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Abstract. Let T, be the space of all trigonometric polynomials of degree not greater
than n with complex coefficients. Arestov extended the result of Bernstein and others and
proved that ||(1/n)Ty,|lp < ||Tallp for 0 < p < oo and T, € Ty. We derive the multivariate
version of the result of Golitschek and Lorentz

1
H ‘Tn cos o + EVTn sin «

p< ITnllp, 0<p< oo

1§

for all trigonometric polynomials (with complex coeffcients) in m variables of degree at
most n.
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1. INTRODUCTION

Let 7, (R™) denote the space of all trigonometric polynomials of (01, ...,0,,) € R™
with degree not greater than n and complex coefficients, and let IL,(C™) denote the
space of all algebraic polynomials of (21, ..., z;,) € C™ with degree not greater than n
and complex coefficients.

The norm in the space C™ of z = (21, 22, ..., 2m) € C™ is defined by

(1.1) B

i = max {2},
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and the norm (or quasi-norm) in the space L,(T™) of a function f(61,02,...,60,,) is
defined by

1/p

1
/ |f(91,...,9m)|pd91...d9m , 0<p<oo,
Tm,

w2 = [W

——t——
where T =T x T x ... x T, T = [a,b] with b — a = 2r. For the limiting cases, the
supremum norm || f|| is defined as usual by

(1.3) [fllo=esssup  [f(01,...,0m)], f € Lo(T™),
(61,--,0m ) ERC™)

and the quasi-norm || f||o is defined by

(1.4) ||f||0—exp[@/Tm1n|f(91,...,0m)|d91...d@m, e Lo(T™).

In the case m = 1, Golitschek and Lorentz in [3] established, for each real o and
trigonometric polynomial T,, € T(R), the inequality

(1.5) ‘

1
Tncosa—f——T,'LsinaH < Tullps 0<p<oc.
n P

For p = o0 and a = %n, the relation (1.5) is called the Bernstein inequality; for
l<p<ooand a= %n, it has been established by Zygmund (see [6]); for 0 < p < 1
and a = 17, it has been proved by Arestov (see [1]); and for p = oo, the special case
for real polynomials T;, is the inequality of Szegt-van der Corput-Schaake (see [4]),

(1.6) n?T,(0)? + T, (0)*> < n?|Tu||%, 6T

In the present paper, using the method of [3], we extend (1.5) to the multivariate
T, € To(R™) and obtain the inequality

(1.7) H

Our proof yields C = 1, which is the best possible. Here VT, is the gradient of T},

OT, OT, Ol
0017 00,7 90,/

1
Tycosa+ —VT, sina‘
n

(M)H < |C|HTan, 0<p<oo.
15 lp

(1.8) VT, = (
and

1
(1.9) Thcosa+ —VT,sina
n

a—gl,Tncosoz - 892,...,Tncosa—|— w00,

sina 0T, sina 0T, sina 9T,
= (Tn cos o + — ) .
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2. INEQUALITIES IN Lg

Let A, B be two real numbers with B # 0. We consider the operator A on 7, (R™)
defined by

B
(2.1) S, =ANT,) = AT, + gVTn, T € Tn(R™).
For any trigonometric polynomial 7},(61, 0, ...,0,,) € T(R™), we can write
(22) Tn(917 02; e aem) = Z lejz...jmei(j191+j292+m+jm9m)7

01l +lgz |+ Aim <0

and with T,, we associate an algebraic polynomial of degree not greater than 2mn,

(2.3)  Pomn(z1,22,- -y 2m) = Z Ciringum 2T DT e,
01 l+gz |+ A im|<n

So
(2.4) Popn (€19, 692 ei‘g”) = ei"(‘91+92+"'+‘9’")Tn(91, 02, 0m).
and

oT, . ine 2 0P
2.5 — _ in(614+02+4...4+6m) [P _ck mn
(2:5) 00y, e 2 (2) n Oz, 1

AT, . iB OPomn . iB OPomn

(2.6) Mz(A—lB—i—l— ‘1 2 ,A—IB-I-I— =2 2 ey

Ty n Popn 021 n Popn, 0Ozo

A—iB+ — )
e n Pomn Ozp

where

2= (21,22, 1 2m), zx=¢e% k=1,2... m.
For a fixed k, 1 < k < m, we can write

n

(27) Pan(Z) = Z Cik (Zl/c)zik-‘rn’
Jk=—n
where 2z}, = (21,...,2k—1, 2kt1s-- -, 2m) € C™71 ¢ (21) € Momp—n—j (C™71).

Then Py, (z) is an algebraic polynomial of degree not greater than 2n in zj, and
let (¥ (2,), 7 =1,2,...,2n be its zeros. It follows from (2.6) that

. 2n i . 2n i
A(T, B i0) B i
% - (A—iB+1—Z%,...,A—iB+1—Z%>,
n nD e — a7 (2) nim et —aV ()
where z, = (elf1, ... elf—1 efk+1 elfm) k=12... m.
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Lemma 2.1. Let A, B be two real numbers. For a given 6;, € R,

. 2n i
. iB elfx
(29) 1I<I}€3<thl A — lB + 7 z; m 5
j:
is subharmonic with respect to each z; in the regions |z;| < 1 and |z;| > 1,
j=...1,2,...,m.
Futhermore,
. 2n i
1 ) iB elfr
(210) F(Zl,ZQ, .. .,Zm) = W /Tm 12}€E%<Xm1n A-lB-f—; z_: m doy ... do,,

is subharmonic with respect to each z; in the regions |z;| < 1 and |z;| > 1.

Proof. For a given 05 € R,

. 2m 0,
fe(z1,22,...,2m) =A—1B + %jz_:leie(:i—zj
is analytic with respect to each z; in the regions |z;| < 1and |z;| > 1,7 =1,2,...,m,
k=1,2,...,m. Thus In|fi(z1, 22, ..., 2m)| is subharmonic with respect to each z;
in the regions, j =1,2,...,m, k=1,2,...,m.
By definition [2] it is easy to see that if fi(w), k =1,2,...,m are subharmonic in
some region of the w-plane, then 1I<r}€zzxm{ fr(w)} is subharmonic in the region.

These facts imply that the function in (2.9) and its integrals with respect to
parameters (for positive measures) are subharmonic with respect to each z; in the
regions |z;| < 1 and |z;| > 1, j =1,2,...,m. The proof is complete. O

Lemma 2.2. Let A, B be two real numbers, and n be any positive integer. Then

1
R / In |A(T,)

Jo0 61 dfs ... dby,

. 1
<mln|A—iB|+ W/n In|T,|d#; dos ... db,,

for every T,, € T(R™).
Proof. Since Inz is an increasing function for = > 0,

iB 3% et iB N el

2.12) 1 A—iB+ — — | = In|A —iB + — _
(212) I max |4 =18+ 0D G| = s WA B )
J= J=
m . 2n :
. iB elfe
< E lnA—lB'F?E m
k=1 j=1 J
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holds for |z;| # 1. By [3], Theorem 2,

1 iBX  eif
(213) 2—7_[‘/7111114—134—;;@}(19]@<IH|A—IB|, k:1,2,...,m
holds for any (z1, 22,...,2m) € C™.
Therefore,
. 2n i
1 iB elfx
(2.14) Ik(z,’g)z—/lnA—iB+— +‘d9kgln|A—iB|
2 Jr n Z —af ()
holds for any z;, = (21,22, ..., 2k—1, Zk41,-- -, 2m) €C™, k=1,2,...,m.

By (2.8), Lemma 2.1, (2.12) and Fubini’s theorem, (2.14) implies

G [, WA

1
= In max
m 1<k<m

1
(2m)™

iB & elfr
A—iB—l——Z#‘df)ldf)g...d@m
nS e —a(z)

o 01 dBs . .. b, — / In |T,| 6y dfs . .. db,,

—~~
DO
A

o

3

mooq iB & eifr
; (2Tt)m m n ; elek — a‘gk) (Z;C) "
m
1 /

= 27/ Ii(2,)d6; ... A1 dBpiq - .. db,,
1 (21’[)"7'71 Tm—1

<mln|A—iB|,

where z, = (el01,eif2 . elfr-1 k1 elfm) k=12 ... m.

The proof of Lemma 2.2 is complete.

O

Lemma 2.3. Let A, B and s be real numbers, and n be any positive integer.

Then

1

(2.15) R

/ In |A(T;:)|l(m,) d91 d92 ‘e dgm
Tm °°

<mln|A—iB|+ / In|T;| A6y dbs . .. df,
T‘In

(zn)m

for every T,, € T(R™), where

(2.16) TH(01,0a,...,00) =T (61,02,...,0m)+ e (@102t 40m)
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Proof. For any T,,(61,...,0m) € To(R™),

Tn(el, Ooy. .., em) = E Cj1j2.“j"Lel(]101+j292+~~~+]7n97n).
0 g1 [+g2 |+ +im|<n
Setting
. . n+jm .
* — § n+tji ntj2. -z, is 2n 2n
Pan(zlvz%"'vzm)* Cjrja...jm 1 Z2 +etz 2y,

o< g1 +1g2 |+ A jm <N

it is not hard to verify that (2.4)—(2.6) and (2.8) hold with T} and P,
The same method in the proof of Lemma 2.2 completes the proof of (2.15). The
following theorem contains the statement that

1
(2.17) H T, cosa + HVTn sin oz}

< || T,
l(;:)HO ~ || TLHO7

holds for each real number « and each trigonmetric polynomial T,, € T (R™).

Theorem 2.1. For all T,, € T,(R™), any real s and real A, B satisfying

(2.18) |A—iB| =1,
1
1
< —— In|T,|d6: dbs ... db,n,
7y Tl 0
and
1
(2.20) W/ In [A(T;)| 00 461 dBs ... d6,
1

< In|T)|d6;dbs ... db,,
(27‘[)"7‘ /m n| n| 1 2

where T)¥(01,...,0n,) is the trigonometric polynomial in (2.16).

Proof. By (2.18), (2.19) and (2.20) follow from (2.11) and (2.15), respectively.
O
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3. INEQUALITIES IN L,

To obtain the inequalities in L,, 0 < p < oo, we first establish the following
theorem.

Theorem 3.1. For all T,, € T,(R™), and real A, B satisfying (2.18)

1
(3.1) W/ " |A(T) (01,62, .- )|y A1 A6 ... B,
1
< " |T,,(61,02...,0,,)|d0; d6s ... d6,,,
(2n)m/mn|(12 )| 61 6
where
(3.2) In" ¢ = max{0,Int}, t € [0,00).

Proof. By (1.7) in [3] for any real & and w € C
(3-3) In™ |w| = i/ In|w+ €| ds = i/ In|w + e%e'®| ds.
21 T o1 T

We apply (3.2) to t = |A(Ty,)

1) and note that

B oT,
Jr
In™ [A(T)] om) _12}2{7”{1“ ‘AT + }
Thus for any real «,
1 B oT,
+ = — - i 1"(91+ 46, ) is
In™ |A(T)] o = 1I<r}€fxgxm{ 271/Tln}ATnjL o0t e ds}
1 BaT ia in(91+...+9m) is
S on Tlg}%xm{ln‘ATnJr oo e e }ds,
and Fubini’s theorem gives
(3.4)
1/”IA() d, a6 d9<1/ ! Edf;...d0,|d
n m X 5 T N P s
(27[)777, - l( ) 1dvg . m o . (27‘[)m . 1 m S
where
B 0T,
E = max {IH‘AT +_8 +e i 1n(91+ +0,,L) }
<k<m 89k
Setting

T;: (917 SRR gn) = Tn(917 SRR gm) + eisein(91+...+9m)
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and writing A +iB = €@, (2.20) gives

1 B IT, o )
2 n ia in(014...460.m) Lis
(3.5) R /T 1I<r}€zzxm{1n‘ATn+ o 00, +e'% e

}d91 6, ... d6,,

<L
- (2

/ In [T, + el*emt+0m)1 49, b, . .. db,,,
T

where s is a real parameter.
If we combine (3.4) and (3.5), and use Fubini’s theorem, we obtain the desired
inequality:

—(Zi)m /m In™ |A(T},)

1 1 o
< [— / In [T, + e¥elnrtbat-+6m)1 40, dh, . .. dem] ds

Jo0 61 dfs ... dby,

S 2n 7L (2m)™
1 1 L
_ / _/ [T}, + e @1+02+50m) | 4s | 40, dfs ... Oy,
2r)™ Jpm |27 Jp
1
=— Int |7, A6, db; ... db,,.
(21’[)"7‘ /m n | n| 1 2 m
This completes the proof. (I

Let ®(u) with ®(0) = 0, and ¥(u) = ud’(u) be continuous positive increasing
functions defined on [0, 00). By (3.5) in [3], we have

o u
(3.6) (u) :/ In* gd\Il(s).

0
Using the method of the proof of Theorem 5 in [3], by Theorem 3.1, we obtain
immediately the following theorem:

Theorem 3.2. Let ®(u) with ®(0) = 0 and ¥(u) = w¥’(u) be continuous pos-
itive increasing functions defined on [0,00). For each T, € T(R™), and real A, B
satistying (2.18),

B
(3.7) / @(‘ATn + =V, zg;">) ;... b, < / O(|T,]) by ... Ab.

Since ®(u) = u?, 0 < p < oo is a function that satisfies the condition described in
Theorem 3.2, by (3.7) we have the following corollary.
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Corollary 3.1. For each real o and each T, € T,(R™), we have

< | Tullp, 0<p< oo

(3.8) H

1
T, cosa+ —VT, sina‘
n

l((;on) Hp

In particular, for each T,, € T,(R™), we have

(3.9) IIVT,

» < || Thllp, 0<p<oo.

1§

4. INEQUALITIES IN L
For each T,, € T,(R™), we can write it in the form

E i(j101+5202+...+imOm
Tn(el, Ooy. .., em) = lejg...jmel(]l 1+j202+...+j ).
0 g [+lg2 |+ Hlim <0

Fix k, 1 < k < n, and write

n

(4.1) T, = Z cj, (21.)el R0

Jr=—n

where z, = (e!%,... el%1 ¢lfxr1  efm) € C™~1. Then T, is a trigonometric
polynomial with degree not greater than n in each 8y, 1 < k < n. The Bernstein-
Szegd inequality (see (1.5)) of one variable implies

B oT,

(4.2) AT, + -5

< Tallsos k=1.2,....m,

where A, B are real with |[A +iB| = 1.

From (4.2) we get the following Bernstein-Szegt inequality for several variables.

Theorem 4.1. For all T;, € T,(R™) and real A, B satisfying (2.18),

B
(4.3) H’ATH + =V, | < 1Tl
50 )
Thus far, we establish the inequality
B
(4.4) || AT+ =9 | <ITallp 0<p< o0,
n Ise” lp

for all T, € Tp(R™), and real A, B satisfying (2.18).
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Remark 4.1. For z = (21, 22,...,2m), let

(4.5) B

m 1/r
lsm) = <Z |Zk|r) s 1 < r < Q.
k=1

It follows from (1.7) that

1
Tncosa—I——VTnsina‘ gml/"HTan, 0<p< oo
n

(4.6) H

ol

However, in [5], Tung obtained the following inequality:

1
(4.7) H Tncosa+ —VT, sina‘ “’”H < | Tnllp,
n Iy P
where o = %n, p =00, Tn(01,...,0,) = Pu(el®,... %) and
Po(z1:22, 5 2m) = D Cijagm A 2

Jit.Fim<n
0<jk, k=1,....m

It would be of interest to investigate similar problems for the case of polynomials in

several complex variables.

Remark 4.2. Using (1.7) for all trigonometric polynomials that have degree at
most n in each variable, i.e., for trigonometric polynomials of the form

— E i(j10147202+...+jmbm
Tn(el, Oa, ..., Gm) = Cj1j2...jm€‘1(]1 1tJ202 J )

[Fm|<n,
k=1,....m

for 1 < r < oo, we have

| <m Tl 0<p <o

1 .
T, cosa+ —VT, sina
nm 2 »

(4.8) H
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