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Abstract. A nonincreasing sequence m = (dy, ..., dn) of nonnegative integers is a graphic
sequence if it is realizable by a simple graph G on n vertices. In this case, G is referred to
as a realization of m. Given two graphs G and G2, A.Busch et al. (2014) introduced the
potential-Ramsey number of G; and G2, denoted by rpet(G1,G2), as the smallest nonneg-
ative integer m such that for every m-term graphic sequence 7, there is a realization G of 7
with G1 C G or with Go C G, where G is the complement of G. Fort > 2 and 0 < k < L%J,

let K, * be the graph obtained from K; by deleting k independent edges. We determine
Tpot (Kn, K;k) fort >3,1< k<[] and n > [V2k]+2, which gives the complete solution
to a result in J.Z. Du, J. H. Yin (2021).
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1. INTRODUCTION

Graphs in this paper are finite, undirected and simple. Terms and notation
not defined here are from [1]. A nonincreasing sequence m = (di,...,d,) of non-
negative integers is a graphic sequence if it is realizable by a (simple) graph G
on n vertices. In this case, G is referred to as a realization of w. Two well-
known characterizations of graphic sequences were given by Havel and Hakimi,
see [12], [13], and Erdds and Gallai, see [7]. Given a graph H, a graphic se-
quence 7 is potentially H-graphic if there is a realization of 7w containing H as
a subgraph. The complementary sequence of 7 is denoted by 7 = (dy,...,d,) =
(n—1-=dp,...,n —1—dy). Additionally, we let o(m) denote the sum of the
terms of .
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Degree sequence problems can be broadly classified into two types, first described
as “forcible” problems and “potential” problems by Rao in [14]. In a forcible
degree sequence problem, a specified graph property must exist in every real-
ization of the degree sequence w, while in a potential degree sequence problem,
the desired property must be found in at least one realization of m. Results
on forcible degree sequences are often stated as traditional problems in extremal
graph theory.

There are a number of degree sequence analogues to well-known problems in ex-
tremal graph theory, including potentially graphic sequence analogues of the Turan
problem, see [8], [9], [10], the Erdés-Sds conjecture, see [16], Hadwiger’s conjecture,
see [6], [15] and the Sauer-Spencer theorem, see [3]. Motivated in part by this pre-
vious work, Busch et al. in [2] proposed a degree sequence analogue to the classical
graph Ramsey number. Given two graphs G; and Ga, Busch et al. in [2] defined the
potential-Ramsey number of G1 and G2, denoted by ot (G1, G2), to be the smallest
nonnegative integer m such that for every m-term graphic sequence 7, there is a real-
ization G of m with G; C G or with Go C G (that is, either 7 is potentially G-graphic
or T is potentially Go-graphic). When the phrase “a realization” in the prior sen-
tence is replaced with “all realizations”, the smallest such integer m is the classical
Ramsey number r(G1,G2). Busch et al. in [2] gave a lower bound of r,ot (G, K)
and determined 7ot (Kr, Kt), Tpot (Cn, Kt) and rpot (P, Kt), where K, Cp, and P,
are the complete graph, the cycle and the path, respectively, on n vertices. Du
and Yin in [4] determined 70 (Cy, K, V K) and 7pot (P, K, V Ky), where V is the
join operation. For 0 < k < L%J, denote by Kt_k the graph obtained from K; by
deleting k independent edges. Recently, Du and Yin in [5] gave a lower bound of
oot (G, K ) for 0 < k < |£], and then determined Tpot(Kn, K;7) for 1 < k < 2.
The i-dependence number of a graph G, denoted a(?) (@), is the maximum order of an
induced subgraph H of G with A(H) < ¢, where A(H) is the maximum degree of H.

Theorem 1.1 ([2]). Let G be a graph of order t with no isolated vertices such that
aM(G) < t—1,and letn > 2. Then o (K,, G) = max{2n+t—aM(G)—2, n+t—2}.

Theorem 1.2 ([2]). For n > t > 3, rpot(Kn, Kt) = 2n +t — 4 except when
n =t =3, in which case rpot (K3, K3) = 6.

Theorem 1.3 ([5]). Let t > 2 and 0 < k < ||, and let G be a graph of
order n with no isolated vertices such that aV(G) < n—1 for 1 <i < A(G) — 1
and i+ 2] < 2t — 3. Then

root (Gy K% > max{max{f(i): 1 <i < A(G)—1andi+ ka < 2t—3}, n+t—c},

1
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where

) 2k
2t +n — oD (GQ) - {—J —1 ifiiseven orif | 22| is odd or
i
f@) = if i | 2k + 1 does not hold,

, 2k
2t +n — oD (@) - L—J — 2 otherwise,
i

2 ifk=0,
CcC =
3 ifk>1

Theorem 1.4 ([5]). Ift > 3,1 < k<2 andn >4, then

and

o +t—4 ift<n+k,

Tpo Kanik =
pouln, K 7) {2t+n—k—4 ift>n+*.

For 1 < k < |£], we now determine rpot (Ko, K; %) completely.
Theorem 1.5. Ift > 3,1 <k < |£] and n > [V2k] + 2, then

Tpot(KmKt_k)

2n+t—4 jft<n+L\/ﬁJ+LiJ—2,

2t+n—L\/ﬁJ—h;§_kJJ—2 ift}n—f—L\/ﬂJ—i—{ 2k J—z.

Clearly, Theorem 1.5 is an extension of Theorem 1.4.

2. PROOF OF THEOREM 1.5

In order to prove Theorem 1.5, we need some useful lemmas and known results.

Let m = (di,...,d,) be a nonincreasing sequence of nonnegative integers and let
dy > ...>d),_, be a rearrangement in nonincreasing order of dy — 1,...,dg,+1 — 1,
ddgy+2, -, dn. We say that 7’ = (d},...,d},_;) is the residual sequence of .

Theorem 2.1 ([12], [13]). Let # = (du,...,dn) be a nonincreasing sequence of
nonnegative integers. Then w is graphic if and only if 7' is graphic.

Theorem 2.2 ([11]). If # = (d1,...,d,) Is a potentially H-graphic sequence,

then 7 has a realization containing H on those vertices with degrees dy, ..., d|v(m))|-
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Theorem 2.3 ([17]). Let p > n and m = (dy,...,d,) be a graphic sequence.
(1) Ifd, 2 n— 1 and da,, > n — 2, then 7 is potentially K, -graphic.
(2) Ifd, 2n—1andd; >2(n—1)—i fori=1,...,n— 2, then 7 is potentially
K, -graphic.

Theorem 2.4 ([18]). Let n >t and w = (d3,...,d,) be a graphic sequence with
dio>t—1landd; >2t—2. Ifd; >2t—3—ifori=1,...,t—1, then « is potentially
K, _graphic.

Let 1 < k < |%], and let m = (o1,...,0¢,de41, - - -, dn) be a sequence of nonneg-
ative integers so that o(m) iseven, n —¢t > o1 > ... 2 0t—2k 2 0, n—t+1 >

Ot—2k41 2 .. = =1, 0t—2k = 0t—2k+1—land gs +t -2 =di11 = = dt+91+1 >
divor422 ... 2 dn. We define sequences 7, ..., 7 as follows. Let mg = 7. Let

™ = (gg,...,gt,d§+1,... d(l))

where d; Jr)l .= d(l) isa rearrangement in the nonincreasing order of dg41—1,. ..,
diyo, — 1, dt+g1+1, ...,dy. For 2 < i < t, given

i—1 i—
Ti—1 = (in" '7Qtad1(5+1 )7" adszz 1))7

let
T = (Qi+17 <oy Ot d§217 I d%))a
where dii}l > ... d%) is a rearrangement in the nonincreasing order of dt+1 -1,...,
d(z 1) 1 d(z 1) d(z 1)
thoi — 1o Qiggir1se e n

Lemma 2.1 ([17]). For each i, the definition of m; = (0it1,-- -, Ot, d§+17 . d( )
is as above. Let t; = max{j: d,ﬁl — d1(t+] 1}. Thenty 2t 1 > ... 2 to > 01+ 1.

Lemma 2.2 ([5]). The definition of m = (dﬁ?l, . d(t)) is as above. Let dy41 =1
and d(fgl =m. Ifty <m, then g1+ ...+ < ({—m+1)m—1.

Lemma 2.3 ([5]). The definition of m = (dﬁzl, . .,dsf)) is as above. If m; is
graphic, then 7w has a realization G so that the t vertices with degrees 91, ..., 0; form
an independent set of G.

Lemma 2.4 ([17]). Let m = (d3,...,d,) be a nonincreasing sequence of nonneg-
ative integers, where di =t and o(r) is even. If diy1 > t — 1, then w is graphic.
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Lemma 2.5. Let |v2k| = b and ¢ = [V2k] + LL\%—MJ. If k > 1 is an integer
and a = ¢ + 1, then a® — 2a — 3 < 8k with equality if and only if 2k = b? + 2b and
a = 2b+ 3.

Proof. If k=1, then b =1, ¢ = 3 and a = 4, implying that > —2a —3 =5 < 8.
Assume k > 2. We prove Lemma 2.5 by the parity of b.

Case 1: bis odd. Tt follows from b < vV2k < b+ 1 that b2 +1 < 2k < (b+1)%—2.
If02+1< 2k <b?>+b—2, then k > 5 and L%J:b. Hence, a = c+1=2b+1
and a? — 2a — 3 = 4b> — 4. By 2k > b% + 1, we have 8k > 4(b> + 1) = 4b* + 4 >
a? —2a—3. If B> + b < 2k <b*+2b— 1, then [ 28] = b+ 1. Hence, a = 2b+ 2 and
a? —2a — 3 = 4b% + 4b — 3. By2k‘2b2+b,Wehave8k'>4b2+4b>a2—2a—3.

Case 2: b is even. It follows from b < v2k < b+ 1 that b2 < 2k < b% + 2b. If
b? <2k < b?>+b—2, then k > 2 and L%J:b. Hence, a =2b+1and a> —2a —3 =
4b% — 4. By 2k > b?, we have 8k > 4b%> > a? —2a — 3. If b2 + b < 2k < b% +2b— 2,
then k > 2 and [ 22| = b+ 1. Hence, a = 2b+ 2 and a® — 2a — 3 = 4b> + 4b — 3. By
2/<;>b2+b,Wehave8k24b2+4b>a2—2a—3. If2k:b2+2b,thenk>4and
L%J:b—i—z Hence, a = ¢ + 1 = 2b+ 3 and a? — 2a — 3 = 4b? + 8b = 8k. O

Lemma 2.6. Let ¢ = |V2k]|+ LL 2k

2ij andcd = |\/2(k — 1)J+LMJ Then

[v2(k=1)]
d+1>cfork>2

Proof. It is obvious for k = 2. We assume k > 3. Let b = [v2k| and ¥/ =
|\/2(k—1)]. If b=V, then ¢ < b/ + L%}#J—c+las2k\ 2k —1)+ V. If
b=1b"+1, then LTJ < LQ(k 1)J, implying that ¢ + 1 > ¢. Clearly, b > b’ + 1 does
not hold. d

Lemma 2.7. Let n >t > 3,1 < k < L%J and m = (dy,...,d,) be a graphic
sequence withn —2 > dy > ... 2 dy = ... = dgy42 = dag,43 = ... = dp. If
di > 2t — |V2k] — LL\/_JJ — 1, then 7 is potenma]]y K, k_graphic.

Proof. Put d; = I. We first claim that [ > t — 1. By t > 2k, it is easy to
check that [ > ¢t — 1 for kK = 1,2,3,4. Assume £k > 5. By t > 2k > 10 and
LL\/_JJ 2k/L\/_J 2k/(v2k — 1) < V2k + 2, we have that | > 2t — |v/2k] —
[LFJJ 122t Vt—(Vt+2)—1=2t—2vt-3=(t—1)+(Vt-1)2=3>t—1.
Therefore, I > ¢ — 1. If | > 2t — 3, by Theorem 2.3(2), then 7 is potentially
K-graphic, implying that 7 is potentially K, *_graphic. Assume [ < 2t — 4. Let

mo = (01,-..,0t,di+1,-..,dy), where
di—(t—1) if1<i<t— 2k
P di—(t—2) ift-2k+1<i<t
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By Lemma 2.3, we only need to prove that m; is graphic. Put d§21 m. Ifty > m+1,

then 7, is graphic by Lemma 2.4. Assume t; < m. Clearly,
o1+...+or=di+...+di—t(t—1)+2k = tl —t(t — 1) + 2k.

By Lemma 2.2, we get (| —m+1)m —1 > tl —¢(t — 1) + 2k. It is easy to see that
(I—=m+1)m—1, considered as a function of m, attains its maximum value when m =
1(1+1). Hence, (3 (z+1))2 > tl—t(t—1)+2k, ie., 12— (4t —2) > —4t(t—1)+8k+3.
Leta = |V2k|+ | = L\/_J |+1. Clearly, a > 4. Byl > 2t—a, we can see that {*— (4t—2)l
attains its maximum value when [ = 2t — a. Hence, (2t — a)? — (4t — 2)(2t — a) >
—4t(t — 1)+ 8k + 3, i.e., a®> — 2a — 3 > 8k. By Lemma 2.5, we have a? — 2a — 3 = 8k,
2k = |V2k|?+2|V2k] and a = 2|v/2k]+3. Then we must havel = 2t—a,d; = ... =
Aoz =lL,m=t, =12 —a+1) =t - [V2k] —1,d), =m, and d{"), = ... =
d\"), =m—1. Thus, m = (t— [V2k] — 1, (¢t — [V2k] —2)'"LV2EI=2 @y, o dy),
where dot_q13 < t — L\/ﬁj — 3. Let 7, be the residual sequence of m;. Then

= ((t — |V2k) = 3)-WVRI=2 @, oo dl). Tt follows from o(n}) being even
and Lemma 2.4 that 7 is graphic, and hence so is 7; by Theorem 2.1. ([

Lemma 2.8. Letn >t > 3,1 < k < L%J and 7 = (di,...,d,) be a graphic
sequence with n —2 > dy > ... > d; = = dg,+2 = dag,+3 = ... 2 d,. If
di—g =2t — |V2k] — LL\;%JJ — 1 and d; >t —1, then 7 is potentially K, *_graphic.

Proof. Let di_3 =l and d; = z. If Kk = 1, by | > 2t — 4 and Theorem 2.4,
then 7 is potentially Kt_l—graphic. Assume k > 2. Then t > 2k > 4. Let mg =
(01,--,0t,dt41,...,dy), where

di—(t—1) if1<i<t—2k,
Q-:
U ldi—(t-2) ift—2%k+1<i<t.

By Lemma 2.3, we only need to prove that m; is graphic. Put d(+1 =m. Ift; >
m + 1, then 7, is graphic by Lemma 2.4. Assume t; < m. If z > 2t — [V2k] —
LL\;%JJ — 1, then 7 is potentially K, *-graphic by Lemma 2.7. Assume z < 2t —
V2] — | WJJ —2. Thent >5byxz>t—1. Clearly, o1 + ...+ 0t = (t —3)l +
3x —t(t — 1) 4+ 2k. By Lemma 2.2, we get

(x—m+1)m—-1>2{t—-3)+3x—1t{t—1)+ 2k,
that is
(1) (@—m+1)m—-1+31—x) >t —t(t—1)+ 2k.
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If I > 2t — 3, by Theorem 2.4, then 7 is potentially K, k_graphic. Assume [ < 2t — 4.
Ift =5, then k=2,1 =5 o0r 6, and x = 4, it follows from (1) that (5—m)m > 7 or 9,
which is impossible. Assume ¢ > 6. We now show that (5(I+1))2—1 < tI—t(t—1)+2k,
that is, 12 — (4t — 2)] < —4t(t — 1) + 8k + 3. Let a = [V2k]| + hf%ﬂ + 1. Clearly,
a > 5. By Lemma 2.5, we have a® —2a — 3 < 8k, that is, (2t —a)? — (4t —2)(2t —a) <
—4t(t—1)+ 8k +3. Since 2t —a < [ < 2t — 4, we can see that [2 — (4t — 2)[ attains its
maximum value when [ = 2t —a. Hence, [2 — (4t —2)l < (2t —a)? — (4t —2)(2t —a) <
—4t(t — 1) + 8k + 3. Thus, (3(1 +1))2 — 1 < tl — ¢(t — 1) + 2k. By (1), we have
(z—m+1)m—-1+43(—2z) > ($(1+1))*—1,ie, (z—m+1)m—3z > (§(1+1))? - 3L
Since (z — m + 1)m — 3z attains its maximum value when m = $(z + 1), we have
(3(x+1))? =3z > (§(+1))*> = 3L, i.e,, 22 — 10z > [* — 101, which is impossible as
Il>z>2t—125. (]

<
2

Lemma 2.9. Letn >t > 3,1 < k < L%J and m = (dy,...,d,) be a graphic
1

sequence. If d,_3 > 2t — |V2k] — LL\%C_MJ -

and d; >t — 1, then w is potentially
Kt_k—graphic.
Proof. We use induction on k. If £ = 1, by d;—3 > 2t — 4 and Theorem 2.4,

then 7 is potentially K, !_graphic. Assume that k& > 2 and Lemma 2.9 holds for
k—1. If d = n — 1 or if there exists an integer j, ¢ < j < d; + 1, such that

d;j > dj;1, by Lemma 2.6, then the residual sequence n’ = (df,...,d],_,) satisfies
d =diyr —1for 1 <i<t—1,d,_, =di—3—12>2t—[V2k]| — [LWJJ 2>

2t — 1) ﬁj—t%ﬁj—mmdg,l:dtq/(t—1) 1. By
t —1 > 2(k — 1) and the induction hypothesis, 7’ is potentially K, (f 1)-g1raphic.
Thus, by Theorems 2.1 and 2.2, 7 is potentially K, *_graphic. So we may assume
that n—2>dy > ... 2dr = ... =dg,42 2 dag,+3 > ... = dp,. By Lemma 2.8, 7 is

also potentially K, *-graphic. O
Lemma 2.10. Ift > 3,1 <k < L%J and n > [V2k]| + 2, then

TDOt(Km K;k)

o 4t —4 ift<n+L\/ﬂJ+h 21<;JJ_2’
=
% +n— V2| — L%J 2 ift=n+ |V + L%J -

Proof. By o”(K; %) = 2 and Theorem 1.1, rpot(Kn,K;k) >2n+t—4. Let
|V2k] =b. Then1 < b<n—2(byn > [V2k]|+2). Clearly, b* < 2k < (b+1)?—

b2 4 2b. We consider two cases in terms of the parity of b.
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Case 1: bis even. If b* < 2k < b?+b—2, then b+ |25 | = 2b < b < 2k <t < 2t—3.
IF0?+b <2k <b>+2b, thenb+ |22 <204+2 <P +b< 2k <t <2t —3. It
follows from a®(K,) = b+ 1 < n — 1 and Theorem 1.3 that 7ot (K, K; %) >
2t+n—(b+1)— 2] —1=2t+n— [V2k] - Lﬁj 2.

Case 2: bis odd. Then b* + 1 < 2k < b? +2b — 1. Clearly, [V2k] = |V2k]| + 1
by b2 <2k < (b+1)?and n > [V2k] +2=0b+3. If b2+ 1 <2k < V> +b—2, ie,
Gb+1)(b-1)+2 < 2k < (b+1)(b—1)+(b—1), then b > 7\_b+1J_b 1 and \_%J—b
Hence, (b+ 1)+ |25 ] = b+ 3] =20 <b*+1< 2k <t <2t—3. By o""D(K,,) =
b+2 < n— 1 and Theorem 1.3, rpot (K, K7 %) > 2t +n — (b+2) — Lb+1J -1
2t+n—(b+1)— |25 -2=2t+n—b— 2| -2=2t+n—|V2k] - LN%J
IFb2+b< 2k <2 +2b—1,ie, (b+1)b <2k < (b+1)b+ (b—1), then b >
Lbi—klj =band [2] = b+ 1. Hence, (b+1)+ Lb%r—klj =b+ 2] =2b+1
max{3,b? + b} < max{3,2k} <t < 2t —3. By a®*(K,) =b+2 < n—1 and
Theorem 1.3, 7pot (K, K; %) = 2t + 1 — ([V2k] +2) — LL\/;:JHJ —1=2t+n—

(LV2k] +2) = ([ Fag ) — 1 =2t 40— V2] - | For] - 2. O
We now prove Theorem 1.5.

Proof of Theorem 1.5. Lett>3,1<k < L%J and n > [v2k] + 2. Clearly,

T‘NH

N

max{2n+t—4,2t+n— |V2k] — {iJ —2}

| V2k]
2k
2n+t—4 ift<n+| +{ J
- 2% 2%
2t+n—L\/2kJ—L J—z ift>n +{ J
| V2k]
Firstly, by Lemma 2.10, 7ot (Kp, K; ) max{2n+t—4,2t+n— L J
Now, we prove that 7ot (K, K; %) < max{2n+t—4, 2t+n L J
We use induction on k. Theorem 1.4 is the case 1 < k < 2 of Theorem 1 A ssume

k > 3. We consider two cases.
Case 1: 2n+t—4 < 2t+n—|vV2k]—| 2| —2. Let 7 = (dl, ..., dm) be a graphic

[V2k]
sequence with m = 2t +n — [V2k]| — [ jﬁJJ — 2. Ifd; <t—2, then dpy1¢ =

m—1—d; > (2t+n—L\/2kJ—L%J—2)—1—(t 2) > (2n+t— 4) 1—(t—2) = 2n-3.
Bym+1—t=2t+n— [V2k] - LL\Z_JJ 2)+1—-t>2n+t—4)+1—-t>=n
we have d,, > dpp41-¢ =2 2n —3 > n — 1. Hence, 7 is potentially K, -graphic by

Theorem 2.3 (2). If d,, <n—2,thend, 10 = d,, LWk |- 2K/ V3R] -1 = M—1—=dn =
2t — [V2k]| — [L\/_Jj—l Bym+1—n C2n+t—4)+1—-n=n+t—3 >t

we have dt = d2t*L\/7kj*L2k/L\/ﬂJJ*1 > — I_\/2]€J — LL\;%JJ -1 2 t— 1. By
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Lemma 2.9, 7 is potentially Kt_k—graphic. Assume d,, > n—1and dy >t — 1.
Clearly, t > 2k > 6 and m > 2n+ 1t — 4 > 2n. If do, > n — 2, then 7 is potentially
K,-graphic by Theorem 2.3 (1). If do, < n — 3, then Ampi1-om = m — 1 —doy >
2t — [V2k] — |2 ]. Bym+1-2n> (2n+t—4)+1—2n =t — 3, we have

LV2k]
di—s = dmy1-on = 2t — |V2k] — LL\%C_MJ’ Thus, by Lemma 2.9, 7 is potentially

K{k—graphic. Therefore, rpot(Kn,ka) <2t+n—|[V2k| — LL;k_JJ _
Case 2: 2n+t—4 > 2t+n— | V2k]| — LL\/_JJ —1. It follows from Lemma 2.6 that
n+t—4>22t+n— L\/_J LL\/_JJ —1>2t+n—|/2(k-1)] - LL 2lzkl)1 JJ _

Thus, by the induction hypothesis,

T'pot(Kan ) 7npot(I(n?}Yit_uc_l))
2(k—-1) J B 2}
[V2(k=1)]

< max{2n+t—4,2t+n—L Z(k—l)J—{

=2n+t—4.

O
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