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Abstract. Let I be an ideal of a commutative Noetherian ring R. It is shown that the
R-modules Hj

I (M) are I-cofinite for all finitely generated R-modules M and all j ∈ N0

if and only if the R-modules ExtiR(N,H
j
I (M)) and Tor

R
i (N,H

j
I (M)) are I-cofinite for all

finitely generated R-modules M , N and all integers i, j ∈ N0.
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1. Introduction

Throughout this paper, let R denote a commutative Noetherian ring and I be an

ideal of R. In this paper we denote SuppR/I = {p ∈ SpecR : p ⊇ I} by V (I).

Also, N (or N0) will denote the set of positive (or nonnegative) integers. Further-

more, Z will denote the set of integers.

The ith local cohomology module of an R-module M with support in V (I) is

defined as:

Hi
I(M) = lim−→

n>1

ExtiR(R/In,M).

We refer the reader to [10] or [18] for more details about local cohomology.

For an R-module M , its cohomological dimension with respect to I, denoted by

cd(I,M), is defined as the supremum of all integers i such that Hi
I(M) 6= 0. Also let

q(I,M) = sup{i ∈ N0 : Hi
I(M) is not Artinian}

with the usual convention that the supremum of the empty set is interpreted as −∞.

Several authors have studied these two notions, see [6], [3], [15], [17], [19], [22].
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Hartshorne in [20] defined an R-module X to be I-cofinite if the support of X is

contained in V (I) and ExtiR(R/I,X) is finitely generated for all i ∈ N0 and asked

the following question:

Question 1.1. For which Noetherian rings R and ideals J of R, are the mod-

ules Hi
J(M) J-cofinite for all finitely generated R-modules M and all i ∈ N0?

In the sequel, C (R, I)cof denotes the category of all I-cofinite R-modules,

and C 1(R, I)cof denotes the category of all R-modules M ∈ C (R, I)cof such that

dimM 6 1. Also, throughout this paper, let I (R) be the class of all ideals I of R

such that Hi
I(M) ∈ C (R, I)cof for all finitely generated R-modulesM and all i ∈ N0.

Concerning Question 1.1, there are several interesting results in the literature

containing some sufficient conditions for the ideals of R for being in I (R), see [3]–[5],

[8], [12]–[14], [21], [23], [25], [27], [28], [31].

In [7] the author proved that for each ideal I of a Noetherian ring R, I ∈ I (R) if

and only if Hi
I(R) ∈ C 1(R, I)cof for each integer i > 2. Furthermore, he proved that

in the case thatR is a local ring, the condition I ∈ I (R) is equivalent to the condition

that for each minimal prime ideal P of R̂, dim R̂/(IR̂+P) 6 1 or cd(IR̂, R̂/P) 6 1.

Huneke and Koh proved that for each pair of finitely generated modules C and M

over a Noetherian local ring (R,m), under some special conditions, the R-module

Ext1R(C,H
i
I(M)) is I-cofinite whenever dimR/I 6 1; see [21], Lemmas 4.3 and 4.7.

Subsequently, as a generalization of these results in [1] and [29], it was shown that the

R-modules ExtiR(N,M) and TorRi (N,M) belong to C 1(R, I)cof for all i > 0, when-

ever N is a finitely generated R-module and M ∈ C 1(R, I)cof . Furthermore, by [8],

Corollary 2.7 we know that for each finitely generated module M over a Noetherian

ring R and each ideal I of R with dimR/I 6 1 the R-module Hj
I (M) belongs

to C 1(R, I)cof for each j ∈ N0. Consequently, for each ideal I of a Noetherian

ring R with dimR/I 6 1 and each pair of finitely generated R-modules M and N ,

the R-modules ExtiR(N,Hj
I (M)) and TorRi (N,Hj

I (M)) belong to C 1(R, I)cof for

all i, j ∈ N0. Also, the author in [6], Corollary 2.14 proved that the R-modules

ExtiR(N,Hj
I (M)) and TorRi (N,Hj

I (M)) are I-cofinite whenever q(I, R) 6 1. But,

by [8], Corollary 2.7 and [3], Theorem 4.10 we know that under each of the assump-

tions dimR/I 6 1 or q(I, R) 6 1, the ideal I belongs to I (R).

Pursuing this point of view further for each Noetherian ring R we define H (R)

as the class of all ideals I of R such that

ExtiR(N,Hj
I (M)),TorRi (N,Hj

I (M)) ∈ C (R, I)cof

for all finitely generated R-modules M , N and all integers i, j ∈ N0. Then we

establish the equality H (R) = I (R).
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In [33] Zöschinger introduced an interesting class of minimax modules, and

in [33], [34] he has given many equivalent conditions for a module to be minimax. The

R-module N is said to be a minimax module if there is a finitely generated submodule

L of N such that N/L is Artinian. Hence, the class of minimax modules includes all

finitely generated and all Artinian modules. It was shown by Zink (see [32]) and by

Enochs (see [16]) that a module over a complete local ring is minimax if and only if

it is Matlis reflexive. In [24] the authors proved many interesting results concerning

the homological properties of this family of modules. It is well known that in a short

exact sequence, the middle module is minimax if and only if the two other ones are.

Recall that the I-transform functor, denoted by DI(−), is defined as:

DI(−) = lim−→
n>1

HomR(I
n,−).

In this paper we prove the following theorem as well:

Theorem 1.2. Let I be an ideal of a Noetherian ring R with I ∈ I (R). Suppose

that

X◦ : . . . → Mi+2
fi+1

−→ Mi+1
fi
−→ Mi → . . . ,

is an exact sequence ofR-modules andR-homomorphisms such that the R-moduleMi

is minimax for each i ∈ Z. Then for each n ∈ Z the nth homology module of the

complex DI(X
◦) belongs to C 1(R, I)cof .

Throughout this paper, for each ideal I of a Noetherian ring R and each

R-module M , let ΓI(M) be the submodule
∞⋃
n=1

(0 : MIn) of M . Also, for any ideal J

of R, the radical of J is defined to be the set Rad(J) = {x ∈ R : xn ∈ J for some

n ∈ N}. For any unexplained notation and terminology we refer to [10], [11], [26].

2. Preliminaries

In this section we prove some technical results which will be used later. We start

this section with some auxiliary lemmas.

Lemma 2.1. For each ideal I of a Noetherian ring R the following statements

are equivalent:

(i) I ∈ I (R).

(ii) Hi
I(R) ∈ C 1(R, I)cof for all integers i > 2.

(iii) For each finitely generated R-module M , Hi
I(M) ∈ C 1(R, I)cof for all integers

i > 2.

(iv) For each finitely generated R-module M ,
∞⊕
i=2

Hi
I(M) ∈ C 1(R, I)cof .
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P r o o f. (i) ⇔ (ii) The assertion holds by [7], Theorem 4.10.

(ii) ⇒ (iii) Let M be a finitely generated R-module. Then by using localization

and applying Theorem 2.2 of [15] it is straightforward to see that
⋃

i>2

SuppHi
I(M) ⊆

⋃

i>2

SuppHi
I(R).

Since by the hypothesis dimHi
I(R) 6 1 for each integer i > 2, it can be deduced that

dimHi
I(M) 6 1 for each integer i > 2. Furthermore, from the hypothesis I ∈ I (R)

we obtain that Hi
I(M) ∈ C (R, I)cof for all integers i > 2. Consequently, we have

Hi
I(M) ∈ C 1(R, I)cof for all integers i > 2.

(iii) ⇒ (iv) Let M be a finitely generated R-module. Suppose that I can be

generated by t elements. Then by Theorem 3.3.1 of [10] we have Hi
I(M) = 0 for all

integers i > t. Hence,
∞⊕

i=2

Hi
I(M) ≃

t⊕

i=2

Hi
I(M),

which shows that
∞⊕
i=2

Hi
I(M) ∈ C 1(R, I)cof .

(iv) ⇒ (ii) The assertion is obvious. �

For each ideal I of a Noetherian ring R with I ∈ I (R), it follows from the

definition that

ΩR(I) := Supp
⊕

i>2

Hi
I(R) =

⋃

i>2

SuppHi
I(R)

is a closed subset of SpecR under the Zariski topology. We define I∗ :=
⋂

p∈ΩR(I)

p.

Note that by Lemma 2.1, always one has either I∗ = R or 0 6 dimR/I∗ 6 1. Also,

it is easy to see that Rad(I) ⊆ I∗ and ΩR(I) = V (I∗). Furthermore, it is clear that

I∗ = R if and only if cd(I, R) 6 1. In addition, the reader can see that dimR/I∗ = 0

(or dimR/I∗ = 1) if and only if q(I, R) 6 1 < cd(I, R) (or q(I, R) > 1).

For each I ∈ I (R), let C ∗(R, I)cof be the category of all I-cofinite modulesX such

that SuppX ⊆ V (I∗). It is clear that C ∗(R, I)cof is a subcategory of C 1(R, I)cof .

Moreover, if I is an ideal of a Noetherian ring R with I ∈ I (R), then it follows

from the proof of Lemma 2.1 that Hi
I(M) ∈ C ∗(R, I)cof for each finitely generated

R-module M and each integer i > 2.

In the sequel, for each ideal I of a Noetherian ring R with I ∈ I (R) let B(R, I)

(or B∗(R, I)), be the category of all R-modules Y such that Hi
I(Y ) ∈ C (R, I)cof

(or Hi
I(Y ) ∈ C ∗(R, I)cof) for each i ∈ N0. Obviously, by these definitions always

C ∗(R, I)cof is a subcategory of B
∗(R, I).

Lemma 2.2. Let I be an ideal of a Noetherian ring with I ∈ I (R). Then for

each minimax R-module M , the R-module DI(M) belongs to B∗(R, I).
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P r o o f. By [10], Corollary 2.2.8 (iv), one has

Hi
I(DI(M)) = 0 for i = 0, 1

and by [10], Corollary 2.2.8 (v), Lemma 6.3.1, it can be seen that

Hi
I(DI(M)) ≃ Hi

I(M)

for all integers i > 2. Furthermore, according to the definition of minimax-

ness, the R-module M possesses a finitely generated submodule N such that the

R-module M/N is Artinian. So, by Grothendieck’s Vanishing Theorem we have

Hi
I(M/N) = 0 for each i ∈ N. Therefore, the exact sequence

0 → N → M → M/N → 0

yields the isomorphism of R-modules Hi
I(M) ≃ Hi

I(N) for each integer i > 2. Hence,

Hi
I(DI(M)) ≃ Hi

I(N) for each integer i > 2. Since for each integer i > 2 the

R-module Hi
I(N) belongs to C ∗(R, I)cof , it is concluded that DI(M) ∈ B∗(R, I).

�

Let I be an ideal of a Noetherian ring R and let D(R, I) denote the category of all

R-modules M with ExtiR(R/I,M) = 0 for all i ∈ N0. We recall that in view of [30],

Proposition 3.2, D(R, I) also can be defined as the category of all R-modules M

with TorRi (R/I,M) = 0 for all i ∈ N0. Moreover, by Theorem 2.9 of [2], it can also

be defined as the class of all R-modules M such that Hi
I(M) = 0 for all i ∈ N0.

Lemma 2.3. Let I be an ideal of a Noetherian ring R with cd(I, R) 6 1, and M

be an R-module. Then the following statements are equivalent:

(i) M ∈ D(R, I).

(ii) HomR(R/I,M) = 0 = Ext1R(R/I,M).

P r o o f. The conclusion (i) ⇒ (ii) is obvious.

(ii) ⇒ (i) Since HomR(R/I,M) = 0 = Ext1R(R/I,M), by using the relation

SuppR/In = SuppR/I,

we obtain that HomR(R/In,M) = 0 = Ext1R(R/In,M) for all n ∈ N. Therefore, for

i = 0, 1,

Hi
I(M) = lim−→

n>1

ExtiR(R/In,M) = 0.

Moreover, by using the hypothesis cd(I, R) 6 1 and [10], Lemma 6.3.1, we see that

Hi
I(M) = 0 for all i > 2. So, Hi

I(M) = 0 for all i ∈ N0, and hence M ∈ D(R, I). �
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Lemma 2.4. Let R be a Noetherian ring and I be an ideal of R with cd(I, R) 6 1.

Then D(R, I) is an Abelian category.

P r o o f. Let M,N ∈ D(R, I) and f : M → N be an R-homomorphism. Set

K := ker f , B := im f and C := coker f . The exact sequence

0 → B → N

induces the exact sequence

0 → HomR(R/I,B) → HomR(R/I,N).

Since HomR(R/I,N) = 0, obviously, HomR(R/I,B) = 0. Also, from the exact

sequence

0 → K → M → B → 0

we obtain the exact sequence

0 → HomR(R/I,K) → HomR(R/I,M) → HomR(R/I,B)

→ Ext1R(R/I,K) → Ext1R(R/I,M).

By the assumption,

HomR(R/I,M) ≃ HomR(R/I,B) ≃ Ext1R(R/I,M) ≃ 0,

and therefore, from this exact sequence we arrive at the following relations:

HomR(R/I,K) = 0 = Ext1R(R/I,K).

Hence, by Lemma 2.3 we see that K ∈ D(R, I). Moreover, from the exact sequence

0 → K → M → B → 0

and the assumption that K,M ∈ D(R, I), we get B ∈ D(R, I). Finally, by using the

exact sequence

0 → B → N → C → 0

and the fact that B,N ∈ D(R, I), we see that C ∈ D(R, I). This means that D(R, I)

is an Abelian category, as required. �

Lemma 2.5. Let R be a Noetherian ring and I be an ideal of R with cd(I, R) 6 1.

Let

X◦ : . . . → X i → X i+1 → X i+2 → . . .

be a complex of R-modules and R-homomorphisms such that for all i ∈ Z,

X i ∈ D(R, I). Then Hi(X◦) ∈ D(R, I) for all i ∈ Z.

P r o o f. The assertion follows from Lemma 2.4. �
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Lemma 2.6. Let I be an ideal of a Noetherian ring R with cd(I, R) 6 1,

M ∈ D(R, I), and N be a finitely generated R-module. Then for each i ∈ N0,

the R-modules ExtiR(N,M) and TorRi (N,M) belong to D(R, I).

P r o o f. Let

. . . → F2
f1
−→ F1

f0
−→ F0

π
−→ N → 0

be a free resolution for N such that for each i ∈ N0, the R-module Fi has finite

rank. Now by calculating the R-modules ExtiR(N,M) and TorRi (N,M) with this

free resolution, one can obtain the assertion from Lemma 2.5. �

Lemma 2.7. Let I be an ideal of a Noetherian ring R with cd(I, R) 6 1, and N

be a finitely generated R-module. Then for each R-module M and each i ∈ N0, the

R-modules ExtiR(N,DI(M)) and TorRi (N,DI(M)) are in D(R, I).

P r o o f. For each R-module M , by [10], Corollary 2.2.8 (iv) for i = 0, 1, one has

Hi
I(DI(M)) = 0,

and by [10], Corollary 2.2.8 (v), Lemma 6.3.1 for all integers i > 2, we have

Hi
I(DI(M)) ≃ Hi

I(M) = 0.

Hence, DI(M) ∈ D(R, I). So, by Lemma 2.6 the R-modules ExtiR(N,DI(M)) and

TorRi (N,DI(M)) belong to D(R, I) for each i ∈ N0. �

Lemma 2.8. Let I be an ideal of a Noetherian ring R with I ∈ I (R) and

ΓI(R) = 0. Then for each finitely generatedR-moduleM , the R-moduleM⊗RDI(R)

belongs to B∗(R, I).

P r o o f. Let M be a finitely generated R-module and set W := M ⊗R DI(R).

From the assumptions I ∈ I (R) and ΓI(R) = 0 with the proof of Theorem 4.10

of [7], it follows that the R-module Hi
I(W ) is I-cofinite for all i ∈ N0.

Now, let p be a prime ideal of R with p 6∈ V (I∗). Then it is clear that

Hi
IRp

(Rp) ≃ (Hi
I(R))p = 0 for all i > 2.

Thus, by using Lemma 2.7, we get the relations

(Hi
I(W ))p ≃ Hi

IRp
(Mp ⊗Rp

DIRp
(Rp)) = 0 for each i ∈ N0.

So, SuppHi
I(W ) ⊆ V (I∗) for each i ∈ N0. Hence, the R-module W = M ⊗R DI(R)

belongs to B∗(R, I). �
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Lemma 2.9. Let R be a commutative ring and f : M → N , g : N → L be two

R-homomorphisms of R-modules. Then there are two exact sequences of R-modules

and R-homomorphisms like

0 → (ker g + im f)/ im f → coker f → coker g ◦ f → coker g → 0

and

0 → ker f → ker g ◦ f → ker g → (ker g + im f)/ im f → 0.

P r o o f. This is straightforward and left to the reader. �

Lemma 2.10 ([9], Theorem 2.7). For each ideal I of a Noetherian ring R,

C 1(R, I)cof is an Abelian category.

Lemma 2.11. Let I be an ideal of a Noetherian ring R,M ∈ C 1(R, I)cof and

let N be a finitely generated R-module. Then for each i ∈ N0, the R-modules

ExtiR(N,M), TorRi (N,M) belong to C 1(R, I)cof .

P r o o f. See [1], Theorem 2.7 and [29], Lemma 3.3. �

Lemma 2.12. Let I be an ideal of a Noetherian ring. Then for each pair of

finitely generated R-modules M and N there is an isomorphism of R-modules

HomR(N,DI(M)) ≃ DI(HomR(N,M)).

P r o o f. Since by assumption N is a finitely generated R-module, we see that the

functor HomR(N,−) commutes with direct limits. Therefore, we have

HomR(N,DI(M)) = HomR(N, lim
−→
n>1

HomR(I
n,M)) ≃ lim

−→
n>1

HomR(N,HomR(I
n,M))

≃ lim−→
n>1

HomR(N ⊗R In,M) ≃ lim−→
n>1

HomR(I
n,HomR(N,M))

= DI(HomR(N,M)),

as required. �

Lemma 2.13. Let I be an ideal of a Noetherian ring R with I ∈ I (R). Let

0 → M
f
→ N

g
→ L → 0

be a short exact sequence of R-modules and R-homomorphisms. If two of the

R-modules M , N and L are in B∗(R, I), then the third R-module is in B∗(R, I)

as well.
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P r o o f. Since dimR/I∗ 6 1, the assertion follows by applying Lemma 2.10 to

the long exact sequence

0 → H0
I (M) → H0

I (N) → H0
I (L) → H1

I (M) → H1
I (N) → H1

I (L) → . . .

�

3. Main results

The main purpose of this section is to prove the equality H (R) = I (R) for each

Noetherian ring R. We will prove this result in Theorem 3.3. But first we need the

following two lemmas.

Lemma 3.1. Let I be an ideal of a Noetherian ring with I ∈ I (R). Then for each

pair of finitely generatedR-modulesM andN , the R-modules HomR(N,DI(M)) and

DI(M)⊗R N are in B∗(R, I).

P r o o f. Assume that M and N are two finitely generated R-modules. Since by

Lemma 2.13, HomR(N,DI(M)) ≃ DI(HomR(N,M)) and by Lemma 2.2 we have

DI(HomR(N,M)) ∈ B
∗(R, I),

it follows that HomR(N,DI(M)) ∈ B∗(R, I).

Now, we prove that DI(M)⊗R N ∈ B∗(R, I). Since ΓI(R)M ⊆ ΓI(M), it follows

that ΓI(R) ⊆ AnnRM/ΓI(M). Furthermore, as DI(M) ≃ DI(M/ΓI(M)), obviously

ΓI(R) ⊆ AnnRM/ΓI(M) ⊆ AnnRDI(M/ΓI(M)) = AnnRDI(M).

Therefore, R/ΓI(R)⊗R DI(M) ≃ DI(M). Thus,

N ⊗R DI(M) ≃ N ⊗R (R/ΓI(R)⊗R DI(M)) ≃ (N ⊗R R/ΓI(R))⊗R DI(M)

≃ N/ΓI(R)N ⊗R DI(M) ≃ N/ΓI(R)N ⊗R/ΓI(R) DI(M).

Hence, by the Independence Theorem, we have

Hi
I(N ⊗RDI(M)) ≃ Hi

(I+ΓI(R))/ΓI (R)(N/ΓI(R)N⊗R/ΓI(R)DI(M)) for each i ∈ N0.

By using [14], Proposition 2, we get that (I + ΓI(R))/ΓI(R) ∈ I (R/ΓI(R)), and

also N ⊗R DI(M) ∈ B∗(R, I) if and only if

N/ΓI(R)N ⊗R/ΓI (R) DI(M) ∈ B
∗(R/ΓI(R), (I + ΓI(R))/ΓI(R)).

By replacing R with R/ΓI(R), we can make the additional assumption that

ΓI(R) = 0. The exact sequence

0 → R → DI(R) → H1
I (R) → 0
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induces the exact sequence

TorR1 (H
1
I (R),M) → M

α
−→ DI(R)⊗R M → H1

I (R)⊗R M → 0.

Since

Supp kerα ⊆ SuppTorR1 (H
1
I (R),M) ⊆ SuppH1

I (R) ⊆ V (I)

and

Supp cokerα = SuppH1
I (R)⊗R M ⊆ SuppH1

I (R) ⊆ V (I),

by [10], Proposition 2.2.11 (i) we can deduce that the map DI(α) is an isomorphism

and hence,

DI(DI(R)⊗R M) ≃ DI(M).

By using this relation, the following exact sequence can be obtained

(3.1) 0 → A → DI(R)⊗R M
β

−→ DI(M) → B → 0,

where A := ΓI(DI(R) ⊗R M), B := H1
I (DI(R) ⊗R M) and A,B ∈ C ∗(R, I)cof , by

Lemma 2.8. From the exact sequence (3.1) we obtain the exact sequence

(3.2) 0 → A → DI(R)⊗R M → C → 0,

where C := imβ. Also, this exact sequence yields the short exact sequence

A⊗R N
γ

−→ DI(R)⊗R (M ⊗R N) → C ⊗R N → 0.

Lemma 2.11 shows that the R-modules A ⊗R N , B ⊗R N and TorR1 (B,N) are

I-cofinite. On the other hand, the R-modules A and B have supports in V (I∗),

which yields that these R-modules have supports in V (I∗) likewise. Therefore,

the R-modules A ⊗R N , B ⊗R N and TorR1 (B,N) are in C ∗(R, I)cof . Moreover,

as Supp im γ ⊆ SuppA⊗R N ⊆ V (I), we see that im γ ⊆ ΓI(DI(R)⊗R (M ⊗R N)).

Let γ : A ⊗R N → ΓI(DI(R) ⊗R (M ⊗R N)) be the map induced by γ. Then it

is clear that im γ = im γ. By Lemma 2.8 we know that ΓI(DI(R)⊗R (M ⊗R N)) ∈

C ∗(R, I)cof . Therefore, applying Lemma 2.10 shows that the R-module im γ is

in C ∗(R, I)cof .

Since im γ ∈ C ∗(R, I)cof and by Lemma 2.8, DI(R) ⊗R (M ⊗R N) ∈ B∗(R, I),

the short exact sequence

0 → im γ → DI(R)⊗R (M ⊗R N) → C ⊗R N → 0

together with Lemma 2.13 implies that C ⊗R N ∈ B∗(R, I).
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Furthermore, from (3.1) we get the short exact sequence

(3.3) 0 → C → DI(M) → B → 0

which induces the exact sequence

TorR1 (B,N)
λ

−→ C ⊗R N
µ

−→ DI(M)⊗R N → B ⊗R N → 0.

Since Supp imλ ⊆ SuppTorR1 (B,N) ⊆ V (I), clearly imλ ⊆ ΓI(C ⊗R N).

Let λ̄ : TorR1 (B,N) → ΓI(C ⊗R N) be the map induced by λ. Hence, obviously

im λ̄ = imλ. Since C ⊗R N ∈ B∗(R, I), by the definition one has ΓI(C ⊗R N) ∈

C ∗(R, I)cof . Therefore, Lemma 2.11 yields that the R-module im λ̄ is in C ∗(R, I)cof .

Since imλ ∈ C ∗(R, I)cof and C ⊗R N ∈ B∗(R, I), the exact sequence

0 → imλ → C ⊗R N → imµ → 0

together with Lemma 2.13 implies that imµ ∈ B∗(R, I).

Finally, with the facts that imµ ∈ B∗(R, I), B⊗R N ∈ C ∗(R, I)cof , and applying

Lemma 2.13 on the exact sequence

0 → imµ → DI(M)⊗R N → B ⊗R N → 0,

we obtain that DI(M)⊗R N ∈ B∗(R, I), as required. �

Lemma 3.2. Let I be an ideal of a Noetherian ring with I ∈ I (R). Then for

each pair of finitely generated R-modules M , N and each i ∈ N0, the R-modules

TorRi (N,DI(M)) and ExtiR(N,DI(M)) are in B∗(R, I).

P r o o f. We use induction on i. For i = 0 the assertion holds by Lemma 3.1.

Now, we prove the assertion for i = 1. Select an exact sequence

(3.4) 0 → K → Rn → N → 0

with n ∈ N0. The exact sequence (3.4) yields the exact sequence

0 → TorR1 (N,DI(M)) → K ⊗R DI(M)
α

−→

n⊕

i=1

DI(M) → N ⊗R DI(M) → 0,

which gives the two following short exact sequences:

(3.5) 0 → imα →

n⊕

i=1

DI(M) → N ⊗R DI(M) → 0

and

(3.6) 0 → TorR1 (N,DI(M)) → K ⊗R DI(M) → imα → 0.
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By using Lemmas 2.13 and 3.1, from the short exact sequence (3.5) we get

imα ∈ B∗(R, I). Also, by using this result, Lemma 2.13 and Lemma 3.1, from

the short exact sequence (3.6) we get TorR1 (N,DI(M)) ∈ B∗(R, I).

In addition, from the exact sequence (3.4) we have the exact sequence

0 → HomR(N,DI(M)) →

n⊕

i=1

DI(M)
β

−→ HomR(K,DI(M))

→ Ext1R(N,DI(M)) → 0,

which induces the short exact sequences

(3.7) 0 → HomR(N,DI(M)) →

n⊕

i=1

DI(M) → imβ → 0

and

(3.8) 0 → im β → HomR(K,DI(M)) → Ext1R(N,DI(M)) → 0.

By using Lemmas 2.13, 3.1 and the exact sequence (3.7) we get imβ ∈ B∗(R, I).

Using this result together with Lemmas 2.13, 3.1 and the short exact sequence (3.8)

shows that Ext1R(N,DI(M)) ∈ B∗(R, I).

Suppose, inductively, that i > 1 and the result has been proved for smaller values

of i− 1. Since i > 1, the exact sequence (3.4) yields the isomorphism of R-modules

TorRi (N,DI(M)) ≃ TorRi−1(K,DI(M)), ExtiR(N,DI(M)) ≃ Exti−1
R (K,DI(M)).

By the inductive hypothesis, the R-modules

TorRi−1(K,DI(M)), Exti−1
R (K,DI(M))

are in B∗(R, I). Thus, TorRi (N,DI(M)),ExtiR(N,DI(M)) ∈ B∗(R, I). �

The following theorem is the main result of this paper.

Theorem 3.3. Suppose that R is a Noetherian ring. Then H (R) = I (R).

P r o o f. It is clear that H (R) ⊆ I (R). In order to prove I (R) ⊆ H (R), let

I ∈ I (R). We prove that ExtiR(N,Hj
I (M)),TorRi (N,Hj

I (M)) ∈ C (R, I)cof for all

finitely generated R-modules M , N and all integers i, j ∈ N0.

Since H0
I (M) = ΓI(M) is a finitely generated R-module with support in V (I), we

see that the assertion holds for j = 0. Moreover, using the fact that for each integer

j > 2, Hj
I (M) ∈ C 1(R, I)cof , and applying Lemma 2.11, the assertion will hold for

all integers j > 2. Therefore, we must prove the assertion just for the case j = 1.

For each k ∈ N0, set

Ak := TorRk (N,M/ΓI(M)), Bk := TorRk (N,DI(M)), Ck := TorRk (N,H1
I (M)).
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Now, assume that i ∈ N0. Then the exact sequence

0 → M/ΓI(M) → DI(M) → H1
I (M) → 0

induces the exact sequence

Ai
αi−→ Bi

βi

−→ Ci
δi−→ Ai−1.

Since Ai is a finitely generated R-module, we see that imαi is a finitely generated

R-module. Therefore, the R-module ΓI(imαi) is finitely generated and H
1
I (imαi) ∈

C (R, I)cof . Since ΓI(im βi) = imβi, the exact sequence

0 → imαi → Bi → imβi → 0

yields the exact sequence

0 → ΓI(imαi) → ΓI(Bi)
fi
−→ imβi

gi
−→ H1

I (imαi) → H1
I (Bi) → 0.

By Lemma 3.2, the R-module H1
I (Bi) is I-cofinite and hence the exact sequence

0 → im gi → H1
I (imαi) → H1

I (Bi) → 0

shows that im gi is I-cofinite. Also, by Lemma 3.2, the R-module ΓI(Bi) is I-cofinite.

Therefore, by considering the fact that the R-module ΓI(imαi) is finitely generated

with the exact sequence

0 → ΓI(imαi) → ΓI(Bi) → im fi → 0

we deduce that the R-module im fi is I-cofinite. Now, the exact sequence

0 → im fi → imβi → im gi → 0

shows that imβi is I-cofinite. Since the R-module Ai−1 is finitely generated, it follows

that im δi is a finitely generated I-torsion R-module. Hence, im δi is an I-cofinite

R-module. Finally, the exact sequence

0 → imβi → Ci → im δi → 0

shows that the R-module Ci = TorRi (N,H1
I (M)) is I-cofinite.

Now, for each k ∈ N0, set

A′

k := ExtkR(N,M/ΓI(M)), B′

k := ExtkR(N,DI(M)), C′

k := ExtkR(N,H1
I (M)).

Assume that i ∈ N0. Then the exact sequence

0 → M/ΓI(M) → DI(M) → H1
I (M) → 0
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induces the exact sequence

A′

i

α′

i−→ B′

i

β′

i−→ C′

i

δ′
i−→ A′

i+1.

Since A′

i is a finitely generated R-module, we see that imα′

i is a finitely generated

R-module. Therefore, the R-module ΓI(imα′

i) is finitely generated and H
1
I (imα′

i) ∈

C (R, I)cof . Because ΓI(imβ′

i) = imβ′

i, the exact sequence

0 → imα′

i → B′

i → imβ′

i → 0

yields the exact sequence

0 → ΓI(imα′

i) → ΓI(B
′

i)
f ′

i−→ imβ′

i

g′

i−→ H1
I (imα′

i) → H1
I (B

′

i) → 0.

By Lemma 3.2, the R-module H1
I (B

′

i) is I-cofinite and hence the exact sequence

0 → im g′i → H1
I (imα′

i) → H1
I (B

′

i) → 0

shows that im g′i is I-cofinite. Also, by Lemma 3.2, the R-module ΓI(B
′

i) is I-cofinite.

Since the R-module ΓI(imα′

i) is finitely generated, the exact sequence

0 → ΓI(imα′

i) → ΓI(B
′

i) → im f ′

i → 0

implies that the R-module im f ′

i is I-cofinite. Now, the exact sequence

0 → im f ′

i → imβ′

i → im g′i → 0

shows that imβ′

i is I-cofinite. Since the R-moduleA
′

i+1 is finitely generated, it follows

that im δ′i is a finitely generated I-torsion R-module. Thus, im δ′i is an I-cofinite

R-module. At the end, the exact sequence

0 → imβ′

i → C′

i → im δ′i → 0

shows that the R-module C′

i = ExtiR(N,H1
I (M)) is I-cofinite. Therefore, I ∈ H (R).

�

The following theorem is the final result of this paper.

Theorem 3.4. Let I be an ideal of a Noetherian ring R with I ∈ I (R). Suppose

that

X◦ : . . . → Mi+2
fi+1

−→ Mi+1
fi
−→ Mi → . . .

is an exact sequence ofR-modules andR-homomorphisms such that the R-moduleMi

is minimax for each i ∈ Z. Then for each n ∈ Z the nth homology module of the

complex DI(X
◦) belongs to C ∗(R, I)cof .
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P r o o f. Select an element p ∈ SpecR with p 6∈ V (I∗) and set S := R\ p. Then it

is clear that cd(IRp, Rp) 6 1 and hence by [10], Lemma 6.3.1 the functor DIRp
(−)

is exact. Therefore, the complex S−1DI(X
◦) is an exact sequence. This observation

shows that all homology modules of the complex DI(X
◦) have supports in V (I∗).

Suppose that n ∈ Z and for each i ∈ Z, set Ci := coker fi. The exact sequence

0 → Cn+2 → Mn+1
f̃n
−→ im fn → 0

induces the exact sequence

0 → DI(Cn+2) → DI(Mn+1)
DI (f̃n)
−→ DI(im fn) → H2

I (Cn+2)
αn+1

−→ H2
I (Mn+1),

which shows that cokerDI(f̃n) ≃ kerαn+1. Since by the hypothesis that the

R-module Mn+1 is minimax, it follows that the R-module Cn+2 is minimax too.

So, by the proof of Lemma 2.2 we see that both of the R-modules H2
I (Cn+2)

and H2
I (Mn+1) are in C ∗(R, I)cof . Hence, applying Lemma 2.10, we can deduce that

the R-module kerαn+1 belongs to C ∗(R, I)cof . Thus, cokerDI(f̃n) ∈ C ∗(R, I)cof .

On the other hand, the exact sequence

0 → im fn
ιn−→ Mn → Cn → 0

induces the following exact sequence

0 → DI(im fn)
DI (ιn)
−→ DI(Mn) → DI(Cn) → H2

I (im fn)
βn

−→ H2
I (Mn).

Since by assumption the R-module Mn is minimax, it follows that the R-modules

im fn and Cn are minimax as well. So, by the proof of Lemma 2.2 it follows that both

of the R-modules H2
I (im fn) and H2

I (Mn) are in C ∗(R, I)cof . Therefore, by using

Lemma 2.10 we can deduce that kerβn ∈ C ∗(R, I)cof . Furthermore, by Lemma 2.2

we have DI(Cn) ∈ B∗(R, I). Therefore, the exact sequence

0 → cokerDI(ιn) → DI(Cn) → kerβn → 0

together with Lemma 2.13 imply that cokerDI(ιn) ∈ B∗(R, I).

Since fn = ιn ◦ f̃n, by Lemma 2.9, we have the exact sequence

0 → U → cokerDI(f̃n) → cokerDI(fn) → cokerDI(ιn) −→ 0,

where U = (kerDI(ιn) + imDI(f̃n))/ imDI(f̃n).

Since kerDI(ιn) = 0, from the last exact sequence we get the short exact sequence

0 → cokerDI(f̃n) → cokerDI(fn) → cokerDI(ιn) → 0.
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By Lemma 2.13 the last exact sequence shows that cokerDI(fn) ∈ B∗(R, I). Also,

by Lemma 2.2 we have DI(Mn) ∈ B∗(R, I). So, by using Lemma 2.13 from the

exact sequence

0 → imDI(fn) → DI(Mn) → cokerDI(fn) → 0,

we deduce that imDI(fn) ∈ B∗(R, I).

Furthermore, applying the same method, it is concluded that imDI(fn−1) ∈

B∗(R, I). Moreover, by Lemma 2.2 we have DI(Mn−1) ∈ B∗(R, I). Therefore,

the exact sequence

0 → kerDI(fn−1) → DI(Mn−1) → imDI(fn−1) → 0,

together with Lemma 2.13 show that kerDI(fn−1) ∈ B∗(R, I). So, by applying

Lemma 2.13 to the exact sequence

0 → imDI(fn) → kerDI(fn−1) → Hn(DI(X
◦)) → 0,

we obtain that Hn(DI(X
◦)) ∈ B∗(R, I).

Since the R-module Hn(DI(X
◦)) has support in V (I∗), obviously,

ΓI(Hn(DI(X
◦))) = Hn(DI(X

◦)),

and hence the R-module Hn(DI(X
◦)) belongs to C ∗(R, I)cof . �
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