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ARCHIVUM MATHEMATICUM (BRNO)
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REMOTELY c-ALMOST PERIODIC TYPE FUNCTIONS IN Rn

Marco Kostić and Vipin Kumar

Abstract. In this paper, we relate the notions of remote almost periodicity
and quasi-asymptotical almost periodicity; in actual fact, we observe that a
remotely almost periodic function is nothing else but a bounded, uniformly
continuous quasi-asymptotically almost periodic function. We introduce and
analyze several new classes of remotely c-almost periodic functions in Rn,
slowly oscillating functions in Rn, and further analyze the recently intro-
duced class of quasi-asymptotically c-almost periodic functions in Rn. We
provide certain applications of our theoretical results to the abstract Volterra
integro-differential equations and the ordinary differential equations.

1. Introduction and preliminaries

The notion of almost periodicity was introduced by the Danish mathematician
H. Bohr around 1924–1926 and later reconsidered by many others. Let (X, ‖ · ‖) be
a complex Banach space, and let F : Rn → X be a continuous function (n ∈ N).
Then it is said that F (·) is almost periodic if and only if for each ε > 0 there exists
l > 0 such that for each t0 ∈ Rn there exists τ ∈ B(t0, l) with∥∥F (t + τ)− F (t)

∥∥ ≤ ε, t ∈ Rn ,

where B(t0, l) denotes the closed ball in Rn with center t0 and radius l > 0.
Equivalently, F (·) is almost periodic if and only if for any sequence (bn) in Rn there
exists a subsequence (an) of (bn) such that (F (·+ an)) converges in Cb(Rn : X),
the Banach space of bounded continuous functions F : Rn → X equipped with the
sup-norm. Any trigonometric polynomial in Rn is almost periodic and it is also
well known that F (·) is almost periodic if and only if there exists a sequence of
trigonometric polynomials in Rn which converges uniformly to F (·).

Any almost periodic function F (·) is bounded and uniformly continuous. Further
on, if F : Rn → X is an almost periodic function, then F (·) is uniformly recurrent
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in the sense that F (·) is continuous and there exists a sequence (τk) in Rn such
that limk→+∞ |τk| = +∞ and

lim
k→+∞

sup
t∈Rn

∥∥F (t + τk
)
− F (t)

∥∥ = 0 .

In [9], a joint paper with A. Chávez, K. Khalil and M. Pinto, the first named author
has analyzed various classes of almost periodic functions of form F : I ×X → Y,
where (Y, ‖ · ‖Y ) is a complex Banach spaces and ∅ 6= I ⊆ Rn. For more details
about almost periodic functions and their applications, we refer the reader to
[5, 9, 12, 14, 23, 28, 30, 32, 34, 42].

On the other hand, the class of S-asymptotically ω-periodic functions was
thoroughly analyzed by H.R. Henríquez, M. Pierri and P. Táboas [18] in 2008 (for
some applications of S-asymptotically ω-periodic functions, we refer the reader
to [6, 11, 13, 18, 33, 39] and references quoted therein). In [26], we have recently
introduced and analyzed the class of quasi-asymptotically almost periodic functions
following the approach of A.S. Kovanko [29]. Any S-asymptotically ω-periodic
function f : I → X is quasi-asymptotically almost periodic, while the converse
statement is not true in general ([26]).

Further on, in our joint research studies [19]–[20] with M.T. Khalladi, A. Rah-
mani, M. Pinto and D. Velinov, the classes of (Stepanov, Weyl) c-almost per-
iodic type functions, quasi-asymptotically c-almost periodic type functions and
S-asymptotically (ω, c)-periodic type functions have been examined in the one-di-
mensional setting. In the research articles [21]–[24], the authors have analy-
zed multi-dimensional c-almost periodic type functions and various classes of
multi-dimensional (ω, c)-almost periodic type functions. Here we observe that
a bounded continuous function F : Rn → X is remotely almost periodic if and
only if F (·) is uniformly continuous and quasi-asymptotically almost periodic.
We investigate various notions of remote c-almost periodicity in Rn following
the approach obeyed in our recent research article [24], where we have analyzed
quasi-asymptotically c-almost periodic type functions in Rn. The functions under
our consideration are defined on a general region I ⊆ Rn, which need not contain
the zero vector or be closed under the pointwise addition.

It is said that a bounded continuous function F : Rn → X is slowly oscillating
if and only if for each ω ∈ Rn we have lim|t|→+∞ ‖F (t + ω) − F (t)‖ = 0. We
know that any slowly oscillating function F (·) is uniformly continuous. Concerning
applications of slowly oscillating functions made so far, let us recall that F. Yang and
C. Zhang have analyzed slowly oscillating solutions of parabolic inverse problems in
[40]; see also the research articles [43, 44, 45], and [46] by S. Zhang, D. Piao. In this
paper, we introduce and analyze some new classes of slowly oscillating functions in
Rn, and further analyze multi-dimensional quasi-asymptotically c-almost periodic
functions; for simplicity, we will not consider the corresponding Stepanov classes
here.

The organization and main ideas of this paper can be briefly described as follows.
In Section 2, we introduce and analyze slowly oscillating type functions in Rn.
The notion of a (D,B)-slowly oscillating function is introduced in Definition 2.1;
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the main aim of Proposition 2.2 is to indicate that the class of (D,B, c)-slowly
oscillating functions is not interesting for further investigations, if c ∈ C \ {0}
and c 6= 1. In Proposition 2.3, we extend the well known result of D. Sarason [38,
Proposition 1] concerning the uniform continuity of slowly oscillating functions
to the multi-dimensional setting. The main aim of Example 2.4 is to show the
existence of a vector-valued slowly oscillating function with not relatively compact
range. The class of (B, (Dj)j∈Nn)-slowly oscillating functions is introduced in
Definition 2.5; after that, we explain how many structural results established in
[24] can be used to provide certain characterizations of (D,B)-slowly oscillating
functions and (B, (Dj)j∈Nn)-slowly oscillating functions. Concerning the usual class
of one-dimensional slowly oscillating functions, we would like to note that the
statement of [7, Lemma 2.1], which has recently been established by D. Brindle
in his doctoral dissertation and which plausibly holds for uniformly integrable
resolvent operator families under consideration, and the statement of [8, Theorem
3.9] with k = 0, which has recently been proved by Y.-K. Chang and Y. Wei, can
be used to profile important results concerning the invariance of slowly oscillating
property under the actions of finite convolution products and the actions of infinite
convolution products, respectively (the multi-dimensional analogues can be deduced
without any substantial difficulties; see [9] for more details). Such results enable one
to analyze the existence and uniqueness of slowly oscillating solutions for various
classes of the abstract Volterra integro-differential equations considered in [23] and
[28]; see also Example 3.5 below.

Section 3 essentially continues our recent analysis of multi-dimensional quasi-
-asymptotically c-almost periodic functions ([24]). In this section, we state the
fundamental relations between the notions quasi-asymptotical c-almost periodi-
city and remote c-almost periodicity; we introduce various notions of D-remotely
(B, I ′, c)-almost periodicity in Definition 3.2. Our main aim is, in fact, to show
how the already known results established for remotely almost periodic functions
(see e.g., [44, 46]) can be used in further analysis of quasi-asymptotically almost
periodic functions and how the already established results for quasi-asymptotically
(c-)almost periodic functions ([19, 24, 26]) can be used for giving new charac-
terizations of remotely (c-)almost periodic functions, and especially, for giving
new important applications of this class of functions to the abstract Volterra
integro-differential equations (see also Proposition 3.3, Proposition 3.7, Example
3.4 and Example 3.5). Therefore, this paper can be viewed as a certain addendum
to the paper [24]. Further on, we provide several arguments showing that the result
of [46, Proposition 2.4] is not correct and provide an example of a vector-valued
slowly oscillating function without mean value. In the final section of paper, we
provide certain applications to the integro-differential equations; especially, in
Subsection 4.1, we continue our recent analysis from [31], a joint work with C.
Maulén, S. Castillo and M. Pinto, by analyzing slowly oscillating solutions for the
Richard-Chapman ordinary differential equation with an external perturbation,
which plays an important role in mathematical biology.

We use the standard notation throughout the paper. By (X, ‖ · ‖) and (Y, ‖ · ‖Y )
we denote two complex Banach spaces; L(X,Y ) stands for the Banach algebra of
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all bounded linear operators from X into Y with L(X,X) being abbreviated to
L(X). By 〈·, ·〉 we denote the usual inner product in Rn. If t0 ∈ Rn and ε > 0, then
we define B(t0, ε) := {t ∈ Rn : |t− t0| ≤ ε}, where | · | denotes the Euclidean norm
in Rn; (e1, e2, . . . , en) denotes the standard basis of Rn. Set Nn := {1, . . . , n}.

We will always assume henceforth that B is a collection of non-empty subsets
of X such that, for every x ∈ X, there exists B ∈ B with x ∈ B. Suppose that
D ⊆ I ⊆ Rn and the set D is unbounded. By C0,D,B(I × X : Y ) we denote the
vector space consisting of all continuous functions Q : I ×X → Y such that, for
every B ∈ B, we have lim|t|→+∞,t∈D Q(t;x) = 0, uniformly for x ∈ B ([9]).

The class of (ω, c)-periodic functions was introduced by E. Alvarez, A. Gómez,
M. Pinto in [3] and later reconsidered by E. Alvarez, S. Castillo, M. Pinto in [1] and
E. Alvarez, S. Castillo, M. Pinto in [2], among many other research articles. Before
proceeding further, we need to recall the definitions of an (S,D,B)-asymptotically
(ω, c)-periodic function and an (S,B)-asymptotically (ωj , cj ,Dj)j∈Nn -periodic func-
tion (cf. also M.T. Khalladi, M. Kostić, M. Pinto, A. Rahmani, D. Velinov [19,
Definition 3.1] and Y.-K. Chang, Y. Wei [8, Definition 3.1, Definition 3.2] for the
one-dimensional case, as well as M. Kostić [25] for the multi-dimensional case):

Definition 1.1 ([24]). Let ω ∈ Rn \ {0}, c ∈ C \ {0}, ω + I ⊆ I, D ⊆ I ⊆ Rn
and the set D be unbounded. A continuous function F : I ×X → Y is said to be
(S,D,B)-asymptotically (ω, c)-periodic if and only if for each B ∈ B we have

lim
|t|→+∞,t∈D

∥∥F (t + ω;x)− cF (t;x)
∥∥
Y

= 0 , uniformly in x ∈ B .

Definition 1.2 ([24]). Let ωj ∈ R \ {0}, cj ∈ C \ {0}, ωjej + I ⊆ I, Dj ⊆ I ⊆ Rn
and the set Dj be unbounded (1 ≤ j ≤ n). A continuous function F : I ×X → Y
is said to be (S,B)-asymptotically (ωj , cj ,Dj)j∈Nn-periodic if and only if for each
j ∈ Nn we have

lim
|t|→+∞,t∈Dj

∥∥F (t + ωjej ;x)− cjF (t;x)
∥∥
Y

= 0 , uniformly in x ∈ B .

2. Slowly oscillating type functions in Rn

We start this section by introducing the following notion (see also [4, Definition
4.2.1, p. 247] for a slighly different notion of a one-dimensional slowly oscillating
function, and [36] for the notion of a slowly oscillating function f : [0,∞)→ C at
0 and +∞):

Definition 2.1. Let c ∈ C \ {0}, ∅ 6= I ⊆ Rn, D ⊆ I ⊆ Rn and the set D be
unbounded. Define

AI :=
{
ω ∈ Rn \ {0} : ω + I ⊆ I

}
.

Then we say that a continuous function F : I ×X → Y is (D,B)-slowly oscillating
if and only if for each B ∈ B and ω ∈ AI , we have

lim
|t|→+∞,t∈D

∥∥F (t + ω;x)− F (t;x)
∥∥
Y

= 0 , uniformly in x ∈ B .(2.1)
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In other words, a continuous function F : I×X → Y is (D,B)-slowly oscillating if
and only if F (·; ·) is (S,D,B)-asymptotically (ω, 1)-periodic for all ω ∈ AI . Clearly,
we have kAI ⊆ AI for all k ∈ N.

If X ∈ B, then we omit the term “B” from the notation and, if D = I, then
we omit the term “D” from the notation; for example, if D = I and F : I → Y is
(D,B)-slowly oscillating with X = {0}, then we simply say that the function F (·)
is slowly oscillating.

Now we would like to note that it is not so logical to study the class of
(D,B, c)-slowly oscillating functions by replacing the term ‖F (t +ω;x)−F (t;x)‖Y
in (2.1) by the term ‖F (t + ω;x)− cF (t;x)‖Y , where c ∈ C \ {0}. In actual fact,
we have the following result which is clearly applicable if D = I = [0,∞)n or
D = I = Rn:

Proposition 2.2. Let c ∈ C \ {0}, ∅ 6= I ⊆ Rn, D ⊆ I ⊆ Rn and the set D be
unbounded. Suppose that AI ⊆ 2AI and ω′ + D ⊆ D for all ω′ ∈ AI/2. Then the
following holds:

(i) If a continuous function F : I ×X → Y is (D,B, c)-slowly oscillating, then
F ∈ C0,D,B(I ×X : Y ).

(ii) If, in addition to the above, we have ω + D ⊆ D for all ω ∈ AI , then a
continuous function F : I ×X → Y is (D,B, c)-slowly oscillating if and only
if F ∈ C0,D,B(I ×X : Y ).

Proof. To prove (i), suppose that ω′ ∈ AI and B ∈ B; then there exists ω ∈ AI
such that ω′ = 2ω. We have (t ∈ I; x ∈ B):

F
(
t + ω′;x

)
− c2F (t;x) = F

(
t + 2ω;x

)
− c2F (t;x)

=
[
F
(
t + 2ω;x

)
− cF

(
t + ω;x

)]
+ c
[
F
(
t + ω;x

)
− cF

(
t;x
)]
.

The prescribed assumption (AI/2) + D ⊆ D implies t + ω ∈ D, t ∈ D and
lim

|t|→+∞,t∈D

∥∥F (t + ω′;x
)
− c2F (t;x)

∥∥
Y

= 0 , uniformly in x ∈ B .

Subtracting the terms in the above limit equality and the limit equality (2.1), with
the number ω replaced therein with the number ω′, we get

lim
|t|→+∞,t∈D

∥∥(c2 − c
)
· F (t;x)

∥∥
Y

= 0 , uniformly in x ∈ B .

This immediately implies (i) since c 6= 1. To prove (ii), it suffices to apply (i) and
observe that the assumption ω + D ⊆ D for all ω ∈ AI implies

lim
|t|→+∞,t∈D

∥∥F (t + ω;x)
∥∥
Y

= 0 , uniformly in x ∈ B .

�

Concerning the notion of a (D,B)-slowly oscillating function, we would like to
note that we do not require any kind of boundedness of function F (·; ·) here. In
the classical approach, developed by D. Sarason [38] for the functions of form
f : [0,∞)→ C, the boundedness of function f(·) is required a priori, which is not
a direct consequence of definition since the function f(t) := tα, t ≥ 0 satisfies (2.1)
if α ∈ (0, 1); the boundedness is obtained by applying the function ei· after that
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(in other words, the function t 7→ eit
α , t ≥ 0 is slowly oscillating in the sense of

[38], for any α ∈ (0, 1)). It is also worth noting that the global boundedness of
function f(·) has not been used in the proof of [38, Proposition 1], as well as that
the argumentation contained in the proof of this theorem can serve one to deduce
the following result in the multi-dimensional setting; we will include all details of
proof for the sake of completeness:

Proposition 2.3. Suppose that ∅ 6= I ⊆ Rn is an unbounded, closed set and
the function F : I → Y is slowly oscillating. Suppose, further, that the following
condition holds:

(C) For every r > 0 and δ > 0, for every points t, t′ ∈ I \ Ir with |t− t′| < δ,
and for every point z ∈ (AI + t− t′) ∪ (AI + t′ − t), there exists ηz > 0 such
that B(z, ηz) ⊆ AI . Here, Ir ≡ {t ∈ I : |t| ≤ r} (r > 0).

Then the function F (·) is uniformly continuous.

Proof. Suppose that the function F (·) is not uniformly continuous. Since the set
I is closed, the set I ∩B(0, r) is compact for all positive real numbers r > 0; hence,
the following holds:

(D) There exists a positive real number ε > 0 such that, for every positive real
numbers δ > 0 and r > 0, there exist t, t′ ∈ I \ Ir such that |t− t′| < δ and
‖F (t)− F (t′)‖Y > ε.

Using conditions (C) and (D), as well as the fact that the function F (·) is slowly
oscillating, we can inductively construct the sequences (ωk) in AI , (tk) in I
and (ηk) in (0,∞) such that limk→+∞ ηk = 0, limk→∞ |tk| = +∞, B(ωk, ηk) ⊆
B(ωk+1, ηk+1) ⊆ AI , k ∈ N and ‖F (tk)− F (tk + t)‖Y ≥ ε/2 provided k ∈ N and
t ∈ B(ωk, ηk); it is only worth noting here that, in each step of this construction,
we can choose the point ωk+1 to be ωk + (tk − t′k) or ωk + (tk

′ − tk), where the
points tk and t′k are already chosen points from I with sufficiently large absolute
values, satisfying additionally that ‖F (tk)−F (t′k)‖Y > ε and |tk

′− tk| ≤ 1/k. Due
to the Cantor theorem, there exists a unique number t′ ∈

⋂
k∈N B(ωk, ηk). This

implies ‖F (tk)− F (tk + t′)‖Y ≥ ε/2 for all k ∈ N, which is a contradiction since
the function F (·) is slowly oscillating and t′ ∈ AI . �

Using this result, the interested reader may simply transfer the statement of [38,
Proposition 2] to the higher dimensions, as well; details can be left to the interested
readers. For more details about the life and professional work of D. Sarason, we
refer the reader to the communication paper [16] by S.R. Garcia.

We continue by observing that, in the infinite-dimensional setting, there exists a
bounded, uniformly continuous, slowly oscillating function F : [0,∞)→ Y whose
range is not relatively compact in Y :

Example 2.4 ([18, 26]). Let Y := c0 be the space of all numerical sequences
tending to zero, equipped with the sup-norm. Set

F (t) :=
(

4n2t2

(t2 + n2)2

)
n∈N

, t ≥ 0 .



REMOTELY c-ALMOST PERIODIC TYPE FUNCTIONS IN Rn 91

Then the function F (·) is bounded, uniformly continuous and satisfies

‖F (t+ τ)− F (t)‖ ≤ t−4 + 4τ
2

t2
, t > 0 , τ ≥ 0 ,

so that the function F (·) is slowly oscillating. We already know that the range of
F (·) is not relatively compact in Y .

The following notion is also meaningful:

Definition 2.5. Let Dj ⊆ I ⊆ Rn and the set Dj be unbounded (1 ≤ j ≤ n).
Define

BI :=
{

(ω1, . . . , ωn) ∈ (R \ {0})n : ωjej + I ⊆ I for all j ∈ Nn
}
.

Then we say that a continuous function F : I × X → Y is (B, (Dj)j∈Nn)-slowly
oscillating if and only if for each (ω1, . . . , ωn) ∈ BI and j ∈ Nn we have

lim
|t|→+∞,t∈Dj

∥∥F (t + ωjej ;x)− F (t;x)
∥∥
Y

= 0 , uniformly in x ∈ B .

In other words, a continuous function F : I × X → Y is (B, (Dj)j∈Nn)-slowly
oscillating if and only if F (·; ·) is (S,B)-asymptotically (ωj , 1,Dj)j∈Nn -periodic for
all tuples (ω1, . . . , ωn) ∈ BI . Clearly, we have kBI ⊆ BI for all k ∈ N.

In [24], we have investigated the following topics in connection with (S,D,B)-asym-
ptotically (ω, c)-periodic functions and (S,B)-asymptotically (ωj , cj ,Dj)j∈Nn -periodic
functions:

(i) the invariance under the operation of uniform convergence,
(ii) the convolution invariance,
(iii) the invariance under reflections at zero,
(iv) the translation invariance,
(v) the pointwise products with the scalar-valued functions of the same type,

etc.
All these statements can be simply reformulated for the notion introduced in
Definition 2.1 and Definition 2.5 (with c = 1; cj = 1 for all j ∈ Nn). We will skip
all applications based on the use of results concerning the above-mentioned topics,
like those established to d’Alembert formula and the heat equation in Rn; see [24]
for more details.

3. On the relations between quasi-asymptotical c-almost periodicity
and remote c-almost periodicity

In this section, we will first remind the readers of the notion of quasi-asymptotical
c-almost periodicity (we do not use the assumption I ′ ⊆ I here; cf. also [19,
Definition 3.3] for the one-dimensional setting):

Definition 3.1 ([24]). Suppose that D ⊆ I ⊆ Rn, ∅ 6= I ⊆ Rn, ∅ 6= I ′ ⊆ Rn,
the sets D and I ′ are unbounded, F : I × X → Y is a continuous function and
I + I ′ ⊆ I. Then we say that:

(i) F (·; ·) is D-quasi-asymptotically (B, I ′, c)-almost periodic if and only if for
every B ∈ B and ε > 0 there exists l > 0 such that for each t0 ∈ I ′ there
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exists τ ∈ B(t0, l) ∩ I ′ such that there exists a finite real number M(ε, τ) > 0
such that∥∥F (t + τ ;x)− cF (t;x)

∥∥
Y
≤ ε, provided t, t + τ ∈ DM(ε,τ) , x ∈ B .(3.1)

(ii) F (·; ·) is D-quasi-asymptotically (B, I ′, c)-uniformly recurrent if and only
if for every B ∈ B there exist a sequence (τk) in I ′ and a sequence (Mk) in
(0,∞) such that limk→+∞ |τk| = limk→+∞Mk = +∞ and

lim
k→+∞

sup
t,t+τk∈DMk ;x∈B

∥∥F (t + τk;x)− cF (t;x)
∥∥
Y

= 0 .(3.2)

If I ′ = I, then we also say that F (·; ·) is D-quasi-asymptotically (B, c)-almost
periodic (D-quasi-asymptotically (B, c)-uniformly recurrent); furthermore, if X ∈ B,
then it is also said that F (·; ·) is D-quasi-asymptotically (I ′, c)-almost periodic
(D-quasi-asymptotically (I ′, c)-uniformly recurrent). If I ′ = I and X ∈ B, then we
also say that F (·; ·) is D-quasi-asymptotically c-almost periodic (D-quasi-asympto-
tically c-uniformly recurrent). We remove the prefix “D-” in the case that D = I,
remove the prefix “(B, )” in the case that X ∈ B and remove the prefix “c-” if
c = 1. We will accept these terminological agreements for the notion introduced in
Definition 3.2 below, as well.

Now we would like to take a closer look at the equations (3.1) and (3.2). We
first observe that it is completely irrelevant whether we will write that there exists
a finite real number M(ε, τ) > 0 such that (3.1) holds, or more concisely,

lim sup
|t|→+∞,t∈D

sup
x∈B

∥∥F (t + τ ;x)− cF (t;x)
∥∥
Y
≤ ε ,(3.3)

i.e.,

lim
s→+∞

sup
|t|≥s,t∈D;x∈B

∥∥F (t + τ ;x)− cF (t;x)
∥∥
Y
≤ ε .

It is also very simple to show that it is completely irrelevant whether we will write
that there exists a finite real number M(ε, τ) > 0 such that (3.2) holds, or more
concisely,

lim
k→+∞

lim sup
|t|→+∞,t∈D

sup
x∈B

∥∥F (t + τk;x)− cF (t;x)
∥∥
Y

= 0 ,

i.e.,
lim

k→+∞
lim

s→+∞
sup

|t|≥s,t∈D;x∈B

∥∥F (t + τk;x)− cF (t;x)
∥∥
Y

= 0 .

The special case c = 1, X ∈ B and D = I = I ′ = Rn has been considered in
[19], [24] and [26], where a D-quasi-asymptotically Bohr (B, I ′, c)-almost periodic
function is simply called quasi-asymptotically almost periodic. In this case, the
above consideration shows that the notion of quasi-asymptotical almost periodicity
is equivalent with the notion of remote almost periodicity considered by F. Yang
and C. Zhang in [41, Definition 1.1; (1) and (3)]; see also the pioneering paper
[37], where D. Sarason has analyzed the complex-valued remotely almost periodic
functions defined on the real line, and the paper [45], where C. Zhang and L. Jiang
have analyzed the class of remotely almost periodic sequences (see also [35]).
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As our former analyses show (see also the research article [39] by R. Xie and
C. Zhang), a quasi-asymptotically almost periodic function F : Rn → C need not be
uniformly continuous, so that the notion introduced in [41, Definition 1.1; (2)] is not
satisfactory to a certain extent (see also S. Zhang, D. Piao [46, Definition 2.1] and
the first sentence after [41, Definition 1.1], where the authors have assumed a priori
that a remotely almost periodic function F : Rn → X is uniformly continuous). It
is our strong belief that it is much better to analyze both: the general classes of
D-quasi-asymptotically Bohr (B, I ′, c)-almost periodic type functions which are not
uniformly continuous on B and the corresponding classes of D-quasi-asymptotically
Bohr (B, I ′, c)-almost periodic type functions which are uniformly continuous on B
(in a certain sense):

Definition 3.2. Suppose that F : I ×X → Y is a continuous function.
(i) It is said that F (·; ·) is D-remotely (B, I ′, c)-almost periodic if and only if
F (·; ·) is D-quasi-asymptotically Bohr (B, I ′, c)-almost periodic and for each
B ∈ B the function F (·; ·) is uniformly continuous on I ×B; that is

(∀B ∈ B) (∀ε > 0) (∃δ > 0) (∀t′, t′′ ∈ I)
(
∀x′, x′′ ∈ B

)(∣∣t′ − t′′
∣∣+
∥∥x′ − x′′∥∥ < δ ⇒

∥∥∥F (t′;x′)− F (t′′;x′′)∥∥∥
Y
< ε
)
.

(ii) It is said that F (·; ·) is D-remotely (B, I ′, c)-uniformly recurrent if and only
if F (·; ·) is D-quasi-asymptotically Bohr (B, I ′, c)-uniformly recurrent and for
each B ∈ B the function F (·; ·) is uniformly continuous on I ×B.

(iii) It is said that F (·; ·) is D-remotely (B, I ′, c)-almost periodic of type 1 if and
only if F (·; ·) is D-quasi-asymptotically Bohr (B, I ′, c)-almost periodic and

(∀B ∈ B) (∀ε > 0) (∃δ > 0) (∀t′, t′′ ∈ I) (∀x ∈ B)(∣∣t′ − t′′
∣∣ < δ ⇒

∥∥∥F (t′;x)− F (t′′;x)∥∥∥
Y
< ε
)
.(3.4)

(iv) It is said that F (·; ·) is D-remotely (B, I ′, c)-uniformly recurrent of type 1 if
and only if F (·; ·) is D-quasi-asymptotically Bohr (B, I ′, c)-uniformly recurrent
and (3.4) holds.

It is clear that any D-remotely (B, I ′, c)-almost periodic (D-remotely (B, I ′, c)-uni-
formly recurrent) function is D-remotely (B, I ′, c)-almost periodic of type 1 (D-remo-
tely (B, I ′, c)-uniformly recurrent of type 1). The converse statement holds provided
that the function F (·; ·) is Lipshitz continuous with respect to the second argument:

Proposition 3.3. Suppose that F : I ×X → Y is a continuous function and for
each set B ∈ B there exists a finite real constant LB > 0 such that∥∥F (t;x′

)
− F

(
t;x′′

)∥∥
Y
≤ LB

∥∥x′ − x′′∥∥ , t ∈ I, x′, x′′ ∈ B .(3.5)

If F (·; ·) is D-remotely (B, I ′, c)-almost periodic of type 1 (D-remotely (B, I ′, c)-uni-
formly recurrent of type 1), then F (·; ·) is D-remotely (B, I ′, c)-almost periodic
(D-remotely (B, I ′, c)-uniformly recurrent).
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Proof. Let the set B ∈ B be given and let LB > 0 satisfy (3.5). The proof is a
simple consequence of the corresponding definitions and the following decomposition
(t, t ∈ I; x′, x′′ ∈ B):∥∥∥F (t′;x′)− F (t′′;x′′)∥∥∥

Y
≤
∥∥∥F (t′;x′)− F (t′;x′′)∥∥∥

Y
+
∥∥∥F (t′;x′′)− F (t′′;x′′)∥∥∥

Y

≤ LB
∥∥x′ − x′′∥∥+

∥∥∥F (t′;x′′)− F (t′′;x′′)∥∥∥
Y
.

�

Further on, we want to notice that we do not require any type of boundedness
of function F (·) in Definition 3.1 and Definition 3.2; for example, an application of
the Lagrange mean value theorem yields that for each fixed real number σ ∈ (0, 1)
we have |(t+ τ)σ − tσ| ≤ τσtσ−1, t > 0, σ ≥ 0, so that the function t 7→ tσ, t ≥ 0 is
remotely almost periodic in the sense of Definition 3.2, as we have already discussed
for slowly oscillating functions. In connection with the unboundedness of function
F (·) in these definitions, we would like to present the following illustrative example:

Example 3.4. Let us recall that A. Haraux and P. Souplet have proved, in [17,
Theorem 1.1], that the function f : R→ R, given by

f(t) :=
∞∑
n=1

1
n

sin2
( t

2n
)
, t ∈ R ,(3.6)

is uniformly continuous, uniformly recurrent and unbounded; futhermore, this
function is even, Weyl p-almost automorphic for any finite exponent p ≥ 1 and
satisfies that for each number τ ∈ R the function f(· + τ) − f(·) belongs to the
space ANP (R : C) consisting of all almost periodic complex-valued functions whose
Bohr’s spectrum is contained in the set R \ {0}; see [27] for the notion and more
details.

We will prove here that the function f(·) is not quasi-asymptotically almost
periodic in the sense of Definition 3.1 and [19, Definition 3.3]. If we assume the
contrary, then for each positive real number ε > 0 there exists a finite real number
l > 0 such that any subinterval I ′ ⊆ R of length l contains a number τ ∈ I ′ such
that there exists a finite real number M(ε, τ) > 0 so that |f(t+ τ)− f(t)| ≤ ε for
|t| ≥M(ε, τ). Fix such a number τ ; then the function t 7→ f(t+ τ)− f(t), t ∈ R is
almost periodic so that an application of the supremum formula for almost periodic
functions [23, Theorem 2.1.1(xi)] yields that

sup
t∈R
|f(t+ τ)− f(t)| = sup

t≥M(ε,τ)
|f(t+ τ)− f(t)| ≤ ε .

This implies that the number τ is the usual ε-period of function f(·) so that the
function f(·) is almost periodic by definition, which is a contradiction.

If we denote by Q − AAPbuc(Rn : Y ) the space consisting of all bounded,
uniformly continuous quasi-asymptotically almost periodic functions F : Rn → Y,
then we know from the foregoing that Q − AAPbuc(Rn : Y ) coincides with the
space of all uniformly continuous (usually, we assume this as a blank hypothesis)
remotely almost periodic functions RAP(Rn : Y ). We know therefore that Q −
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AAPbuc(Rn : C) is exactly the closed subalgebra of Cb(Rn : C) generated by the
space of all almost periodic functions F : Rn → C and the space of all slowly
oscillating functions F : Rn → C; this means that, for every ε > 0 and for every
F ∈ Q − AAPbuc(Rn : C), we can always find two almost periodic functions
Gi : Rn → C (i = 1, 2) and two slowly oscillating functions Qi : Rn → C (i = 1, 2)
such that ‖F−[G1+Q1+G2Q2]‖∞ < ε ([37, 41]). The proof of this important result
is based on the use of certain results from the theory of C∗-algebras concerning
the Gelfand spaces of multiplicative linear functionals of RAP(Rn : C); it could be
very enticing to extend this result for the functions defined on the general regions
I ⊆ Rn.

The results obtained in [44, Proposition 2.1, Proposition 2.2] provide new charac-
terizations of bounded, uniformly continuous quasi-asymptotically almost periodic
functions F : Rn → Y , while [44, Proposition 2.3] and [46, Proposition 2.3] pro-
vide new characterizations of bounded, uniformly continuous quasi-asymptotically
almost periodic functions F : R → Y . On the other hand, the results obtained
in [19, Theorem 3.1, Theorem 3.2, Proposition 3.4], the composition principles
obtained in [19, Theorem 3.3, Theorem 3.4] and the result obtained in [26, Propo-
sition 2.15] provide new characterizations of remotely (c-)almost periodic functions
F : I → Y, I ⊆ R (it is worth noting that [19, Proposition 3.4(ii)] can be used to
substantially shorten the proof of [46, Lemma 3.6]), while the results obtained
in [24, Proposition 3.2, Proposition 3.5, Theorem 3.6] provide new characteriza-
tions of remotely (c-)almost periodic functions F : I → Y, I ⊆ Rn (and certain
two-parameter analogues). For example, using [19, Theorem 3.1(ii)] with c = 1 and
our analysis contained in the final paragraph of [24, Section 3], we immediately get
that

AA
(
Rn : Y

)
∩RAP

(
Rn : Y

)
= AP

(
Rn : Y

)
,

where AP (Rn : Y ) and AA(Rn : Y ) denote the space of all almost periodic functions
from Rn into Y and the space of all almost automorphic functions from Rn into Y ,
respectively; see [10] for the notion.

From application point of view, it is incredibly important to emphasize that [19,
Proposition 3.4] can be used to profile some statements concerning the invariance
of remote c-almost periodicity under the actions of convolution products, since the
uniform continuity is preserved under the actions of convolution products in the
equations [19, (3.1); (3.2)]; these results seem to new and not considered elsewhere
even for the usual remote almost periodicity (c = 1). This enables one to provide
numerous important applications in the study of time-remotely almost periodic
solutions for various classes of the abstract (degenerate) Volterra integro-differential
equations (see also [26, Section 4], where we have analyzed quasi-asymptotically
almost periodic solutions of the abstract nonautonomous differential equations of
first order; the question whether the obtained solutions are uniformly continuous is
not so simple to be answered and requires further analyses). We will provide only
one illustrative application of this type:

Example 3.5. Let Ω be a bounded domain in Rn, b > 0, m(x) ≥ 0 a.e. x ∈ Ω,
m ∈ L∞(Ω), 1 < p <∞ and X := Lp(Ω). Suppose that the operator A := ∆− b
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acts on X with the Dirichlet boundary conditions, and B is the multiplication
operator by the function m(x). Then the multivalued linear operator A := AB−1

satisfies condition [23, (P)] with β = 1/p and some finite constants c, M > 0.
Therefore, we are in a position to analyze the existence and uniqueness of remotely
almost periodic solutions of the following Poisson heat equation on the real line{

∂
∂t [m(x)v(t, x)] = (∆− b)v(t, x) + f(t, x) , t ∈ R, x ∈ Ω ,

v(t, x) = 0 , (t, x) ∈ [0,∞)× ∂Ω ,

and the following Poisson heat equation on the non-negative real line
∂
∂t [m(x)v(t, x)] = (∆− b)v(t, x) + f(t, x) , t ≥ 0, x ∈ Ω ;
v(t, x) = 0, (t, x) ∈ [0,∞)× ∂Ω ,

m(x)v(0, x) = u0(x) , x ∈ Ω

in the space X, by using the substitution u(t, x) = m(x)v(t, x) and passing to the
corresponding linear differential inclusions of first order; see [23] for more details.
We can also analyze the existence and uniqueness of remotely almost periodic
solutions for certain classes of fractional Poisson type equations and the semilinear
analogues for all above-mentioned classes of abstract degenerate equations (see [19,
Theorem 3.3, Theorem 3.4]).

For the sequel, we need to recall the following result from [24]:

Lemma 3.6.
(i) Let ω ∈ I \ {0}, c ∈ C \ {0}, |c| ≤ 1, ω + I ⊆ I and D ⊆ I ⊆ Rn. Set
I ′ := ω ·N. If a continuous function F : I×X → Y is (S,D,B)-asymptotically
(ω, c)-periodic, then the function F (·; ·) is D-quasi-asymptotically (B, I ′, c)-al-
most periodic.

(ii) Let ωj ∈ R \ {0}, cj ∈ C \ {0}, ωjej + I ⊆ I, Dj ⊆ I ⊆ Rn, the set
Dj be unbounded (1 ≤ j ≤ n) and the set D consisting of all tuples t ∈
Dn such that t +

∑n
i=j+1 ωiei ∈ Dj for all j ∈ Nn−1 be unbounded in Rn.

Set ω :=
∑n
j=1 ωjej, I ′ := ω · N and c :=

∏n
j=1 cj. If F : I × X → Y is

(S,B)-asymptotically (ωj , cj ,Dj)j∈Nn-periodic, |c| ≤ 1 and ω ∈ I, then the
function F (·; ·) is D-quasi-asymptotically (B, I ′, c)-almost periodic.

Let us observe that, if a continuous function F : I×X → Y is D-quasi-asymptoti-
cally (B, I ′i, c)-almost periodic for i = 1, 2, then the function F (·; ·) is D-quasi-asym-
ptotically (B, I ′1∪I ′2, c)-almost periodic (a similar statement holds for D-quasi-asym-
ptotical (B, I ′, c)-uniform recurrence). Keeping this in mind, the subsequent result
follows immediately from Lemma 3.6:

Proposition 3.7.
(i) Let D ⊆ I ⊆ Rn and the set D be unbounded. If a continuous func-

tion F : I × X → Y is (D,B)-slowly oscillating, then the function F (·; ·)
is D-quasi-asymptotically (B, I ′)-almost periodic with

I ′ :=
{
ω · N ; ω ∈ AI

}
.
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(ii) Let Dj ⊆ I ⊆ Rn, the set Dj be unbounded (1 ≤ j ≤ n) and for each tuple
ω = (ω1, . . . , ωn) ∈ BI the set Dω consisting of all tuples t ∈ Dn such that
t +

∑n
i=j+1 ωiei ∈ Dj for all j ∈ Nn−1 be unbounded in Rn. Suppose that the

set D ≡
⋂
ω∈BI Dω is unbounded,

I ′ :=
{
ω · N ; ω ∈ BI ∩ I

}
,

and c :=
∏n
j=1 cj. If F : I ×X → Y is (B, (Dj)j∈Nn)-slowly oscillating, then

the function F (·; ·) is D-quasi-asymptotically (B, I ′)-almost periodic.

It is clear that every slowly oscillating function F : I → Y , where I is [0,∞)n
or Rn, is quasi-asymptotically almost periodic, which immediately follows from
Proposition 3.7.

We will not consider here the differentiation and integration of multi-dimensional
remotely c-almost periodic functions (see [9, Subsection 2.4] for the related results
concerning multi-dimensional (R,B)-almost periodic type functions, and [46, Pro-
position 2.3] for a result concerning the first anti-derivatives of one-dimensional
remotely almost periodic functions). Concerning the existence of mean value, the
boundedness of a remotely c-almost periodic function F (·) is almost inevitable to
be assumed in order to ensure the existence of finite mean value of F (·). We feel it
is our duty to emphasize that the proof of [46, Proposition 2.4], a statement which
considers the existence and properties of mean value of one-dimensional remotely
almost periodic functions defined on the whole real line, is not correct and contains
several important mistakes:

1. The estimate directly after the equation [46, (2.12)] is not correct since the
term “2G(l + s0)” has to be written here as “2G(2l + s0 + a)”, which causes
several serious and unpleasant consequences for the remainder of the proof.

2. It is not clear the meaning of the number T0 in the equations [46, (2.13)–(2.14)].
3. The existence of mean value, stated in the equation [46, (2.15)], is given

without any reasonable explanation; see also the proof of [30, Theorem 1.3.1,
pp. 32-34], where the correct proof of the existence of mean value is given
for the usually considered class of almost periodic functions (besides these
observations, we would like to note that the uniform continuity of function
f(·) has not been used in the proof of the above-mentioned proposition).

Keeping in mind these observations, it follows that the problem of existence or
non-existence of mean value of remotely almost periodic functions is still unsolved;
we want also to emphasize that our structural results established in the first two
sections of [31] and the part of the third section of [31] before Subsection 3.1 of
this paper, where it has directly been assumed that a remotely almost periodic
function has a mean value, remain completely true by assuming additionally that
any considered remotely almost periodic function has a mean value.

Now we will prove the existence of a bounded, uniformly continuous slowly
oscillating function f : [0,∞)→ c0 which does not have mean value, which clearly
marks that the calculations given in [46, Proposition 2.4] are not true:

Example 3.8. Define f : [0,∞)→ c0 by f(t) := (e−t/n)n∈N, t ≥ 0. In [7, Example
2.2], D. Brindle has proved that the function f(·) is bounded, uniformly continuous
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and slowly oscillating (albeit we have found some minor typographical errors
in this example, the obtained conclusions are correct; we can use the inequality
1− e−x ≤ x, x ≥ 0 here). If we assume that the limit

lim
t→+∞

1
t

∫ t

0
f(s) ds

exists in c0, then it can be simply approved that this limit has to be equal to the
zero sequence, so that we would have

lim
t→+∞

sup
n∈N

[n
t

(
1− e−(t/n)

)]
= 0.(3.7)

If we assume that t ≥ 1 and t ∈ [n, n+ 1) for some integer n ∈ N, then we have
n

t

(
1− e−(t/n)) ≥ n

n+ 1
(
1− e−(n/n)) ≥ 1

2
(
1− e−1)

and therefore

sup
n∈N

[n
t

(
1− e−(t/n))] ≥ 1

2(1− e−1) , t ≥ 1 ,

which clearly contradicts (3.7).

The interested reader may try to construct an example of a bounded, uniformly
continuous slowly oscillating function f : [0,∞)→ C without mean value (it is our
strong belief that such a function really exists; see also [7, Section 2.2]).

At the end of this section, we would like to point out that the proofs of [9, Theo-
rem 2.36] and [21, Theorem 2.28] concerning the extensions of multi-dimensional
(c-)almost periodic type functions do not work for quasi-asymptotically (I ′, c)-almost
periodic functions and remotely (I ′, c)-almost periodic functions. Without going
into full details, let us only note that the situation is much simpler for slowly
oscillating functions, when we can construct many different extensions of a slowly
oscillating function F : I → Y to the whole Euclidean space Rn; for example, if
a slowly oscillating function f : [0,∞)→ Y is given in advance, we can extend it
linearly to the interval [−r, 0], where r > 0 is an arbitrary real number, and after
that we can extend the obtained function by zero outside the interval [−r,∞).

4. Applications to the integro-differential equations

This section is devoted to some applications of our results to the abstract Volterra
integro-differential equations and the ordinary differential equations.

1. In [44, Theorem 3.4], C. Zhang and L. Jiang have analyzed remotely almost
periodic solutions of the perturbed heat equation

ut =
m+n∑
i=1

[
uxixi + bi(x, t)uxi

]
− c(x, t)u = f(x, t) , (x, t) ∈ Rn+m

T ;

u(x, 0) = ϕ(x) , x ∈ Rn+m ,(4.1)

following the method proposed by A. Friedman [15]; see also the boundary value
problem considered in [41, Lemma 3.3], which can be also reconsidered in our
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context. Since [44, Lemma 3.1] (see also the proof of [44, Proposition 2.41]) and
[44, Corollary 3.2, Lemma 3.3] can be reformulated for multi-dimensional remotely
c-almost periodic functions, the argumentation contained in the proof of [44,
Theorem 3.4] shows that the following holds (we define the spaces RAP c(Rn×RmT )
and RAP c(Rn+m) similarly as in [44], with the use of difference · − c· in place of
difference · − ·):

Theorem 4.1. If the functions f(x, t), bi(x, t), ∂bi/∂xj(x, t) (j = 1, . . . , n+m)
and c(x, t) belong to the space RAP c(Rn×RmT ) and the functions ϕ, ∂ϕ/∂xj belong
to the space RAP c(Rn+m), then there exists a unique solution u(x, t) of (4.1) which
can be written as a finite sum of functions belonging to the space RAP c(Rn ×RmT ).

Let us also point out that the statement of [44, Proposition 2.2] does not hold
for remotely c-almost periodic functions unless c = 1. We will not analyze the
inverse parabolic problems here.

2. The convolution invariance of multi-dimensional quasi-asymptotically c-almost
periodic functions have recently been analyzed in [24, Theorem 3.6]. For our
purposes, the following special case of this theorem will be sufficiently enough:

Lemma 4.2. Suppose that D = Rn, h ∈ L1(Rn), ∅ 6= I ′ ⊆ Rn is unbounded and
F : Rn → Y is a bounded continuous function. Then the function (h ∗ F )(·), given
by

(h ∗ F )(t) :=
∫

Rn
h(σ)F (t− σ) dσ, t ∈ Rn ,

is well defined and bounded; furthermore, if F (·; ·) is quasi-asymptotically (I ′, c)-al-
most periodic, resp. quasi-asymptotically (I ′, c)-uniformly recurrent, then the func-
tion (h∗F )(·) is likewise quasi-asymptotically (I ′, c)-almost periodic, resp. quasi-asym-
ptotically (I ′, c)-uniformly recurrent.

We want also to note that the uniform continuity of F (·) implies the uniform
continuity of (h ∗ F )(·), as can be simply shown; Lemma 4.2 and this observation
will be crucial for the following application, which has recently been considered in
[10] for the multi-dimensional almost automorphic type functions. We will consider
only integrated semigroups here ([4, 22]).

Suppose that k ∈ N, aα ∈ C, 0 ≤ |α| ≤ k, aα 6= 0 for some α with |α| = k,
P (x) =

∑
|α|≤k aαi

|α|xα, x ∈ Rn, P (·) is an elliptic polynomial, i.e., there exist
C > 0 and L > 0 such that |P (x)| ≥ C|x|k, |x| ≥ L, ω := supx∈Rn <(P (x)) <∞,
and X is Cb(Rn) or BUC(Rn) [the space of bounded uniformly continuous functions
f : Rn → C equipped with the sup-norm]. Define

P (D) :=
∑
|α|≤k

aαf
(α) and Dom(P (D)) :=

{
f ∈ E : P (D)f ∈ E distributionally

}
and assume that nX > n/2. Then we know that the operator P (D) generates
an exponentially bounded r-times integrated semigroup (Sr(t))t≥0 in X for any
r > nX . Furthermore, we know that for each t ≥ 0 there exists a function
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ft ∈ L1(Rn) such that[
Sr(t)f

]
(x) :=

(
ft ∗ f

)
(x), x ∈ Rn , f ∈ X .

Fix a number t0 ≥ 0 and assume that the function X 3 f is remotely c-almost
periodic, for example. By the foregoing, we get that the function x 7→ [Sr(t0)f ](x),
x ∈ Rn is likewise remotely c-almost periodic, which means that there exists a unique
X-valued continuous function t 7→ u(t), t ≥ 0 such that

∫ t
0 u(s) ds ∈ Dom(P (D))

for every t ≥ 0 and

u(t) = P (D)
∫ t

0
u(s) ds− tr

Γ(r + 1)f , t ≥ 0 ;

furthermore, the solution t 7→ u(t), t ≥ 0 has the property that its trajectory
consists solely of remotely c-almost periodic functions. Suppose now that r ∈ N,
f ∈ Dom(P (D)r) and the function(

f, P (D)f, . . . , P (D)rf
)

is remotely c-almost periodic. Then the function

u(t) := Sr(t)P (D)rf + tr−1

(r − 1)!P (D)r−1f + · · ·+ tP (D)f + f , t ≥ 0(4.2)

is a unique continuousX-valued function which satisfies that
∫ t

0 u(s) ds ∈ Dom(P (D))
for every t ≥ 0 and

u(t) = P (D)
∫ t

0
u(s) ds− f , t ≥ 0 ;

due to (4.2) and our assumptions, for every fixed number t ≥ 0 we have that the
function u(t) ∈ X is remotely c-almost periodic.

4.1. An application in mathematical biology. The application is closely rela-
ted with our recent investigation of remotely almost periodic solutions of ordinary
differential equations [31] (some results established in this research article, like [31,
Theorem 3], can be reformulated for remotely c-almost periodic functions but we
will skip all related details for simplicity).

Let us recall that the Chapman–Richards functions and the Chapman-Richards
equations are incredibly important in the mathematical biology. The Chapman-Ri-
chards functions generalize monomolecular functions and Gompertz functions, while
the Chapman-Richards equations generalize the logistic equations. It is well known
that the Chapman-Richards equations have many applications in the forestry,
thanks to their flexibility and important analytical features.

Of concern is the following Richard-Chapman equation with an external pertur-
bation f(·):
(4.3) x′(t) = x(t)

[
a(t)− b(t)xθ(t)

]
+ f(t) ,

where θ ≥ 0. We will analyze slowly oscillating functions in the classical sense here,
so that any such a function will be bounded and uniformly continuous in this part.
Consider the following hypotheses:

(H1) a(t), b(t) and f(t) are slowly oscillating functions;
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(H2) 0 < α ≤ a(t) ≤ A, 0 < β ≤ b(t) ≤ B, 0 < f(t) < F ;
(H3) with ω = A−1[β−γ(1+θ)/θF ] and γ = B/α, we have (1+θ)Fγ1/θθ−1α−1 <

1 and β(1 + θ)Bθ−1 < 1.
We need the following auxiliary lemma, which generalizes [41, Lemma 3.5] (see

also [31, Lemma 4]):

Lemma 4.3. Suppose that α > 0, the functions a : R→ [α,∞) and f : R→ R are
slowly oscillating. Then the function

t 7→ F (t) ≡
∫ t

−∞
e
−
∫ t
s
a(r) dr

f(s) ds , t ∈ R

is slowly oscillating, as well.

Proof. Let ω ∈ R \ {0}. The proof that the function F (t) is slowly oscillating
as t→ −∞ follows from the existence of a sufficiently large number t0 > 0 such
that |a(t+ ω)− a(t)|+ |f(t+ ω)− f(t)| < ε provided that |t| > t0, as well as the
following calculation:
|F (t+ ω)− F (t)|

=
∣∣∣∫ 0

−∞
e
−
∫ t
s+t

a(r+ω) dr
f(t+ s+ ω) ds−

∫ 0

−∞
e
−
∫ t
s+t

a(r) dr
f(t+ s) ds

∣∣∣
≤
∫ 0

−∞
e
−
∫ t
s+t

a(r+ω) dr|f(t+ s+ ω)− f(t+ s)| ds

+ ‖f‖∞
∫ 0

−∞

∣∣∣e−∫ ts+t
a(r+ω) dr − e−

∫ t
s+t

a(r) dr
∣∣∣ ds

≤ (ε/α) + ‖f‖∞
∫ 0

−∞
eαs
∣∣∣1− e∫ ts+t

[a(r+ω)−a(r)] dr
∣∣∣ ds

≤ (ε/α) + ‖f‖∞
∫ 0

−∞
eαs
∣∣∣∫ t

s+t
[a(r + ω)− a(r)] dr

∣∣∣e
∣∣∣∫ t
s+t

[a(r+ω)−a(r)] dr
∣∣∣
ds

≤ (ε/α) + ‖f‖∞ε
∫ 0

−∞
|s|e(α+ε)s ds = (ε/α) + ‖f‖∞ε(α+ ε)2 , t < −t0 .

The proof that the function F (t) is slowly oscillating as t → +∞ is a little
incorrect in [41, Lemma 3.5] but we can apply a trick from [43, Remark 2.2] here.
Strictly speaking, we can use the same decomposition and calculation as above
but we need to divide first the interval of integration (−∞, 0] into two subintervals
(−∞,−M ] and [−M, 0], where M > 0 is a sufficiently large real number such that∫ −M
−∞ eαs ds < ε/2. �

Keeping in mind Lemma 4.3, the fact that the space of real-valued slowly
oscillating functions is closed under pointwise products and sums, as well as the
fact that for each positive slowly oscillating function f : R→ (0,∞) and for each
real number r > 0 the function fr : R→ (0,∞) is also slowly oscillating, we can
repeat verbatim the argumentation contained in the proof of [31, Theorem 6] in
order to see that the following result holds true:
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Theorem 4.4. Suppose that the hypotheses (H1)–(H3) hold. Then the equation
(4.3) has a unique slowly oscillating solution φ∗(t) satisfying γ−1/θ ≤ φ∗(t) ≤ ω−1/θ

for all t ∈ R.
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