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INITIAL COEFFICIENTS FOR GENERALIZED SUBCLASSES
OF BI-UNIVALENT FUNCTIONS DEFINED

WITH SUBORDINATION

Gagandeep Singh1, Gurcharanjit Singh2, and Gurmeet Singh3

Abstract. This paper is concerned with certain generalized subclasses of
bi-univalent functions defined with subordination in the open unit disc E =
{z :| z |< 1}. The bounds for the initial coefficients for the functions in these
classes are studied. The earlier known results follow as special cases.

1. Introduction

Let A denote the class of analytic functions f having Taylor-Maclaurin series of
the form

(1) f(z) = z +
∞∑
k=2

akz
k ,

defined in the unit disc E = {z : |z| < 1} and normalized by f(0) = f ′(0)− 1 = 0.
Further, the class of functions f ∈ A and univalent in E, is denoted by S. By U ,
we denote the class of Schwarz functions of the form u(z) =

∑∞
k=1 ckz

k, which are
analytic in the unit disc E and satisfy the conditions u(0) = 0 and |u(z)| < 1.

For δ ≥ 1 and f ∈ A, Al-Oboudi [2] introduced the following differential operator:
D0
δf(z) = f(z) ,

D1
δf(z) = (1− δ)f(z) + δzf ′(z),

and in general,

Dn
δ f(z) = D(Dn−1

δ f(z)) = (1− δ)Dn−1
δ f(z) + δz(Dn−1

δ f(z))′, n ∈ N

or equivalent to

Dn
δ f(z) = z +

∞∑
k=2

[1 + (k − 1)δ]nakzk, n ∈ N0 = N ∪ {0} ,
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with Dn
δ f(0) = 0. For δ = 1, the operator Dn

δ f(z) reduces to the Sãlãgean operator
introduced in [13].

Let f and g be two analytic functions in E. Then f is said to be subordinate
to g (symbolically f ≺ g) if there exists a Schwarz function u(z) ∈ U such that
f(z) = g(u(z)). Further, if g is univalent in E, then f ≺ g is equivalent to
f(0) = g(0) and f(E) ⊂ g(E).

It is obvious that every function f ∈ S has an inverse f−1, defined by

f−1(f(z)) = z(z ∈ E)

and

f(f−1(w)) = w
(
|w| < r0(f) : r0(f) ≥ 1

4

)
where

f−1(w) = w − a2w
2 + (2a2

2 − a3)w3 − (5a3
2 − 5a2a3 + a4)w4 + . . .

A function f ∈ A is said to be bi-univalent in E if both f and f−1 are univalent
in E. The class of functions bi-univalent in E and given by (1) is denoted by Σ.
Some examples of the functions in the class Σ are z

1− z , − log(1−z), 1
2 log

(1 + z

1− z

)
.

But, the well known Koebe function f(z) = z

(1− z)2 is not a member of Σ.

Lewin [9] was the first, who investigated the class Σ and proved that |a2| < 1.51.
Subsequently, bounds for the initial coefficients of various sub-classes of bi-univalent
functions were studied by various authors in [4, 5, 8, 10, 11] and more recently by
Abirami et al. [1], Sivapalan et al. [18] and Singh et al. [15]–[17].

In the sequel, we lay down once and for all that 0 ≤ α ≤ 1, λ ≥ 0, 0 < β ≤ 1,
0 ≤ η < 1, δ ≥ 1, −1 ≤ B < A ≤ 1, z ∈ E, w ∈ E and g(w) = f−1(w) =
w − a2w

2 + (2a2
2 − a3)w3 − (5a3

2 − 5a2a3 + a4)w4 + . . .

Definition 1.1. A function f ∈ Σ is said to be in the class Sλ,α,βΣ (A,B; s, t) if the
following conditions are satisfied:

(1− α) (s− t)z[f ′(z)]λ

f(sz)− f(tz) + α
(s− t)[(zf ′(z))′ ]λ

(f(sz)− f(tz))′ ≺
(1 +Az

1 +Bz

)β
and

(1− α) (s− t)w[g′(w)]λ

g(sw)− g(tw) + α
(s− t)[(wg′(w))′ ]λ

(g(sw)− g(tw))′ ≺
(1 +Aw

1 +Bw

)β
,

where s, t ∈ C with s 6= t, |t| ≤ 1.
The following observations are obvious:

(i) S1,α,β
Σ (A,B; 1,−1) ≡Ms

Σ(β, α;A,B), the class studied by Singh [14].

(ii) Sλ,0,βΣ (1,−1; s, t) ≡ Sλ,βΣ (s, t), the class studied by Mazi and Opoola [12].
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(iii) For 0 ≤ γ < 1, Sλ,0,1Σ (1 − 2γ,−1; s, t) ≡ SλΣ(γ, s, t), the class studied by
Mazi and Opoola [12].

(iv) Sλ,0,βΣ (1,−1; 1, 0) ≡ Sλ,βΣ , the class studied by Joshi and Pawar [7].

(v) For 0 ≤ γ < 1, Sλ,0,1Σ (1− 2γ,−1; 1, 0) ≡ SλΣ(γ), the class studied by Joshi
and Pawar [7].

Definition 1.2. A function f ∈ Σ is said to be in the class SλΣ(k, β;A,B) if the
following conditions are satisfied:

z[(Dkf(z))′]λ

Dkf(z) ≺
(1 +Az

1 +Bz

)β
and

w[(Dkg(w))′]λ

Dkg(w) ≺
(1 +Aw

1 +Bw

)β
.

Specifically,
(i) SλΣ(k, β; 1,−1) ≡ SλΣ(k, β), the class studied by Joshi et al. [6].
(ii) For 0 ≤ γ < 1, SλΣ(k, 1; 1− 2γ,−1) ≡ SλΣ(k, γ), the class studied by Joshi et

al. [6].

Definition 1.3. A function f ∈ Σ is said to be in the class Sλ,α,β,ηΣ (A,B; s, t) if
the following conditions are satisfied:

(1− α) (s− t)z[f ′(z)]λ

f(sz)− f(tz) + α
(s− t)[(zf ′(z))′ ]λ

(f(sz)− f(tz))′ ≺
(1 + [B + (A−B)(1− η)]z

1 +Bz

)β
and

(1− α) (s− t)w[g′(w)]λ

g(sw)− g(tw) + α
(s− t)[(wg′(w))′ ]λ

(g(sw)− g(tw))′ ≺
(1 + [B + (A−B)(1− η)]w

1 +Bw

)β
,

where s, t ∈ C with s 6= t, |t| ≤ 1.
In particular, Sλ,α,β,0Σ (A,B; s, t) ≡ Sλ,α,βΣ (A,B; s, t).

Definition 1.4. A function f ∈ Σ is said to be in the class Sλ,δ,ηΣ (k, β;A,B) if
the following conditions are satisfied:

z[(Dk
δ f(z))′]λ

Dk
δ f(z)

≺
(1 + [B + (A−B)(1− η)]z

1 +Bz

)β
and

w[(Dk
δ g(w))′]λ

Dk
δ g(w)

≺
(1 + [B + (A−B)(1− η)]w

1 +Bw

)β
.

Particularly, Sλ,1,0Σ (k, β;A,B) ≡ SλΣ(k, β;A,B).

For deriving our main results, we need to the following lemma
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Lemma 1.1 ([3]). If p(z) = 1 + [B + (A−B)(1− η)]u(z)
1 +Bu(z) = 1 +

∑∞
k=1 pkz

k,

u(z) ∈ U , then
|pn| ≤ (A−B)(1− η) , n ≥ 1 .

2. The class Sλ,α,β,ηΣ (A,B; s, t)

Theorem 2.1. If f ∈ Sλ,α,β,ηΣ (A,B; s, t), then
(2) |a2| ≤

β
√

2(A−B)(1− η)√
β[(2λ− 4λ(s+ t− λ) + 2st) +2α((s2+4st+t2)−6λ(s+t−λ))]−(β−1)(1+α)2(2λ−s−t)2

and

(3) |a3| ≤
β(A−B)(1− η)

(1 + 2α)(3λ− s2 − st− t2) + (A−B)2(1− η)2β2

(1 + α)2(2λ− s− t)2 .

Proof. From Definition 1.3, by principle of subordination, we have

(1− α) (s− t)z[f ′(z)]λ

f(sz)− f(tz) + α
(s− t)[(zf ′(z))′ ]λ

(f(sz)− f(tz))′

=
(1 + [B + (A−B)(1− η)]u(z)

1 +Bu(z)

)β
= [p(z)]β , u ∈ U(4)

and

(1− α) (s− t)w[g′(w)]λ

g(sw)− g(tw) + α
(s− t)[(wg′(w))′ ]λ

(g(sw)− g(tw))′

=
(1 + [B + (A−B)(1− η)]v(w)

1 +Bv(w)

)β
= [q(w)]β , v ∈ U ,(5)

where p(z) = 1 + p1z + p2z
2 + . . . and q(w) = 1 + q1w + q2w

2 + . . . .

On expanding and equating the coefficients of z and z2 in (4) and of w and w2

in (5), we obtain
(6) (1 + α)(2λ− s− t)a2 = βp1 ,

(1 + 3α)[(s2 + 2st+ t2)− 2λ(s+ t− λ+ 1)]a2
2 + (1 + 2α)(3λ− s2 − st− t2)a3

= βp2 + β(β − 1)p2
1

2(7)

and
(8) − (1 + α)(2λ− s− t)a2 = βq1 ,

[(6λ− s2 − t2)− 2λ(s+ t− λ+ 1)− α(6λ(s+ t− λ− 1) + (s− t)2)]a2
2

− (1 + 2α)(3λ− s2 − st− t2)a3 = βq2 + β(β − 1)q2
1

2 .(9)
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(6) and (8) together gives

(10) p1 = −q1

and

(11) 2(1 + α)2(2λ− s− t)2a2
2 = β2(p2

1 + q2
1) .

Adding (7) and (9) and using (11), it yields

[(2λ− 4λ(s+ t− λ) + 2st) + 2α((s2 + 4st+ t2)− 6λ(s+ t− λ))]a2
2

= β(p2 + q2) + (β − 1)(1 + α)2(2λ− s− t)2a2
2

β
.(12)

(12) gives

(13) a2
2 =

β2(p2 + q2)
β[(2λ−4λ(s+t−λ) +2st) +2α((s2+4st+t2)−6λ(s+t−λ))]−(β−1)(1+α)2(2λ−s−t)2 .

On applying Lemma 1.1 to the coefficients p2 and q2, we can easily obtain (2).
Now subtracting (9) from (7), we get

(14) −2(1+2α)(3λ−s2−st− t2)a2
2 +2(1+2α)(3λ−s2− t2−st)a3 = β(p2−q2) .

Using (10) and (11) in (14), using Lemma 1.1 and on applying triangle inequality,
(3) can be easily obtained.

�

On putting η = 0, Theorem 2.1 gives the following result:

Corollary 2.1. If f ∈ Sλ,α,βΣ (A,B; s, t), then

|a2| ≤

β
√

2(A−B)√
β[(2λ−4λ(s+t−λ)+2st)+2α((s2+4st+t2)−6λ(s+t−λ))]−(β−1)(1+α)2(2λ−s−t)2

and

|a3| ≤
β(A−B)

(1 + 2α)(3λ− s2 − st− t2) + (A−B)2β2

(1 + α)2(2λ− s− t)2 .

For η = 0, λ = 1, s = 1, t = −1, Theorem 2.1 gives the following result due to
Singh [14]:

Corollary 2.2. If f ∈Ms
Σ(β, α;A,B), then

|a2| ≤
β
√
A−B√

2((1 + α)2 − βα2)
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and

|a3| ≤
β2(A−B)2

4(1 + α)2 + β(A−B)
2(1 + 2α) .

3. The class Sλ,δ,ηΣ (k, β;A,B)

Theorem 3.1. If f ∈ Sλ,δ,ηΣ (k, β;A,B), then

(15) |a2| ≤

β
√

2(A−B)(1− η)√
4β(3λ− 1)(1 + 2δ)k + [4β(2λ2 − 4λ+ 1)− (β − 1)(2λ− 1)2(1 + δ)](1 + δ)2k

and

(16) |a3| ≤
β(A−B)(1− η)
(3λ− 1)(1 + 2δ)k + 2β2(A−B)2(1− η)2

(2λ− 1)2(1 + δ)2k+1 .

Proof. From Definition 1.4, by principle of subordination, we have
z[(Dk

δ f(z))′]λ

Dk
δ f(z)

=
(1 + [B + (A−B)(1− η)]u(z)

1 +Bu(z)

)β
= [p(z)]β , u ∈ U(17)

and

w[(Dk
δ g(w))′]λ

Dk
δ g(w)

=
(1 + [B + (A−B)(1− η)]v(w)

1 +Bv(w)

)β
= [q(w)]β , v ∈ U ,(18)

where p(z) = 1 + p1z + p2z
2 + . . . and q(w) = 1 + q1w + q2w

2 + . . . .

On expanding and equating the coefficients of z and z2 in (17) and of w and w2

in (18), we obtain

(19) (2λ− 1)(1 + δ)ka2 = βp1 ,

(20) (3λ− 1)(1 + 2δ)ka3 + (2λ2 − 4λ+ 1)(1 + δ)2ka2
2 = βp2 + β(β − 1)p2

1
2

and
(21) − (2λ− 1)(1 + δ)ka2 = βq1 ,

[2(3λ− 1)(1 + 2δ))k + (2λ2 − 4λ+ 1)(1 + δ)2k]a2
2 − (3λ− 1)(1 + 2δ)ka3

= βq2 + β(β − 1)q2
1

2 .(22)

(19) and (21) together give
(23) p1 = −q1

and
(24) (2λ− 1)2(1 + δ)2k+1a2

2 = β2(p2
1 + q2

1) .
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Adding (20) and (22) and using (24), it yields

[2β(3λ− 1)(1 + 2δ)k + {2β(2λ2 − 4λ+ 1)− (β − 1)
2 (2λ− 1)2(1 + δ)}(1 + δ)2k]a2

2

= β2(p2 + q2) .(25)

(25) gives

(26) a2
2 =

2β2(p2 + q2)
4β(3λ− 1)(1 + 2δ)k + {4β(2λ2 − 4λ+ 1)− (β − 1)(2λ− 1)2(1 + δ)}(1 + δ)2k .

On applying Lemma 1.1 to the coefficients p2 and q2 in (26), we can easily obtain
(15).
Now subtracting (22) from (20), we get

(27) 2(3λ− 1)(1 + 2δ)ka3 − 2(3λ− 1)(1 + 2δ)ka2
2 = β(p2 − q2) .

Using (e24), (e27) yields

(28) a3 = β2(p2
1 + q2

1)
(2λ− 1)2(1 + δ)2k+1 + β(p2 − q2)

2(3λ− 1)(1 + 2δ)k .

Applying Lemma 1.1 to the coefficients p2, q2 and p1 in (28), (16) is obvious. �

For δ = 1, η = 0, the following result can be easily obtained from Theorem 3.1:

Corollary 3.1. If f ∈ SλΣ(k, β;A,B), then

|a2| ≤
β
√

2(A−B)√
2β(3λ− 1)3k + [2β(2λ2 − 4λ+ 1)− (β − 1)(2λ− 1)2]22k

and

|a3| ≤
β(A−B)
(3λ− 1)3k + β2(A−B)2

(2λ− 1)222k .

For δ = 1, η = 0, A = 1, B = −1, Theorem 3.1 gives the following result due to
Joshi et al. [6]:

Corollary 3.2. If f ∈ SλΣ(k, β;A,B), then

|a2| ≤
2β√

2β(3λ− 1)3k + {2β(2λ2 − 4λ− 1)− (β − 1)(2λ− 1)2}22k

and

|a3| ≤
2β

(3λ− 1)3k + 4β2

(2λ− 1)222k .

Putting δ = 1, η = 0, A = 1− 2γ, B = −1 and β = 1 in Theorem 3.1, we obtain
the following result due to Joshi et al. [6]:
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Corollary 3.3. If f ∈ SλΣ(k, γ), then

|a2| ≤
2
√

1− γ√
2(3λ− 1)3k + [(2λ− 1)2 − (4λ− 1)]22k

and

|a3| ≤
4(1− γ)2

(2λ− 1)222k + 2(1− γ)
(3λ− 1)3k .
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