.

An application of Sturm’s theorem gives that Gy has precisely one zero on [0.91, 1].
We have G¢(0.91) = —0.0028... and Go(1) = 0. It follows that Gy and G are
negative on [0.91,1). O

Lemma 2.6. Let g € (0,1) and let j > 1 be an integer.
(i) If Ny € [j,j+1] and ¢ (z) > —w for x € [j, j+1] withw > 0, then o4(j) > —3w.
(if) If ¢4 is convex on [j,j + 1], then

@G+ 1) - o).

(2.6) Qq(j) = 3

Proof. (i) We consider two cases.
Case 1: My < j. We have

Jj+1 N .
(2.7) %w > %/} (¢l (@) da = $2U) gq(J +1)

Applying (2.7) and Lemma 2.2 (ii) gives

J+1
_W“‘Qq / z)dr — ¢u(j +1) 2 0.
j
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Case 2: j < My. We have j < My < Ny < j+1 and ¢q(j) < @q(My), pqa(i+1) <
wq(Mgy). Let e=My—j>0and § =j+1—M;>0. Then,e+6=1and

(2 8) @q(j) + ‘Pq(j +1) _ 6‘?(1(.7) + Sﬁ’q(j + 1) + 5<Pq(j) + ‘Pq(j +1)
' 2 2 2
6‘?(1(.7) + SOq(M) + 5<Pq(M) + ‘Pq(j +1)

Since ¢, is concave on [j, M,], we conclude from the Hermite-Hadamard inequality
that

. M,
(29) 69011(‘7) +250q(Mq) g/j qu(fﬁ) de.

Moreover, since ¢, is decreasing on [My,j + 1] and ¢j, +w > 0 on [M,,j + 1], we
obtain

My) +pq(j +1)
2

580(1(Mq) + ‘Pq(j + 1)
2

1 1
(2.10) —5w+ < —5w52+5%(

= %a(zw +1) - / @) +w>dx)

j+1
<Gou(i+1) < /M pq() da.

Combining (2.8), (2.9) and (2.10) gives g4(j) > —iw.
(ii) We have

—a 2 " ,
(2.11) (b - ) (f'(b) — f’(a)) B (b—a)w +L s
@bz,
:/ ( ;rb_x)(f/(m)—f’(a))dx
’ Gt by
+/<a+b>/2(x_ 2 )(f (b) — f'(x)) dz.
Applying (2.11) with f = ¢y, a = j, b= j + 1 gives (2.6). 0

Lemma 2.7. Let ¢ € [0.91,1). The function

_ —q"log(g) (—2z(1-g)(1+¢") ,  1—g¢
(2.12) Oqlr) = (1-q%)? ( 1—g* 1 log(Q))

is increasing on (0, c0).
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Proof. Let z > 0. We set s =1 — ¢*. Then, s € (0,1) and

Oq() = 14(s)

with
1a(9) = 1521~ )2 5)log(1 — 5) — s(glox(a) + 4 — 1)

Using qlog(q)/(1 — q) > —1 gives

5—4 (g) — (s> —6s+6)log(l —s) qlog(q) B
Eoai-g =TT Gy —q
(s> =65 +6)log(1—s) 5
s(s —2)

52 — 6s s tt
- 5(26—:)6/0 (1—1)(t2 — 6t + 6)2 dt > 0.
Since
0y (x) = = (1 = s)log(q)my(s),
we conclude that ©7(z) > 0.

Lemma 2.8. Let q € [0.91,1) and z > 1. Then, ¢;(z) > —0.035.

(
Proof. Applying Lemmas 2.2 (i), 2.5, 2.7 and (2.2), (2.12) leads to
(1 — g)log(q)q™
(1 —gNa)?

(2.13) 80:;(37) > SOZ(N(J = 0,4(Ng) — > 04(Ng) 2 O4(14).

Using (1 — ¢)/log(q) < —q yields

—q**log(q) (14(1 —q)(1+¢")

(2.14) —0,(14) < - 2q) = ha(q)(h2(q) + hs(q))

(1— g2 1 gl
with
14 14
—q*"log(q) l1—gq 1 141 -q)(1+g")
hl(Q):l_iquv hz(Q)zl_iqu hs(q) = 1—q14( [ —q—l)-
From the integral representations
13 1
q 1—-1¢
R (q) = dt
l(q) (1 _ q14)2 /q14 t )
—182 !
hy(q) = 7/ (1—t)t2dt,
=7 ),
(1 —¢")3h4(q) = — 15+ 574¢" — 600¢™* + 210¢*7 — 169¢*®

1 1 1
= —38220/ y12/ / (27 — 265)s'% ds dt dy
q y Jt

340



we conclude that h; is increasing and that ho and hg are decreasing on (0,1). The
functions hq and hgy are positive on (0, 1), and since lin% hs(q) = 0, also hg is positive
q—

n (0,1). Using lim hy(q) = <5
q—1

=1, we obtain for ¢ € [0.91,1),

(2.15) h1(q)(h2(q) + h3(q)) < — (ha(0.91) + h3(0.91)) = 0.034. ..

1
14
From (2.13), (2.14) and (2.15) we find @é(m) > —0.035 for z > 1. O
Lemma 2.9. Let ¢ € [0.91,1). Then, D,(10) > 0.036.
Proof. We have

D,(10) —0.036 = (/111%(3:) dx—0.036> - (Z 0q(k )4t 5%a 11)) = J1(q) — Ja(q).

Applying Lemma 2.1 gives that J; and Jy are increasing on [0.91,1). If 0.91 < r <
q < s <1, then

D,(10) — 0.036 > J1(r) — Ja(s) = J(r,s), say.

We set ) 1
+
rE =091+ og, sk =091+ .
Then,
898
[0.91,1] = | [re, sx] U[0.9999, 1].
k=0

Let ¢ € [0.91,0.9999]. Then there exists an integer m € {0,1,...,898} such that
q € [Tm,Sm]. Since J(rg,si) > 0 for k =0,1,...,898, we obtain D,(10) — 0.036 >
J (T, 8m) > 0.

Let ¢ € [0.9999,1). Using

208609
1) = Ili -
J2(1) = lim Ja(q) = s
leads to D,(10) — 0.036 > J(0.9999, 1) = 0.0013. .. 0
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3. MONOTONICITY THEOREMS
We prove monotonicity properties of the two functions defined in (1.5).

Theorem 3.1. The function

is positive and strictly increasing on (0,1).

Proof. Let 0 < ¢ < 1. Using (1.1) gives

RS . 4log(q) + (1 —q)log(1 - g)
(3.1) aH'(q ; s (1—g)log>(q) '
Let

(3.2) Ko@) =gy =0

Since

qg’“’(1+qg’“’)/1 y? +1
K (z)=— dy < 0,
S S EN MO

we conclude that K is strictly decreasing on (0, 00), so we get

~ log(1 —¢") xq”
(3.3) k:1Kq / K, ( = o) +(1_qx)1og(q) B

_ qlog(q) + (1 —g)log(1 —q)
(1—q)log*(q)

From (3.1), (3.2) and (3.3) we obtain H'(q) > 0. Thus, H is strictly increasing
n (0,1) with H(q) > lir%H(p) =0 for ¢ € (0,1). O
pP—

With the help of the results given in the previous section, we are able to prove the
following result.

Theorem 3.2. The function

Flo) =+ = = (1(0) - L)

is strictly decreasing on (0,1).
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Proof. Let g € (0,1). Then,

P = =T + a0 - T (@) — ¢ (LS Zsoq

qlog(q
with ]
Ay = —5—((1 — g +1log(q))log(1 — q) + qlog(q)).
log”(q)
Let
~(g"T = (1 +1og(q))g* +1 — g +log(q)) log(1 — ¢*) + x¢” (1 — q) log(q)
Py(z) = - 2 :
(1 —¢*)log*(q)
Since
() = pglw), B,(1) = A, and  lim By(x) =0,
we obtain -
A= [ i),
1
It follows that F’(q) < 0 is equivalent to
(3.4) Sk < [ eaa)dn
k=1 1

To prove (3.4) we consider two cases.
Case 1: 0 < ¢ < 0.91. From Lemmas 2.3 and 2.4 we obtain

Cq(n) = Cy(1) >0 for g € (0,0.117], n > 1
and
Cq(n) = Cy(39) >0 for g € (0.117,0.91], n > 39.
Thus, for ¢ € (0,0.91],

0< lim Cy(n) = /1Oo gaq(x)dx—Zgoq(k).

n—oo
k=1
Case 2: 091 < ¢ < 1. Let ]\7(1 be an integer such that qu < Ng < qu + 1.

From Lemma 2.5 we obtain ]\7 > 13. An application of Lemma 2.2 (i) and the
Hermite-Hadamard inequality gives g4(j) > 0 for j = 11,. Nq — 1. This result and
Lemma 2.9 yield

Ng—1
(3.5) Dy(Ny —1) = Dg(10) + Y 04(j) = Dy(10) > 0.036.

j=11
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From Lemmas 2.6 (i) and 2.8 we obtain

1
(3.6) 04(Ny) > —3 - 0.035.

Next, we apply Lemma 2.6 (ii). Since ¢, is convex on [N, 00), we obtain for
J2Ng+1,
. 1 . .
04(j) 2 =5 (¢4 (G + 1) = £, (4))
Using this inequality and Lemma 2.8 leads to

—~
w
-3
~

Mg

OO|*—‘

= 1, ~ 1
Z (¢ +1) = @ (7) = g (N +1) > —2 - 0.035.
J=Not

Combining (3.5), (3.6) and (3.7) gives

oo

(3.8) Z _1)+Qq(N)+ Z 0q(7)

j=1\~[q+1

1 1
> (0.036 — 3 0.035 — 3 0.035=0.014...

We have
m m+1 m+1 1
(39) So)= [ ea)de = 3 @)+ gealm 1)
k=1 1 k=1
Since lim ¢4(z) = 0, we conclude from (3.8) and (3.9) that (3.4) holds. O
Tr—00

An application of Theorems 3.1 and 3.2 leads to upper and lower bounds for the
ratio H(r)/H(s).

Corollary 3.3. For all real numbers r and s with 0 < r < s < 1 we have

4. INEQUALITIES

We show that the monotonicity property of the function F' (defined in (1.5)) can
be used to obtain sharp upper and lower bounds for T(g) and the Taylor series
given in (1.6). First, we present the best possible constant factors in the double
inequality (1.4).
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Theorem 4.1. For all real numbers q € (0,1) we have

log(1 —
q +og( q)

¢ log(1 —q)
1—gq log(q)

(4.1 1—¢q log(q)

<T(q)<B

with the best possible constant factors a = v and g = 1.

Proof. The inequalities (4.1) are equivalent to

(4.2) a<F(g<pB, 0<g<l
Since ) )
lim L—2l8=0) _
q—0 qlog(q)
we find
. . 1—g
(4.3) lim F(q) = lim ——T(q) =d(1) = 1.

q—0 q—0 q

From (1.2) we obtain
l—q
F = — .

We have
l1—gq

i
a1 qlog(q)
see [7]. It follows that

=1 and lim (1) = (1) = —;
q—

(4.4) lim F(q) = .

q—1

Using the limit relations (4.3), (4.4) and Theorem 3.2, we conclude that (4.2) holds

with the best possible bounds o =« and 5 = 1.

Next, we offer inequalities for the Taylor series whose coefficients are d(k+1)—d(k)

(k = 1,2,...). We mention an interesting property of this difference which was

discovered by Turan, see [11], page 39. For each ¢ > 0 there exists a natural number k

such that d(k + 1) — d(k) > c.

Theorem 4.2. For all real numbers q € (0,1) we have

(45) ag+ Lzeloell =) i(d(k' 1) = d()g* < o+ L0100

qlog(q) prt

with the best possible constants ag = — 1 and 5y = 0.



Proof. Let ¢ € (0,1). We define

- (1—q)log(1 —q)
(k41) —d(k))q" — .
; q

qlog(q)
Since
o0 oo o0 1
1+ 3 (dlk+ 1) = d(k)g" = Y dlk+1)¢" = Y d(k)g" = (-~ 1)T(a),
k=1 k=0 k=1 9
we get
Fo(g) = F(q) — 1
Applying Theorem 3.2 and the limit relations
lim Fo(g) =0 and lim Fy(q) =~ —1,
q—0 q—1
we obtain (4.5) with the best possible constants g =y — 1 and Gy = 0. O

The coefficients of the series given in the following theorem are the partial sums
of the divisor function which are related to the floor function. We have

Zd Zn/k],

k=1

where [z] denotes the greatest integer less than or equal to 2. These sums have a nice
geometric interpretation. They give the exact number of lattice points in the area
x>0,y >0, zy < n; see [12], page 131. The study of the average order of d(k)
dates back to Dirichlet and was continued by Hardy, Landau and others; see [1],
Section 3.5.

Theorem 4.3. For all real numbers q € (0,1) we have

q log(1 — q) q log(1 — q)
(4.6) A(l_q)2+(1_qlog lez;d id* <”1—q)2+(1—q)10g(q)

with the best possible constant factors A = v and p = 1.

Proof. Let ¢ € (0,1) and
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Since

1 .
T L) = > di)d",
q k=1j=1
we find L(q) = F(q). Applying Theorem 3.2, (4.3) and (4.4) leads to (4.6) with the
best possible constant factors A =~ and p = 1. O

We conclude the paper with a companion to (4.6).

Theorem 4.4. For all real numbers q € (0,1) we have

qlog(1—q) log’(1—q) < dij) qlog(1 —q) log?(1—gq)
47) Ao < g* < -
@7 l—gq log(q) kzzzjzl L N log(q)

with the best possible constant factors Ag = —v and py = —1.

Proof. Let g € (0,1). Using
o0 d .
log(1—)T(g) = 3. 5 )

gives for

1oy (K)o e
Lo(q) = m(zzk—jqk+ log(q) )

the representation Lo(q) = —F(g). From Theorem 3.2 and (4.3), (4.4) we conclude
that (4.7) is valid with the smallest constant A\g = —v and the largest constant
Ho = —1. U
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