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Abstract. A nonincreasing sequence π = (d1, . . . , dn) of nonnegative integers is a graphic
sequence if it is realizable by a simple graph G on n vertices. In this case, G is referred to
as a realization of π. Given two graphs G1 and G2, A.Busch et al. (2014) introduced the
potential-Ramsey number of G1 and G2, denoted by rpot(G1, G2), as the smallest nonneg-
ative integer m such that for every m-term graphic sequence π, there is a realization G of π
with G1 ⊆ G or with G2 ⊆ G, where G is the complement of G. For t > 2 and 0 6 k 6 ⌊ t

2
⌋,

let K−k
t be the graph obtained from Kt by deleting k independent edges. We determine

rpot(Kn, K
−k
t ) for t > 3, 1 6 k 6 ⌊ t

2
⌋ and n > ⌈

√
2k⌉+2, which gives the complete solution

to a result in J. Z. Du, J. H. Yin (2021).
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1. Introduction

Graphs in this paper are finite, undirected and simple. Terms and notation

not defined here are from [1]. A nonincreasing sequence π = (d1, . . . , dn) of non-

negative integers is a graphic sequence if it is realizable by a (simple) graph G

on n vertices. In this case, G is referred to as a realization of π. Two well-

known characterizations of graphic sequences were given by Havel and Hakimi,

see [12], [13], and Erdős and Gallai, see [7]. Given a graph H , a graphic se-

quence π is potentially H-graphic if there is a realization of π containing H as

a subgraph. The complementary sequence of π is denoted by π = (d1, . . . , dn) =

(n − 1 − dn, . . . , n − 1 − d1). Additionally, we let σ(π) denote the sum of the

terms of π.
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Degree sequence problems can be broadly classified into two types, first described

as “forcible” problems and “potential” problems by Rao in [14]. In a forcible

degree sequence problem, a specified graph property must exist in every real-

ization of the degree sequence π, while in a potential degree sequence problem,

the desired property must be found in at least one realization of π. Results

on forcible degree sequences are often stated as traditional problems in extremal

graph theory.

There are a number of degree sequence analogues to well-known problems in ex-

tremal graph theory, including potentially graphic sequence analogues of the Turán

problem, see [8], [9], [10], the Erdős-Sós conjecture, see [16], Hadwiger’s conjecture,

see [6], [15] and the Sauer-Spencer theorem, see [3]. Motivated in part by this pre-

vious work, Busch et al. in [2] proposed a degree sequence analogue to the classical

graph Ramsey number. Given two graphs G1 and G2, Busch et al. in [2] defined the

potential-Ramsey number of G1 and G2, denoted by rpot(G1, G2), to be the smallest

nonnegative integerm such that for everym-term graphic sequence π, there is a real-

izationG of π with G1 ⊆ G or withG2 ⊆ G (that is, either π is potentiallyG1-graphic

or π is potentially G2-graphic). When the phrase “a realization” in the prior sen-

tence is replaced with “all realizations”, the smallest such integer m is the classical

Ramsey number r(G1, G2). Busch et al. in [2] gave a lower bound of rpot(G,Kt)

and determined rpot(Kn,Kt), rpot(Cn,Kt) and rpot(Pn,Kt), where Kn, Cn and Pn

are the complete graph, the cycle and the path, respectively, on n vertices. Du

and Yin in [4] determined rpot(Cn,Kr ∨Ks) and rpot(Pn,Kr ∨Ks), where ∨ is the
join operation. For 0 6 k 6 ⌊ t

2⌋, denote by K−k
t the graph obtained from Kt by

deleting k independent edges. Recently, Du and Yin in [5] gave a lower bound of

rpot(G,K−k
t ) for 0 6 k 6 ⌊ t

2⌋, and then determined rpot(Kn,K
−k
t ) for 1 6 k 6 2.

The i-dependence number of a graphG, denoted α(i)(G), is the maximum order of an

induced subgraph H of G with ∆(H) 6 i, where ∆(H) is the maximum degree of H .

Theorem 1.1 ([2]). Let G be a graph of order t with no isolated vertices such that

α(1)(G) 6 t−1, and let n > 2. Then rpot(Kn, G) > max{2n+t−α(1)(G)−2, n+t−2}.

Theorem 1.2 ([2]). For n > t > 3, rpot(Kn,Kt) = 2n + t − 4 except when

n = t = 3, in which case rpot(K3,K3) = 6.

Theorem 1.3 ([5]). Let t > 2 and 0 6 k 6 ⌊ t
2⌋, and let G be a graph of

order n with no isolated vertices such that α(i)(G) 6 n − 1 for 1 6 i 6 △(G) − 1

and i+ ⌊ 2k
i ⌋ 6 2t− 3. Then

rpot(G,K−k
t ) > max

{

max
{

f(i) : 1 6 i 6 ∆(G)−1 and i+
⌊2k

i

⌋

6 2t−3
}

, n+t−c
}

,
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where

f(i) =























2t+ n− α(i)(G)−
⌊2k

i

⌋

− 1 if i is even or if ⌊ 2k
i ⌋ is odd or

if i | 2k + 1 does not hold,

2t+ n− α(i)(G)−
⌊2k

i

⌋

− 2 otherwise,

and

c =

{

2 if k = 0,

3 if k > 1.

Theorem 1.4 ([5]). If t > 3, 1 6 k 6 2 and n > 4, then

rpot(Kn,K
−k
t ) =

{

2n+ t− 4 if t < n+ k,

2t+ n− k − 4 if t > n+ k.

For 1 6 k 6 ⌊ t
2⌋, we now determine rpot(Kn,K

−k
t ) completely.

Theorem 1.5. If t > 3, 1 6 k 6 ⌊ t
2⌋ and n > ⌈

√
2k⌉+ 2, then

rpot(Kn,K
−k
t )

=















2n+ t− 4 if t < n+ ⌊
√
2k⌋+

⌊ 2k

⌊
√
2k⌋

⌋

− 2,

2t+ n− ⌊
√
2k⌋ −

⌊ 2k

⌊
√
2k⌋

⌋

− 2 if t > n+ ⌊
√
2k⌋+

⌊ 2k

⌊
√
2k⌋

⌋

− 2.

Clearly, Theorem 1.5 is an extension of Theorem 1.4.

2. Proof of Theorem 1.5

In order to prove Theorem 1.5, we need some useful lemmas and known results.

Let π = (d1, . . . , dn) be a nonincreasing sequence of nonnegative integers and let

d′1 > . . . > d′n−1 be a rearrangement in nonincreasing order of d2 − 1, . . . , dd1+1 − 1,

dd1+2, . . . , dn. We say that π
′ = (d′1, . . . , d

′
n−1) is the residual sequence of π.

Theorem 2.1 ([12], [13]). Let π = (d1, . . . , dn) be a nonincreasing sequence of

nonnegative integers. Then π is graphic if and only if π′ is graphic.

Theorem 2.2 ([11]). If π = (d1, . . . , dn) is a potentially H-graphic sequence,

then π has a realization containing H on those vertices with degrees d1, . . . , d|V (H)|.
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Theorem 2.3 ([17]). Let p > n and π = (d1, . . . , dp) be a graphic sequence.

(1) If dn > n− 1 and d2n > n− 2, then π is potentially Kn-graphic.

(2) If dn > n − 1 and di > 2(n − 1) − i for i = 1, . . . , n − 2, then π is potentially

Kn-graphic.

Theorem 2.4 ([18]). Let n > t and π = (d1, . . . , dn) be a graphic sequence with

dt−2 > t−1 and dt > t−2. If di > 2t−3− i for i = 1, . . . , t−1, then π is potentially

K−1
t -graphic.

Let 1 6 k 6 ⌊ t
2⌋, and let π = (̺1, . . . , ̺t, dt+1, . . . , dn) be a sequence of nonneg-

ative integers so that σ(π) is even, n − t > ̺1 > . . . > ̺t−2k > 0, n − t + 1 >

̺t−2k+1 > . . . > ̺t > 1, ̺t−2k > ̺t−2k+1− 1 and ̺t+ t− 2 = dt+1 = . . . = dt+̺1+1 >

dt+̺1+2 > . . . > dn. We define sequences π0, . . . , πt as follows. Let π0 = π. Let

π1 = (̺2, . . . , ̺t, d
(1)
t+1, . . . , d

(1)
n ),

where d
(1)
t+1 > . . . > d

(1)
n is a rearrangement in the nonincreasing order of dt+1−1, . . . ,

dt+̺1
− 1, dt+̺1+1, . . . , dn. For 2 6 i 6 t, given

πi−1 = (̺i, . . . , ̺t, d
(i−1)
t+1 , . . . , d(i−1)

n ),

let

πi = (̺i+1, . . . , ̺t, d
(i)
t+1, . . . , d

(i)
n ),

where d
(i)
t+1 > . . . > d

(i)
n is a rearrangement in the nonincreasing order of d

(i−1)
t+1 −1, . . . ,

d
(i−1)
t+̺i

− 1, d
(i−1)
t+̺i+1, . . . , d

(i−1)
n .

Lemma 2.1 ([17]). For each i, the definition of πi = (̺i+1, . . . , ̺t, d
(i)
t+1, . . . , d

(i)
n )

is as above. Let ti = max{j : d
(i)
t+1 − d

(i)
t+j 6 1}. Then tt > tt−1 > . . . > t0 > ̺1 + 1.

Lemma 2.2 ([5]). The definition of πt = (d
(t)
t+1, . . . , d

(t)
n ) is as above. Let dt+1 = l

and d
(t)
t+1 = m. If tt 6 m, then ̺1 + . . .+ ̺t 6 (l −m+ 1)m− 1.

Lemma 2.3 ([5]). The definition of πt = (d
(t)
t+1, . . . , d

(t)
n ) is as above. If πt is

graphic, then π has a realization G so that the t vertices with degrees ̺1, . . . , ̺t form

an independent set of G.

Lemma 2.4 ([17]). Let π = (d1, . . . , dn) be a nonincreasing sequence of nonneg-

ative integers, where d1 = t and σ(π) is even. If dt+1 > t− 1, then π is graphic.
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Lemma 2.5. Let ⌊
√
2k⌋ = b and c = ⌊

√
2k⌋ + ⌊ 2k

⌊
√
2k⌋⌋. If k > 1 is an integer

and a = c + 1, then a2 − 2a − 3 6 8k with equality if and only if 2k = b2 + 2b and

a = 2b+ 3.

P r o o f. If k = 1, then b = 1, c = 3 and a = 4, implying that a2− 2a− 3 = 5 < 8.

Assume k > 2. We prove Lemma 2.5 by the parity of b.

Case 1 : b is odd. It follows from b 6
√
2k < b+1 that b2 +1 6 2k 6 (b+1)2 − 2.

If b2 + 1 6 2k 6 b2 + b − 2, then k > 5 and ⌊ 2k
b ⌋ = b. Hence, a = c + 1 = 2b + 1

and a2 − 2a − 3 = 4b2 − 4. By 2k > b2 + 1, we have 8k > 4(b2 + 1) = 4b2 + 4 >

a2 − 2a− 3. If b2 + b 6 2k 6 b2 + 2b− 1, then ⌊ 2k
b ⌋ = b+ 1. Hence, a = 2b+ 2 and

a2 − 2a− 3 = 4b2 + 4b− 3. By 2k > b2 + b, we have 8k > 4b2 + 4b > a2 − 2a− 3.

Case 2 : b is even. It follows from b 6
√
2k < b + 1 that b2 6 2k 6 b2 + 2b. If

b2 6 2k 6 b2 + b− 2, then k > 2 and ⌊ 2k
b ⌋ = b. Hence, a = 2b+ 1 and a2 − 2a− 3 =

4b2 − 4. By 2k > b2, we have 8k > 4b2 > a2 − 2a− 3. If b2 + b 6 2k 6 b2 + 2b − 2,

then k > 2 and ⌊ 2k
b ⌋ = b+ 1. Hence, a = 2b+ 2 and a2 − 2a− 3 = 4b2 + 4b− 3. By

2k > b2 + b, we have 8k > 4b2 + 4b > a2 − 2a− 3. If 2k = b2 + 2b, then k > 4 and

⌊ 2k
b ⌋ = b+ 2. Hence, a = c+ 1 = 2b+ 3 and a2 − 2a− 3 = 4b2 + 8b = 8k. �

Lemma 2.6. Let c = ⌊
√
2k⌋+

⌊

2k

⌊
√
2k⌋

⌋

and c′ = ⌊
√

2(k − 1)⌋+
⌊ 2(k−1)

⌊
√

2(k−1)⌋

⌋

. Then

c′ + 1 > c for k > 2.

P r o o f. It is obvious for k = 2. We assume k > 3. Let b = ⌊
√
2k⌋ and b′ =

⌊
√

2(k − 1)⌋. If b = b′, then c 6 b′ + ⌊ 2(k−1)+b′

b′ ⌋ = c′ + 1 as 2k 6 2(k − 1) + b′. If

b = b′ + 1, then ⌊ 2k
b ⌋ 6 ⌊ 2(k−1)

b′ ⌋, implying that c′ + 1 > c. Clearly, b > b′ + 1 does

not hold. �

Lemma 2.7. Let n > t > 3, 1 6 k 6 ⌊ t
2⌋ and π = (d1, . . . , dn) be a graphic

sequence with n − 2 > d1 > . . . > dt = . . . = dd1+2 > dd1+3 > . . . > dn. If

dt > 2t− ⌊
√
2k⌋ −

⌊

2k

⌊
√
2k⌋

⌋

− 1, then π is potentially K−k
t -graphic.

P r o o f. Put dt = l. We first claim that l > t − 1. By t > 2k, it is easy to

check that l > t − 1 for k = 1, 2, 3, 4. Assume k > 5. By t > 2k > 10 and
⌊

2k
⌊
√
2k⌋

⌋

6 2k/⌊
√
2k⌋ 6 2k/(

√
2k − 1) 6

√
2k + 2, we have that l > 2t − ⌊

√
2k⌋ −

⌊

2k
⌊
√
2k⌋

⌋

− 1 > 2t−
√
t− (

√
t+2)− 1 = 2t− 2

√
t− 3 = (t− 1)+ (

√
t− 1)2− 3 > t− 1.

Therefore, l > t − 1. If l > 2t − 3, by Theorem 2.3 (2), then π is potentially

Kt-graphic, implying that π is potentially K−k
t -graphic. Assume l 6 2t − 4. Let

π0 = (̺1, . . . , ̺t, dt+1, . . . , dn), where

̺i =

{

di − (t− 1) if 1 6 i 6 t− 2k,

di − (t− 2) if t− 2k + 1 6 i 6 t.
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By Lemma 2.3, we only need to prove that πt is graphic. Put d
(t)
t+1 = m. If tt > m+1,

then πt is graphic by Lemma 2.4. Assume tt 6 m. Clearly,

̺1 + . . .+ ̺t = d1 + . . .+ dt − t(t− 1) + 2k > tl − t(t− 1) + 2k.

By Lemma 2.2, we get (l −m + 1)m− 1 > tl − t(t − 1) + 2k. It is easy to see that

(l−m+1)m−1, considered as a function ofm, attains its maximum value when m =
1
2 (l+1). Hence, (12 (l+1))2−1 > tl−t(t−1)+2k, i.e., l2−(4t−2)l > −4t(t−1)+8k+3.

Let a = ⌊
√
2k⌋+

⌊

2k

⌊
√
2k⌋

⌋

+1. Clearly, a > 4. By l > 2t−a, we can see that l2−(4t−2)l

attains its maximum value when l = 2t − a. Hence, (2t − a)2 − (4t − 2)(2t − a) >

−4t(t− 1)+ 8k+3, i.e., a2 − 2a− 3 > 8k. By Lemma 2.5, we have a2 − 2a− 3 = 8k,

2k = ⌊
√
2k⌋2+2⌊

√
2k⌋ and a = 2⌊

√
2k⌋+3. Then we must have l = 2t−a, d1 = . . . =

dd1+2 = l, m = tt = 1
2 (2t − a + 1) = t − ⌊

√
2k⌋ − 1, d

(t)
t+1 = m, and d

(t)
t+2 = . . . =

d
(t)
t+tt = m−1. Thus, πt = (t−⌊

√
2k⌋−1, (t−⌊

√
2k⌋−2)t−⌊

√
2k⌋−2, d2t−a+3, . . . , dn),

where d2t−a+3 6 t − ⌊
√
2k⌋ − 3. Let π′

t be the residual sequence of πt. Then

π′
t = ((t − ⌊

√
2k⌋ − 3)t−⌊

√
2k⌋−2, d′2t−a+3, . . . , d

′
n). It follows from σ(π′

t) being even

and Lemma 2.4 that π′
t is graphic, and hence so is πt by Theorem 2.1. �

Lemma 2.8. Let n > t > 3, 1 6 k 6 ⌊ t
2⌋ and π = (d1, . . . , dn) be a graphic

sequence with n − 2 > d1 > . . . > dt = . . . = dd1+2 > dd1+3 > . . . > dn. If

dt−3 > 2t− ⌊
√
2k⌋ −

⌊

2k
⌊
√
2k⌋

⌋

− 1 and dt > t− 1, then π is potentially K−k
t -graphic.

P r o o f. Let dt−3 = l and dt = x. If k = 1, by l > 2t − 4 and Theorem 2.4,

then π is potentially K−1
t -graphic. Assume k > 2. Then t > 2k > 4. Let π0 =

(̺1, . . . , ̺t, dt+1, . . . , dn), where

̺i =

{

di − (t− 1) if 1 6 i 6 t− 2k,

di − (t− 2) if t− 2k + 1 6 i 6 t.

By Lemma 2.3, we only need to prove that πt is graphic. Put d
(t)
t+1 = m. If tt >

m + 1, then πt is graphic by Lemma 2.4. Assume tt 6 m. If x > 2t − ⌊
√
2k⌋ −

⌊

2k
⌊
√
2k⌋

⌋

− 1, then π is potentially K−k
t -graphic by Lemma 2.7. Assume x 6 2t −

⌊
√
2k⌋ −

⌊

2k

⌊
√
2k⌋

⌋

− 2. Then t > 5 by x > t − 1. Clearly, ̺1 + . . . + ̺t > (t − 3)l +

3x− t(t− 1) + 2k. By Lemma 2.2, we get

(x −m+ 1)m− 1 > (t− 3)l + 3x− t(t− 1) + 2k,

that is

(1) (x−m+ 1)m− 1 + 3(l− x) > tl − t(t− 1) + 2k.
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If l > 2t− 3, by Theorem 2.4, then π is potentially K−k
t -graphic. Assume l 6 2t− 4.

If t = 5, then k = 2, l = 5 or 6, and x = 4, it follows from (1) that (5−m)m > 7 or 9,

which is impossible. Assume t > 6. We now show that (12 (l+1))2−1 6 tl−t(t−1)+2k,

that is, l2 − (4t− 2)l 6 −4t(t− 1) + 8k + 3. Let a = ⌊
√
2k⌋+

⌊

2k
⌊
√
2k⌋

⌋

+ 1. Clearly,

a > 5. By Lemma 2.5, we have a2−2a−3 6 8k, that is, (2t−a)2− (4t−2)(2t−a) 6

−4t(t−1)+8k+3. Since 2t−a 6 l 6 2t−4, we can see that l2− (4t−2)l attains its

maximum value when l = 2t−a. Hence, l2− (4t−2)l 6 (2t−a)2− (4t−2)(2t−a) 6

−4t(t − 1) + 8k + 3. Thus, (12 (l + 1))2 − 1 6 tl − t(t − 1) + 2k. By (1), we have

(x−m+1)m−1+3(l−x) > (12 (l+1))2−1, i.e., (x−m+1)m−3x > (12 (l+1))2−3l.

Since (x − m + 1)m − 3x attains its maximum value when m = 1
2 (x + 1), we have

(12 (x + 1))2 − 3x > (12 (l + 1))2 − 3l, i.e., x2 − 10x > l2 − 10l, which is impossible as

l > x > t− 1 > 5. �

Lemma 2.9. Let n > t > 3, 1 6 k 6 ⌊ t
2⌋ and π = (d1, . . . , dn) be a graphic

sequence. If dt−3 > 2t− ⌊
√
2k⌋ −

⌊

2k
⌊
√
2k⌋

⌋

− 1 and dt > t − 1, then π is potentially

K−k
t -graphic.

P r o o f. We use induction on k. If k = 1, by dt−3 > 2t − 4 and Theorem 2.4,

then π is potentially K−1
t -graphic. Assume that k > 2 and Lemma 2.9 holds for

k − 1. If d1 = n − 1 or if there exists an integer j, t 6 j 6 d1 + 1, such that

dj > dj+1, by Lemma 2.6, then the residual sequence π
′ = (d′1, . . . , d

′
n−1) satisfies

d′i = di+1 − 1 for 1 6 i 6 t − 1, d′t−4 = dt−3 − 1 > 2t − ⌊
√
2k⌋ −

⌊

2k
⌊
√
2k⌋

⌋

− 2 >

2(t − 1) − ⌊
√

2(k − 1)⌋ −
⌊ 2(k−1)

⌊
√

2(k−1)⌋

⌋

− 1 and d′t−1 = dt − 1 > (t − 1) − 1. By

t − 1 > 2(k − 1) and the induction hypothesis, π′ is potentially K
−(k−1)
t−1 -graphic.

Thus, by Theorems 2.1 and 2.2, π is potentially K−k
t -graphic. So we may assume

that n − 2 > d1 > . . . > dt = . . . = dd1+2 > dd1+3 > . . . > dn. By Lemma 2.8, π is

also potentially K−k
t -graphic. �

Lemma 2.10. If t > 3, 1 6 k 6 ⌊ t
2⌋ and n > ⌈

√
2k⌉+ 2, then

rpot(Kn,K
−k
t )

>















2n+ t− 4 if t < n+ ⌊
√
2k⌋+

⌊ 2k

⌊
√
2k⌋

⌋

− 2,

2t+ n− ⌊
√
2k⌋ −

⌊ 2k

⌊
√
2k⌋

⌋

− 2 if t > n+ ⌊
√
2k⌋+

⌊ 2k

⌊
√
2k⌋

⌋

− 2.

P r o o f. By α(1)(K−k
t ) = 2 and Theorem 1.1, rpot(Kn,K

−k
t ) > 2n + t − 4. Let

⌊
√
2k⌋ = b. Then 1 6 b 6 n−2 (by n > ⌈

√
2k⌉+2). Clearly, b2 6 2k 6 (b+1)2−1 =

b2 + 2b. We consider two cases in terms of the parity of b.
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Case 1 : b is even. If b2 6 2k 6 b2+b−2, then b+⌊ 2k
b ⌋ = 2b 6 b2 6 2k 6 t 6 2t−3.

If b2 + b 6 2k 6 b2 + 2b, then b + ⌊ 2k
b ⌋ 6 2b + 2 6 b2 + b 6 2k 6 t 6 2t − 3. It

follows from α(b)(Kn) = b + 1 6 n − 1 and Theorem 1.3 that rpot(Kn,K
−k
t ) >

2t+ n− (b + 1)− ⌊ 2k
b ⌋ − 1 = 2t+ n− ⌊

√
2k⌋ −

⌊

2k
⌊
√
2k⌋

⌋

− 2.

Case 2 : b is odd. Then b2 + 1 6 2k 6 b2 + 2b − 1. Clearly, ⌈
√
2k⌉ = ⌊

√
2k⌋ + 1

by b2 < 2k < (b + 1)2 and n > ⌈
√
2k⌉ + 2 = b + 3. If b2 + 1 6 2k 6 b2 + b − 2, i.e.,

(b+1)(b−1)+2 6 2k 6 (b+1)(b−1)+(b−1), then b > 3, ⌊ 2k
b+1⌋ = b−1 and ⌊ 2k

b ⌋ = b.

Hence, (b+1)+ ⌊ 2k
b+1⌋ = b+ ⌊ 2k

b ⌋ = 2b 6 b2 +1 6 2k 6 t 6 2t− 3. By α(b+1)(Kn) =

b + 2 6 n − 1 and Theorem 1.3, rpot(Kn,K
−k
t ) > 2t + n − (b + 2) − ⌊ 2k

b+1⌋ − 1 =

2t+ n− (b+1)− ⌊ 2k
b+1⌋− 2 = 2t+ n− b− ⌊ 2k

b ⌋− 2 = 2t+ n− ⌊
√
2k⌋−

⌊

2k
⌊
√
2k⌋

⌋

− 2.

If b2 + b 6 2k 6 b2 + 2b − 1, i.e., (b + 1)b 6 2k 6 (b + 1)b + (b − 1), then b > 1,

⌊ 2k
b+1⌋ = b and ⌊ 2k

b ⌋ = b + 1. Hence, (b + 1) + ⌊ 2k
b+1⌋ = b + ⌊ 2k

b ⌋ = 2b + 1 6

max{3, b2 + b} 6 max{3, 2k} 6 t 6 2t − 3. By α(b+1)(Kn) = b + 2 6 n − 1 and

Theorem 1.3, rpot(Kn,K
−k
t ) > 2t + n − (⌊

√
2k⌋ + 2) −

⌊

2k
⌊
√
2k⌋+1

⌋

− 1 = 2t + n −
(⌊
√
2k⌋+ 2)−

(⌊

2k
⌊
√
2k⌋

⌋

−
)

− 1 = 2t+ n− ⌊
√
2k⌋ −

⌊

2k
⌊
√
2k⌋

⌋

− 2. �

We now prove Theorem 1.5.

P r o o f of Theorem 1.5. Let t > 3, 1 6 k 6 ⌊ t
2⌋ and n > ⌈

√
2k⌉+ 2. Clearly,

max

{

2n+ t− 4, 2t+ n− ⌊
√
2k⌋ −

⌊ 2k

⌊
√
2k⌋

⌋

− 2

}

=















2n+ t− 4 if t < n+ ⌊
√
2k⌋+

⌊ 2k

⌊
√
2k⌋

⌋

− 2,

2t+ n− ⌊
√
2k⌋ −

⌊ 2k

⌊
√
2k⌋

⌋

− 2 if t > n+ ⌊
√
2k⌋+

⌊ 2k

⌊
√
2k⌋

⌋

− 2.

Firstly, by Lemma 2.10, rpot(Kn,K
−k
t ) > max{2n+t−4, 2t+n−⌊

√
2k⌋−

⌊

2k
⌊
√
2k⌋

⌋

−2}.
Now, we prove that rpot(Kn,K

−k
t ) 6 max{2n+t−4, 2t+n−⌊

√
2k⌋−

⌊

2k
⌊
√
2k⌋

⌋

−2}.
We use induction on k. Theorem 1.4 is the case 1 6 k 6 2 of Theorem 1.5. Assume

k > 3. We consider two cases.

Case 1 : 2n+t−4 6 2t+n−⌊
√
2k⌋−

⌊

2k
⌊
√
2k⌋

⌋

−2. Let π = (d1, . . . , dm) be a graphic

sequence with m = 2t + n − ⌊
√
2k⌋ −

⌊

2k
⌊
√
2k⌋

⌋

− 2. If dt 6 t − 2, then dm+1−t =

m−1−dt >
(

2t+n−⌊
√
2k⌋−

⌊

2k
⌊
√
2k⌋

⌋

−2
)

−1−(t−2) > (2n+t−4)−1−(t−2) = 2n−3.

By m+ 1 − t = (2t+ n− ⌊
√
2k⌋ −

⌊

2k
⌊
√
2k⌋

⌋

− 2) + 1− t > (2n+ t− 4) + 1− t > n,

we have dn > dm+1−t > 2n − 3 > n − 1. Hence, π is potentially Kn-graphic by

Theorem 2.3 (2). If dn 6 n−2, then dm+1−n = d2t−⌊
√
2k⌋−⌊2k/⌊

√
2k⌋⌋−1 = m−1−dn >

2t − ⌊
√
2k⌋ −

⌊

2k
⌊
√
2k⌋

⌋

− 1. By m + 1 − n > (2n + t − 4) + 1 − n = n + t − 3 > t,

we have dt > d2t−⌊
√
2k⌋−⌊2k/⌊

√
2k⌋⌋−1 > 2t − ⌊

√
2k⌋ −

⌊

2k
⌊
√
2k⌋

⌋

− 1 > t − 1. By
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Lemma 2.9, π is potentially K−k
t -graphic. Assume dn > n − 1 and dt > t − 1.

Clearly, t > 2k > 6 and m > 2n+ t− 4 > 2n. If d2n > n− 2, then π is potentially

Kn-graphic by Theorem 2.3 (1). If d2n 6 n − 3, then dm+1−2n = m − 1 − d2n >

2t − ⌊
√
2k⌋ −

⌊

2k
⌊
√
2k⌋

⌋

. By m + 1 − 2n > (2n + t − 4) + 1 − 2n = t − 3, we have

dt−3 > dm+1−2n > 2t − ⌊
√
2k⌋ −

⌊

2k

⌊
√
2k⌋

⌋

. Thus, by Lemma 2.9, π is potentially

K−k
t -graphic. Therefore, rpot(Kn,K

−k
t ) 6 2t+ n− ⌊

√
2k⌋ −

⌊

2k
⌊
√
2k⌋

⌋

− 2.

Case 2 : 2n+ t−4 > 2t+n−⌊
√
2k⌋−

⌊

2k
⌊
√
2k⌋

⌋

−1. It follows from Lemma 2.6 that

2n+ t− 4 > 2t+n−⌊
√
2k⌋−

⌊

2k
⌊
√
2k⌋

⌋

− 1 > 2t+n−⌊
√

2(k − 1)⌋−
⌊ 2(k−1)

⌊
√

2(k−1)⌋

⌋

− 2.

Thus, by the induction hypothesis,

rpot(Kn,K
−k
t ) 6 rpot(Kn,K

−(k−1)
t )

6 max
{

2n+ t− 4, 2t+ n− ⌊
√

2(k − 1)⌋ −
⌊ 2(k − 1)

⌊
√

2(k − 1)⌋

⌋

− 2
}

= 2n+ t− 4.

�
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[8] P.Erdős, M. S. Jacobson, J. Lehel: Graphs realizing the same degree sequences and their
respective clique numbers. Graph Theory, Combinatorics and Applications. Vol. 1. John
Wiley & Sons, New York, 1991, pp. 439–449. zbl MR

[9] M.J. Ferrara, T.D. Lesaulnier, C.K.Moffatt, P. S.Wenger: On the sum necessary to
ensure a degree sequence is potentially H-graphic. Combinatorica 36 (2016), 687–702. zbl MR doi

[10] M.J. Ferrara, J. Schmitt: A general lower bound for potentially H-graphic sequences.
SIAM J. Discrete Math. 23 (2009), 517–526. zbl MR doi

521

https://zbmath.org/?q=an:1226.05083
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0411988
https://zbmath.org/?q=an:1298.05078
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3223948
http://dx.doi.org/10.1007/s00373-013-1307-y
https://zbmath.org/?q=an:1243.05191
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2916065
http://dx.doi.org/10.1002/jgt.20598
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR4034026
http://dx.doi.org/10.2298/FIL1906605D
https://zbmath.org/?q=an:1464.05043
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR4196622
http://dx.doi.org/10.1007/s10255-021-0999-7
https://zbmath.org/?q=an:1313.05117
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3132924
http://dx.doi.org/10.1007/s00493-013-2649-z
https://zbmath.org/?q=an:0103.39701
https://zbmath.org/?q=an:0840.05093
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1170797
https://zbmath.org/?q=an:1399.05038
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3597587
http://dx.doi.org/10.1007/s00493-015-2986-1
https://zbmath.org/?q=an:1215.05036
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2476846
http://dx.doi.org/10.1137/080715275


[11] R. J.Gould, M. S. Jacobson, J. Lehel: Potentially G-graphical degree sequences. Combi-
natorics, Graph Theory and Algorithms. Vol. I. New Issues Press, Kalamazoo, 1999,
pp. 451–460. MR

[12] S. L. Hakimi: On realizability of a set of integers as degrees of vertices of a linear graph.
I. J. Soc. Ind. Appl. Math. 10 (1962), 496–506. zbl MR doi

[13] V.Havel: A remark on the existence of finite graphs. Čas. Pěstování Mat. 80 (1955),
477–480. (In Czech.) zbl MR doi

[14] A.R.Rao: The clique number of a graph with a given degree sequence. Proceedings of
the Symposium on Graph Theory. ISI Lecture Notes 4. Macmillan, New Delhi, 1979,
pp. 251–267. zbl MR

[15] N.Robertson, Z.-X. Song: Hadwiger number and chromatic number for near regular
degree sequences. J. Graph Theory 64 (2010), 175–183. zbl MR doi

[16] J.Yin, J. Li: A variation of a conjecture due to Erdős and Sós. Acta Math. Sin., Engl.
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