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Abstract. Among reduced Noetherian prime characteristic commutative rings, we prove
that a regular ring is precisely that where the finite intersection of ideals commutes with
taking bracket powers. However, reducedness is essential for this equivalence. Connections
are made with Ohm-Rush content theory, intersection-flatness of the Frobenius map, and
various flatness criteria.
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1. Introduction

In this note, all rings are unital, associative, and (unless otherwise specified) com-

mutative.

The condition of being regular is paramount in the theory of commutative Noethe-

rian rings, due in part to its connections to algebraic geometry. Hence, an easily

tested algebraic condition for it is always welcome. In pursuance of this, we offer:

Theorem 1 (Main Theorem). Let R be a Noetherian reduced commutative ring

of prime characteristic p > 0. Then the following are equivalent:

(1) R is regular.

(2) Finite intersection of ideals commutes with taking bracket powers.

(3) For any ideal I and any x ∈ R, we have I [p] ∩ (xp) = (I ∩ (x))[p].

(4) For any ideal I and any x ∈ R, we have (I : x)[p] = (I [p] : xp).

The use of the Frobenius to detect important properties of prime characteristic

rings, including regularity, the complete intersection property, and Gorensteinness,

is not new. We refer the reader to Miller’s survey, see [9]. Indeed, the equivalence
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of (1) and (4) of the above theorem was previously proved by Zhang (see [12]), using

completely different methods from the ones employed here.

Recall that for a power pn of p, the pnth bracket power of an ideal I is

the ideal generated by {xpn

: x ∈ I}. Kunz in [8] showed1 that for a com-

mutative Noetherian ring R of prime characteristic p > 0, R is regular if and

only if the Frobenius endomorphism R → R, r 7→ rp, is flat. Indeed, the

proof of Theorem 1 is really about flatness, so we commence with the Bour-

baki flatness criterion, a criterion that this author feels should be better known

than it is.

2. Preliminaries

Proposition 2 ([1], Exercise I.2.22). Let R be a ring, not necessarily commuta-

tive, and let M be a left R-module. Then M is R-flat if and only if (IM :M x) =

(I :R x)M for all finitely generated right ideals I and every x ∈ R, where for a subset

L ⊆ M , (L :M x) := {z ∈ M : xz ∈ L}.

Next, we have the Hochster-Jeffries flatness criterion.

Theorem 3. Let R be a ring, not necessarily commutative, and M a left

R-module. Then M is flat over R if and only if

(1) for any finitely generated right ideal I ofR and any x ∈ R, we have (IM∩xM) =

(I ∩ xR)M , and

(2) for any x ∈ R, we have (0 :M x) = (0 :R x)M .

Remark 4. The above is proved by Hochster and Jeffries in Proposition 5.5,

(iv) ⇒ (i) of [6], in case R is commutative, though this is not how they state it.

Bourbaki flatness makes the proof simpler though, and it allows the passage to

noncommutative rings.

P r o o f of Theorem 3. First suppose M is flat over R. Then (1) is well known

(by applying −⊗R M to the exact sequence of right R-modules 0 → R/(I ∩ xR) →

(R/I)⊕ (R/xR)) and (2) follows from Bourbaki flatness, see Proposition 2.

Conversely, suppose (1) and (2) hold. Let I be a finitely generated right ideal and

x ∈ R. Then we have

x(IM :M x) = IM ∩ xM = (I ∩ xR)M = x(I :R x)M.

1Kunz only stated this for R reduced, but as explained in the footnote to [4], Theorem 3.6,
this is an unnecessary assumption when the result is stated this way.
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It follows that

IM :M x = (I :R x)M + (0 :M x) = (I :R x)M + (0 :R x)M = (I :R x)M.

Another appeal to Bourbaki flatness finishes the proof. �

Lemma 5. Let R be a (commutative) integral domain and M a torsion-free

R-module such that for any finitely generated ideal I of R and any x ∈ R, we

have (I ∩ xR)M = IM ∩ xM . Then M is flat over R.

P r o o f. By Hochster-Jeffries flatness (see Theorem 3), it is enough to show that

annR(a)M = (annM a) for all a ∈ R. But if a = 0, then annR(a) = R and

annM (a) = M , whence annR(a)M = RM = M = annM a. On the other hand,

if a 6= 0, then annR(a) = 0, and by torsion-freeness we also have annM (a) = 0, so

annR(a)M = 0M = 0 = annM (a). �

Next, note the following connection between zero-divisors and intersection of

bracket powers of principal ideals.

Lemma 6. Let (R,m) be a commutative Noetherian local ring of prime charac-

teristic p > 0. Suppose that for all x, y ∈ R, we have ((xp) ∩ (yp)) = ((x) ∩ (y))[p].

Then every nonzero zero-divisor in R has a nonzero nilpotent multiple.

P r o o f. Let 0 6= a be a zero-divisor of R. Assume it has no nonzero nilpotent

multiple. Let P be an associated prime of R that contains ann(a). Without loss

of generality (by passing to a multiple), we may assume P = ann(a). Now let

Z := {annx : 0 6= x ∈ P}. Then Z is a nonempty set of proper ideals of R, so

the fact that R is Noetherian implies that Z has a maximal element Q, which is

then prime by the usual arguments. Let x ∈ P with Q = annx. Then we have

P = ann(at) (since a is non-nilpotent) and Q = ann(xt) (since Q is maximal in Z)

for all positive integers t.

Fix a positive integer t, and let b = at and y = xt. Now let g ∈ (b) ∩ (b + y). We

have g = cb = d(b+y) for some c, d ∈ R. Thus, (c−d)b = dy, so (c−d)b2 = dby = 0,

whence c − d ∈ ann(b2) = P = ann(b). Say c = d + π, π ∈ P . Then we have

0 = πb = (c− d)b = dy, so d ∈ ann(y) = Q. We have shown that (b) ∩ (b+ y) ⊆ Qb.

Conversely, if q ∈ Q, then qb = q(b + y) ∈ (b) ∩ (b + y) since qy = 0. Thus, we have

(b) ∩ (b + y) = Qb. In particular, choosing t = 1 yields (a) ∩ (a + x) = Qa, whence

(ap)∩ ((a+x)p) = ((a)∩ (a+x))[p] = (Qa)[p] = Q[p]ap. On the other hand, choosing

t = p yields (ap)∩ ((a+x)p) = (ap)∩ (ap +xp) = Qap. Thus, Qap = Q[p]ap ⊆ mQap,

so that by the Nakayama lemma, Qap = 0. But a ∈ Q, so ap+1 = 0, whence a is

nilpotent, which is a contradiction. �
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3. Proof of Theorem 1

We are ready to prove Theorem 1.

P r o o f of Theorem 1. By the Kunz regularity criterion (see [8]), R is regular

if and only if the maps fq : R → R given by a 7→ aq, q a power of p, are flat, if

and only if fp is flat. Moreover, we have fq(I)R = I [q]. Hence, the equivalence

of (1) and (4) follows directly from Bourbaki flatness. Moreover, the implication

(1) ⇒ (2) follows from the well-known fact that for any flat R-module M , we have

IM ∩ JM = (I ∩ J)M for any ideals I, J of R (cf. the proof of Theorem 3), plus

a trivial induction step. The implication (2) ⇒ (3) is obvious. Hence, we need only

prove (3) ⇒ (1).

Assume R satisfies (3) and suppose the implication (3) ⇒ (1) holds when R is

local. Since both finite intersections and bracket powers commute with localization

at maximal ideals, and since any localization of a reduced ring is reduced, we have

that (3) holds for the reduced local ring Rm for any maximal ideal m. Thus, by

assumption, Rm is a regular local ring, so R is regular since m was arbitrary. Thus,

we are reduced to the local case.

If R is an integral domain and (3) holds, then sinceR1/p is a torsion-freeR-module,

the Frobenius is flat by Lemma 5, and we are done by the Kunz regularity criterion.

It remains to show that when (R,m) is local and (3) holds, R is an integral domain.

But this follows from Lemma 6 since R is reduced. �

The obvious question now is: Do the equivalences in Theorem 1 still hold when R

is nonreduced? The answer is no.

Example 7. Let R = k[x]/(x2), where k is a field and x an indeterminate over k.

Clearly R is local and Noetherian but not regular, since dimR = 0 but the maximal

ideal requires a nonzero generator. However, let I, J be nonzero ideals of R. Since

the 3 ideals of R are linearly ordered, without loss of generality we have J ⊆ I. Thus,

I [q] ∩ J [q] = J [q] = (I ∩ J)[q].

Remark 8 (Ohm-Rush content and Frobenius roots). Recall that for a commu-

tative ring R, a module M is Ohm-Rush (see [3]) or content (see [10]) or weakly

intersection flat for ideals (see [6]), if for all collections {Iα} of ideals of R, we have
⋂

α
(IαM) =

(

⋂

α
Iα

)

M . I prefer the former term as it was Ohm and Rush who first

explored this property, albeit using problematic terminology. For an element x ∈ M ,

the (Ohm-Rush) content of x denoted by c(x) is the intersection of all ideals I of R

such that x ∈ IM . Similarly, for a submodule L ⊆ M , the (Ohm-Rush) content of L

denoted by c(L) is the intersection of all ideals I of R such that L ⊆ IM . It turns

out that M is Ohm-Rush if and only if for all x ∈ M we have x ∈ c(x)M if and only

if for all submodules L ⊆ M we have L ⊆ c(L)M , see [10], 1.2.
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Of particular interest is the case, where one has a ring homomorphism ϕ : R → S,

by which the R-algebra S is seen as an R-module via restriction of scalars. If S, seen

as an R-module in this way, satisfies the above Ohm-Rush condition, we say that S

is an Ohm-Rush R-algebra, or that ϕ is an Ohm-Rush map, or that the Ohm-Rush

property holds for S or for ϕ.

The condition on a Noetherian ring of positive prime characteristic that the Frobe-

nius endomorphism is a flat Ohm-Rush map is an important condition in tight closure

theory, cf. [5], [7], [11]. Note that if ϕ : R → R is the Frobenius endomorphism,

then for any ideal I of R and nonnegative integer e, we have ϕe(I)R = I [p
e], thus

showing the connection between bracket powers and Ohm-Rush theory.

Given an ideal J and a power q of p, the Ohm-Rush property of the Frobenius

allows one to find a unique smallest ideal I such that J ⊆ I [q], which is known

as J [1/q], see, e.g., [11], Definition 9.5. Indeed, one may intersect all the ideals

that have this property. But this intersection is just the Ohm-Rush content of the

ideal (see [3], [10]) via the iterated Frobenius endomorphism, so the Ohm-Rush

property itself is enough to guarantee such a minimal member. Hence, it is natural

to consider whether the weaker condition of being Ohm-Rush is enough to force

flatness of the Frobenius, and hence regularity. We see above that the answer is

yes for reduced rings, but no otherwise. It might be interesting to characterize the

class of (nonreduced) rings for which the Ohm-Rush property holds for the Frobenius

endomorphism, of which the above example is a member. This will have no bearing

on tight closure theory in particular (since one can compute tight closure modulo

minimal primes), but it is of fundamental interest in prime characteristic algebra

more generally.

When R is complete, finite intersection of ideals commuting with bracket pow-

ers is enough to ensure the property for arbitrary intersections of ideals (compare

Proposition 5.7 (e) of [6] and Proposition 5.3 of [7], where flatness of the Frobenius

is assumed):

Proposition 9. Let R be a complete Noetherian local ring of prime characteristic

p > 0. Suppose that for any ideals I, J of R, we have I [p] ∩ J [p] = (I ∩ J)[p]. Then

the Frobenius endomorphism f : R → R is Ohm-Rush.

P r o o f. We need to show that for any x ∈ R, there is a unique smallest ideal I

with x ∈ I [p].

Let {Iα}α∈Λ be the set of ideals J with x ∈ J [p], indexed by the index set Λ. Set

c(x) :=
⋂

{Iα : α ∈ Λ}. By the argument in the proof of Proposition 5.3 of [7], there

is a countable subset {αi : i ∈ N} of Λ such that c(x) =
∞
⋂

i=1

Iαi
. For each i ∈ N, set
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Ji :=
i
⋂

h=1

Iαh
. Then this is a decreasing sequence of ideals whose intersection is c(x).

Moreover, for each i, we have x ∈
i
⋂

h=1

I
[p]
αh

=
( i
⋂

h=1

Iαh

)[p]

= J
[p]
i , where the first

equality follows from the assumption on pairs of ideals. Chevalley’s lemma (see [2],

Lemma 7) then guarantees that for each n ∈ N, there is some i(n) ∈ N such that

Ji(n) ⊆ m
n + c(x). Thus, for each n, we have

x ∈
⋂

n

(J
[p]
i(n)) ⊆

⋂

n

(mn + c(x))[p] =
⋂

n

(m[p])n + c(x)[p] = c(x)[p]

with the last equality by the Krull intersection theorem. Since x ∈ c(x)[p] and c(x)

is contained in all ideals J with x ∈ J [p], it follows that c(x) is the unique smallest

such ideal. �

Recall that the Frobenius closure IF of an ideal I in a prime characteristic ring con-

sists of all those elements x ∈ R such that there exists some n ∈ N with xpn

∈ I [p
n].

Recall that an F-pure ring has the property that every ideal is Frobenius closed (and

is characterized by the property that every submodule of every finite module is Frobe-

nius closed). F-purity is considered to be a much weaker property than regularity.

Example 7 indicates that there might be a connection between the properties

in Theorem 1 for non-reduced rings and the regularity property for the reduced

structure of the ring. Indeed this is so, in the presence of F-purity.

Proposition 10. Let R be a commutative Noetherian ring of prime characteristic

p > 0 such that

(1) (I ∩ xR)[p] = I [p] ∩ xpR for all ideals I and x ∈ R, and

(2) Rred is F-pure.

Then Rred is regular.

P r o o f. Let a be an ideal of Rred and α ∈ Rred. Let I be an ideal of R and x ∈ R

whose residues in Rred are a and α, respectively. Let N be the nilradical of R. Then

there is some power q of p such that N [q] = 0.

Now let β ∈ a
[p] ∩ (αp). Let y ∈ R with residue class equal to β. Then y ∈

(I [p] +N) ∩ ((xp) +N). Further,

yq ∈ (I [p] +N)[q] ∩ ((xp) +N)[q] = I [pq] ∩ (xpq) = (I ∩ (x))[pq],

where the last equality follows from (1) and induction on logp q.

It follows that βq ∈ (a ∩ (α))[pq] = ((a ∩ (α))[p])[q], so that β ∈ ((a ∩ (α))[p])F .

But every ideal in Rred is Frobenius closed, so β ∈ (a ∩ (α))[p]. Thus, a[p] ∩ (αp) ⊆

(a ∩ (α))[p], whence equality holds. Then by Theorem 1, Rred is regular. �
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However, the converse is false. To see this, let R = k[x, y, z, w]/(xp+1, xpz − ypw,

xy, yp+1). Then (x)∩ (y) = (xpz), so ((x)∩ (y))[p] = 0, but xpz ∈ (xp)∩ (yp). On the

other hand, it is well known that the Frobenius onRred
∼= k[z, w] is F-intersection flat,

hence Ohm-Rush. Thus, the Ohm-Rush property of the Frobenius on nonreduced

rings remains mysterious.
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