Commentationes Mathematicae Universitatis Carolinae

Bouzid Mansouri; Abdelouaheb Ardjouni; Ahcene Djoudi
Analysis of periodic solutions for nonlinear coupled integro-differential systems with variable delays

Commentationes Mathematicae Universitatis Carolinae, Vol. 63 (2022), No. 1, 51-68

Persistent URL: http://dml.cz/dmlcz/150431

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 2022

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

Analysis of periodic solutions for nonlinear coupled integro-differential systems with variable delays

Bouzid Mansouri, Abdelouaheb Ardjouni, Ahcene Djoudi

Abstract

The objective of this work is the application of Krasnosel'skii's fixed point technique to prove the existence of periodic solutions of a system of coupled nonlinear integro-differential equations with variable delays. An example is given to illustrate this work.

Keywords: integro-differential equation; periodic solution; Krasnosel'skii's fixed point theorem

Classification: 34K20, 45J05, 45D05

1. Introduction

There are many papers written on the subject of existence of periodic solutions of nonlinear differential equations and nonlinear integro-differential equations, for such topics we refer the interested reader to [1]-[7], [10], [12] and the references therein. In 2007, in the paper [14] Y. Wang, H. Lian and W. Ge consider the second order nonlinear differential equation

$$
x^{\prime \prime}(t)+p(t) x^{\prime}(t)+q(t) x(t)=r(t) x^{\prime}(t-\tau(t))+f(t, x(t), x(t-\tau(t))),
$$

and by using fixed point theorem technique, the authors obtained existence of periodic solutions. H. Deham in [8] considers the second order nonlinear integrodifferential equation

$$
x^{\prime \prime}(t)+p(t) x^{\prime}(t)+q(t) h(x(t))=\int_{-\infty}^{t} Q(t, s) f(s, x(s-g(s))) \mathrm{d} s
$$

and by Krasnosel'skii-Burton's fixed point theorem shows that the existence of periodic solutions is concluded. In the paper [11] Y. N. Raffoul studies the existence of periodic and asymptotically periodic solutions of the following system of
coupled nonlinear Volterra integro-differential equations with infinite delay

$$
\left\{\begin{aligned}
x^{\prime}(t) & =h_{1}(t) x(t)+h_{2}(t) y(t)+\int_{-\infty}^{t} a(t, s) f(x(s), y(s)) \mathrm{d} s \\
y^{\prime}(t) & =p_{1}(t) y(t)+p_{2}(t) x(t)+\int_{-\infty}^{t} b(t, s) g(x(s), y(s)) \mathrm{d} s
\end{aligned}\right.
$$

the author uses Schauder's fixed point theorem to obtain his results.
Motivated by the papers [8], [11], [14] and the references therein and by using Krasnosel'skii's fixed point theorem, in this paper we study the existence of periodic solutions of the following system of coupled nonlinear integro-differential equations with variable delays

$$
\begin{align*}
x_{i}^{\prime \prime}(t)+p_{i}(t) x_{i}^{\prime}(t) & +q_{i}(t) x_{i}(t) \\
= & g_{i}\left(t, x_{1}(t), x_{2}(t), x_{1}\left(t-\tau_{1}(t)\right), x_{2}\left(t-\tau_{2}(t)\right)\right) \\
& +c_{i}(t) x_{i}^{\prime}\left(t-\tau_{i}(t)\right) \tag{1.1}\\
& +\int_{-\infty}^{t} C_{i}(t, s) f_{i}\left(x_{1}(s), x_{2}(s)\right) \mathrm{d} s, \quad i=1,2,
\end{align*}
$$

where $p_{i}, q_{i}, i=1,2$, are positive continuous real-valued functions and the functions $c_{i}, C_{i}, i=1,2$, are assumed to be continuous in their arguments throughout the paper. The functions $g_{i}(t, x, y, z, w), i=1,2$, are continuous, periodic in t and Lipschitz continuous in x, y, z and $w, f_{i}(x, y), i=1,2$, are continuous and Lipschitz continuous in x and y, and for some positive constants $\eta_{j i}, j=1, \ldots, 4$, and $i=1,2$, we have

$$
\left|g_{i}\left(t, y_{1}, y_{2}, y_{3}, y_{4}\right)-g_{i}\left(t, x_{1}, x_{2}, x_{3}, x_{4}\right)\right| \leq \sum_{j=1}^{4} \eta_{j i}\left|y_{j}-x_{j}\right|
$$

and for some positive constants $\varrho_{j i}, j=1,2$, and $i=1,2$, we have

$$
\left|f_{i}\left(y_{1}, y_{2}\right)-f_{i}\left(x_{1}, x_{2}\right)\right| \leq \sum_{j=1}^{2} \varrho_{j i}\left|y_{j}-x_{j}\right|
$$

we also assume that $g_{i}(t, 0,0,0,0)=f_{i}(0,0)=0$.
We assume that there exists a positive real number T, such that

$$
\left\{\begin{array}{l}
C_{i}(t+T, s+T)=C_{i}(t, s), \tag{1.2}\\
c_{i}(t+T)=c_{i}(t), \quad \tau_{i}(t+T)=\tau_{i}(t),
\end{array} \quad i=1,2,\right.
$$

for all $t \in \mathbb{R}$, with τ_{i} being scalar functions, continuous and $\tau_{i}(t) \geq \tau_{i}^{*}>0$, $\tau_{i}^{\prime}(t) \neq 1$.

To have a well behaved mapping we must assume that

$$
\left\{\begin{array}{ll}
p_{i}(t+T)=p_{i}(t), & \int_{0}^{T} p_{i}(s) \mathrm{d} s>0, \tag{1.3}\\
q_{i}(t+T)=q_{i}(t), & \int_{0}^{T} q_{i}(s) \mathrm{d} s>0,
\end{array} \quad i=1,2\right.
$$

Define

$$
\begin{aligned}
& P_{T}=\{x \in C(\mathbb{R}, \mathbb{R}): x(t+T)=x(t)\} \\
& P_{T}^{2}=P_{T} \times P_{T}=\left\{\left(x_{1}, x_{2}\right): x_{1} \in P_{T}, x_{2} \in P_{T}\right\}
\end{aligned}
$$

Then P_{T}^{2} is a Banach space when endowed with the maximum norm

$$
\left\|\left(x_{1}, x_{2}\right)\right\|=\max \left\{\max _{t \in[0, T]}\left|x_{1}(t)\right|, \max _{t \in[0, T]}\left|x_{2}(t)\right|\right\}
$$

Lemma 1.1 ([9]). Suppose that (1.2) and (1.4) hold and for $i=1,2$,

$$
\begin{equation*}
\frac{R_{i}}{Q_{i} T}\left(\mathrm{e}^{\int_{0}^{T} p_{i}(u) \mathrm{d} u}-1\right) \geq 1 \tag{1.4}
\end{equation*}
$$

where

$$
R_{i}=\max _{t \in[0, T]}\left|\int_{t}^{t+T} \frac{\mathrm{e}^{\int_{t}^{s} p_{i}(u) \mathrm{d} u}}{\mathrm{e}^{\int_{0}^{T} p_{i}(u) \mathrm{d} u}-1} q_{i}(s) \mathrm{d} s\right|, \quad Q_{i}=\left(1+\mathrm{e}^{\int_{0}^{T} p_{i}(u) \mathrm{d} u}\right)^{2} R_{i}^{2}
$$

Then there are continuous T-periodic functions a_{i} and b_{i} such that

$$
b_{i}(t)>0, \quad \int_{0}^{T} a_{i}(u) \mathrm{d} u>0
$$

and

$$
a_{i}(t)+b_{i}(t)=p_{i}(t), \quad b_{i}^{\prime}(t)+a_{i}(t) b_{i}(t)=q_{i}(t) \quad \text { for all } t \in \mathbb{R}
$$

Lemma 1.2 ([14]). Suppose the conditions of Lemma 1.1 hold and $\varphi_{i} \in P_{T}$, $i=1,2$. Then the equation

$$
x_{i}^{\prime \prime}(t)+p_{i}(t) x_{i}^{\prime}(t)+q_{i}(t) x_{i}(t)=\varphi_{i}(t)
$$

has a T-periodic solution. Moreover, the periodic solution can be expressed as

$$
x_{i}(t)=\int_{t}^{t+T} G_{i}(t, s) \varphi_{i}(s) \mathrm{d} s
$$

where

$$
G_{i}(t, s)=\frac{\int_{t}^{s} \mathrm{e}^{\int_{t}^{u} b_{i}(v) \mathrm{d} v+\int_{u}^{s} a_{i}(v) \mathrm{d} v} \mathrm{~d} u+\int_{s}^{t+T} \mathrm{e}_{t}^{u} b_{i}(v) \mathrm{d} v+\int_{u}^{s+T} a_{i}(v) \mathrm{d} v}{\mathrm{~d} u}\left(\mathrm{e}^{\int_{0}^{T} a_{i}(u) \mathrm{d} u}-1\right)\left(\mathrm{e}^{\int_{0}^{T} b_{i}(u) \mathrm{d} u}-1\right) .
$$

Corollary 1.3 ([14]). Green's functions $G_{i}, i=1,2$, satisfies the following properties

$$
\begin{aligned}
G_{i}(t, t+T) & =G_{i}(t, t), \quad G_{i}(t+T, s+T)=G_{i}(t, s) \\
\frac{\partial}{\partial s} G_{i}(t, s) & =a_{i}(s) G_{i}(t, s)-H_{i}(t, s) \\
\frac{\partial}{\partial t} G_{i}(t, s) & =-b_{i}(t) G_{i}(t, s)+H_{i}^{*}(t, s)
\end{aligned}
$$

where

$$
H_{i}(t, s)=\frac{\mathrm{e}^{\int_{t}^{s} b_{i}(v) \mathrm{d} v}}{\mathrm{e}^{\int_{0}^{T} b_{i}(v) \mathrm{d} v}-1}, \quad H_{i}^{*}(t, s)=\frac{\mathrm{e}^{\int_{t}^{s} a_{i}(v) \mathrm{d} v}}{\mathrm{e}_{0}^{T} a_{i}(v) \mathrm{d} v}-1 .
$$

Lemma 1.4. Assume (1.2)-(1.4). If $\left(x_{1}, x_{2}\right) \in P_{T}^{2}$, then x_{i} is a solution of (1.1) if and only if

$$
\begin{align*}
x_{i}(t)= & \int_{t}^{t+T} G_{i}(t, u) g_{i}\left(u, x_{1}(u), x_{2}(u), x_{1}\left(u-\tau_{1}(u)\right), x_{2}\left(u-\tau_{2}(u)\right)\right) \mathrm{d} u \\
& +\int_{t}^{t+T} G_{i}(t, u) \int_{-\infty}^{u} C_{i}(u, s) f_{i}\left(x_{1}(s), x_{2}(s)\right) \mathrm{d} s \mathrm{~d} u \tag{1.5}\\
& +\int_{t}^{t+T}\left[h_{i}(u) H_{i}(t, u)-r_{i}(u) G_{i}(t, u)\right] x_{i}\left(u-\tau_{i}(u)\right) \mathrm{d} u, \quad i=1,2
\end{align*}
$$

where

$$
\begin{gather*}
h_{i}(u)=\frac{c_{i}(u)}{1-\tau_{i}^{\prime}(u)}, \quad i=1,2 \tag{1.6}\\
r_{i}(u)=\frac{\left(a_{i}(u) c_{i}(u)+c_{i}^{\prime}(u)\right)\left(1-\tau_{i}^{\prime}(u)\right)+\tau_{i}^{\prime \prime}(u) c_{i}(u)}{\left(1-\tau_{i}^{\prime}(u)\right)^{2}}, \quad i=1,2
\end{gather*}
$$

Proof: Let $\left(x_{1}, x_{2}\right) \in P_{T}^{2}$ be a solution of (1.1). From Lemma 1.2 we have

$$
\begin{align*}
x_{i}(t)= & \int_{t}^{t+T} G_{i}(t, u) g_{i}\left(u, x_{1}(u), x_{2}(u), x_{1}\left(u-\tau_{1}(u)\right), x_{2}\left(u-\tau_{2}(u)\right)\right) \mathrm{d} u \\
& +\int_{t}^{t+T} G_{i}(t, u) c_{i}(u) x_{i}^{\prime}\left(u-\tau_{i}(u)\right) \mathrm{d} u \tag{1.8}\\
& +\int_{t}^{t+T} G_{i}(t, u) \int_{-\infty}^{u} C_{i}(u, s) f_{i}\left(x_{1}(s), x_{2}(s)\right) \mathrm{d} s \mathrm{~d} u, \quad i=1,2 .
\end{align*}
$$

Letting
$\int_{t}^{t+T} G_{i}(t, u) c_{i}(u) x_{i}^{\prime}\left(u-\tau_{i}(u)\right) \mathrm{d} u=\int_{t}^{t+T} \frac{G_{i}(t, u) c_{i}(u)}{1-\tau_{i}^{\prime}(u)}\left(1-\tau_{i}^{\prime}(u)\right) x_{i}^{\prime}\left(u-\tau_{i}(u)\right) \mathrm{d} u$,
performing an integration by parts, we get

$$
\begin{aligned}
\int_{t}^{t+T} G_{i}(t, u) c_{i}(u) & x_{i}^{\prime}\left(u-\tau_{i}(u)\right) \mathrm{d} u=\left[\frac{G_{i}(t, u) c_{i}(u)}{1-\tau_{i}^{\prime}(u)} x_{i}\left(u-\tau_{i}(u)\right)\right]_{t}^{t+T} \\
& -\int_{t}^{t+T}\left[r_{i}(u) G_{i}(t, u)-h_{i}(u) H_{i}(t, u)\right] x_{i}\left(u-\tau_{i}(u)\right) \mathrm{d} u
\end{aligned}
$$

Since

$$
\left[\frac{G_{i}(t, u) c_{i}(u)}{1-\tau_{i}^{\prime}(u)} x_{i}\left(u-\tau_{i}(u)\right)\right]_{t}^{t+T}=0
$$

we obtain

$$
\begin{align*}
& \int_{t}^{t+T} G_{i}(t, u) c_{i}(u) x_{i}^{\prime}\left(u-\tau_{i}(u)\right) \mathrm{d} u \tag{1.9}\\
& \\
& =\int_{t}^{t+T}\left[h_{i}(u) H_{i}(t, u)-r_{i}(u) G_{i}(t, u)\right] x_{i}\left(u-\tau_{i}(u)\right) \mathrm{d} u
\end{align*}
$$

where h_{i}, r_{i} are given by (1.6) and (1.7). Substituting (1.9) into (1.8), we obtain

$$
\begin{aligned}
x_{i}(t)= & \int_{t}^{t+T} G_{i}(t, u) g_{i}\left(u, x_{1}(u), x_{2}(u), x_{1}\left(u-\tau_{1}(u)\right), x_{2}\left(u-\tau_{2}(u)\right)\right) \mathrm{d} u \\
& +\int_{t}^{t+T} G_{i}(t, u) \int_{-\infty}^{u} C_{i}(u, s) f_{i}\left(x_{1}(s), x_{2}(s)\right) \mathrm{d} s \mathrm{~d} u \\
& +\int_{t}^{t+T}\left[h_{i}(u) H_{i}(t, u)-r_{i}(u) G_{i}(t, u)\right] x_{i}\left(u-\tau_{i}(u)\right) \mathrm{d} u, \quad i=1,2 .
\end{aligned}
$$

Lemma 1.5 ([14]). Let $\Gamma_{i}=\int_{0}^{T} p_{i}(u) \mathrm{d} u, \Lambda_{i}=T^{2} \mathrm{e}^{(1 / T)} \int_{0}^{T} \ln \left(q_{i}(u)\right) \mathrm{d} u, \quad i=1,2$. If $\Gamma_{i}^{2} \geq 4 \Lambda_{i}$, then we have

$$
\min \left\{\int_{0}^{T} a_{i}(u) \mathrm{d} u, \int_{0}^{T} b_{i}(u) \mathrm{d} u\right\} \geq \frac{1}{2}\left(\Gamma_{i}-\sqrt{\Gamma_{i}^{2}-4 \Lambda_{i}}\right):=l_{i}
$$

and

$$
\max \left\{\int_{0}^{T} a_{i}(u) \mathrm{d} u, \int_{0}^{T} b_{i}(u) \mathrm{d} u\right\} \leq \frac{1}{2}\left(\Gamma_{i}+\sqrt{\Gamma_{i}^{2}-4 \Lambda_{i}}\right):=m_{i} .
$$

Corollary 1.6 ([14]). Functions G_{i} and $H_{i}, i=1,2$, satisfy

$$
\frac{T}{\left(\mathrm{e}^{m_{i}}-1\right)^{2}} \leq G_{i}(t, s) \leq \frac{T \mathrm{e}^{\int_{0}^{T} p_{i}(v) \mathrm{d} v}}{\left(\mathrm{e}^{l_{i}}-1\right)^{2}}, \quad\left|H_{i}(t, s)\right| \leq \frac{\mathrm{e}^{m_{i}}}{\mathrm{e}^{l_{i}}-1}
$$

To simplify notation, we introduce for $i=1,2$, the constants

$$
\begin{array}{lll}
\alpha_{i}=\frac{T \mathrm{e}^{\int_{0}^{T} p_{i}(v) \mathrm{d} v}}{\left(\mathrm{e}^{l_{i}}-1\right)^{2}}, & \gamma_{i}=\frac{\mathrm{e}^{m_{i}}}{\mathrm{e}^{l_{i}}-1}, & \theta_{i}=\max _{t \in[0, T]}\left|h_{i}(t)\right|, \\
\beta_{i}=\max _{t \in[0, T]}\left|r_{i}(t)\right|, & \lambda_{i}=\max _{t \in[0, T]}\left|a_{i}(t)\right|, & \delta_{i}=\max _{t \in[0, T]}\left|b_{i}(t)\right|
\end{array}
$$

2. Periodic solutions

Lemma 2.1 ([13]). Let \mathbb{M} be a closed convex nonempty subset of a Banach space $(S,\|\cdot\|)$. Suppose that A and B map \mathbb{M} into S such that
(i) $x, y \in \mathbb{M}$ implies $A x+B y \in \mathbb{M}$;
(ii) A is compact and continuous;
(iii) B is a contraction mapping.

Then there exists $z \in \mathbb{M}$ with $z=A z+B z$.
We assume the existence of positive constants M_{i}, K_{i} and $L_{i}, i=1,2$, such that

$$
\begin{gather*}
\left|f_{i}(x, y)\right| \leq M_{i} \tag{2.1}\\
\left|g_{i}(t, x, y, z, w)\right| \leq K_{i} \tag{2.2}
\end{gather*}
$$

and

$$
\begin{equation*}
\int_{t}^{t+T} \int_{-\infty}^{u}\left|C_{i}(u, s)\right| \mathrm{d} s \mathrm{~d} u \leq L_{i} \tag{2.3}
\end{equation*}
$$

Set

$$
\begin{equation*}
M=\max \left\{\frac{\left(T K_{i}+L_{i} M_{i}\right) \alpha_{i}}{1-T\left(\theta_{i} \gamma_{i}+\beta_{i} \alpha_{i}\right)}: i=1,2\right\} \tag{2.4}
\end{equation*}
$$

with $0<T\left(\theta_{i} \gamma_{i}+\beta_{i} \alpha_{i}\right)<1, i=1,2$.
We define subset Ω_{M} of P_{T}^{2} as follows

$$
\Omega_{M}=\left\{\left(x_{1}, x_{2}\right) \in P_{T}^{2}:\left\|\left(x_{1}, x_{2}\right)\right\| \leq M\right\}
$$

Then Ω_{M} is a bounded, closed and convex subset of P_{T}^{2}.
Now for $\left(x_{1}, x_{2}\right) \in \Omega_{M}$ we can define an operator $E: \Omega_{M} \rightarrow P_{T}^{2}$ by

$$
E\left(x_{1}, x_{2}\right)(t)=\left(E_{1}\left(x_{1}, x_{2}\right)(t), E_{2}\left(x_{1}, x_{2}\right)(t)\right)
$$

where

$$
\begin{align*}
& E_{i}\left(x_{1}, x_{2}\right)(t)= \int_{t}^{t+T} G_{i}(t, u) g_{i}\left(u, x_{1}(u), x_{2}(u),\right. \\
&\left.x_{1}\left(u-\tau_{1}(u)\right), x_{2}\left(u-\tau_{2}(u)\right)\right) \mathrm{d} u \\
&+\int_{t}^{t+T} G_{i}(t, u) \int_{-\infty}^{u} C_{i}(u, s) f_{i}\left(x_{1}(s), x_{2}(s)\right) \mathrm{d} s \mathrm{~d} u \tag{2.5}\\
&+\int_{t}^{t+T}\left[h_{i}(u) H_{i}(t, u)-r_{i}(u) G_{i}(t, u)\right] x_{i}\left(u-\tau_{i}(u)\right) \mathrm{d} u \\
& i=1,2 .
\end{align*}
$$

To apply Lemma 2.1, we need to construct two mappings, one is a contraction and the other is compact. Therefore, we state (2.5) as

$$
E_{i}\left(x_{1}, x_{2}\right)(t)=B_{i}\left(x_{1}, x_{2}\right)(t)+A_{i}\left(x_{1}, x_{2}\right)(t), \quad i=1,2
$$

where $B_{i}, A_{i}: \Omega_{M} \rightarrow P_{T}$ are given by

$$
B_{i}\left(x_{1}, x_{2}\right)(t)=\int_{t}^{t+T} G_{i}(t, u) g_{i}\left(u, x_{1}(u), x_{2}(u), x_{1}\left(u-\tau_{1}(u)\right), x_{2}\left(u-\tau_{2}(u)\right)\right) \mathrm{d} u
$$ and

$$
\begin{aligned}
A_{i}\left(x_{1}, x_{2}\right)(t)= & \int_{t}^{t+T} G_{i}(t, u) \int_{-\infty}^{u} C_{i}(u, s) f_{i}\left(x_{1}(s), x_{2}(s)\right) \mathrm{d} s \mathrm{~d} u \\
& +\int_{t}^{t+T}\left[h_{i}(u) H_{i}(t, u)-r_{i}(u) G_{i}(t, u)\right] x_{i}\left(u-\tau_{i}(u)\right) \mathrm{d} u
\end{aligned}
$$

Now for $\left(x_{1}, x_{2}\right) \in \Omega_{M}$ we can define the operators $B, A: \Omega_{M} \rightarrow P_{T}^{2}$ by

$$
\begin{aligned}
B\left(x_{1}, x_{2}\right)(t) & =\left(B_{1}\left(x_{1}, x_{2}\right)(t), B_{2}\left(x_{1}, x_{2}\right)(t)\right), \\
A\left(x_{1}, x_{2}\right)(t) & =\left(A_{1}\left(x_{1}, x_{2}\right)(t), A_{2}\left(x_{1}, x_{2}\right)(t)\right)
\end{aligned}
$$

Observe that, since the functions $g_{i}\left(t, x_{1}, x_{2}, x_{3}, x_{4}\right), i=1,2$, is Lipschitz continuous in $x_{1}, x_{2}, x_{3}, x_{4}$ and $f_{i}\left(x_{1}, x_{2}\right), i=1,2$, is Lipschitz continuous in x_{1}, x_{2} we have

$$
\begin{aligned}
\left|g_{i}\left(t, x_{1}, x_{2}, x_{3}, x_{4}\right)\right| & =\left|g_{i}\left(t, x_{1}, x_{2}, x_{3}, x_{4}\right)-g_{i}(t, 0,0,0,0)+g_{i}(t, 0,0,0,0)\right| \\
& \leq\left|g_{i}\left(t, x_{1}, x_{2}, x_{3}, x_{4}\right)-g_{i}(t, 0,0,0,0)\right|+\left|g_{i}(t, 0,0,0,0)\right| \\
& \leq \sum_{j=1}^{4} \eta_{j i}\left|x_{j}\right|
\end{aligned}
$$

and

$$
\begin{aligned}
\left|f_{i}\left(x_{1}, x_{2}\right)\right| & =\left|f_{i}\left(x_{1}, x_{2}\right)-f_{i}(0,0)+f_{i}(0,0)\right| \\
& \leq\left|f_{i}\left(x_{1}, x_{2}\right)-f_{i}(0,0)\right|+\left|f_{i}(0,0)\right| \leq \sum_{j=1}^{2} \varrho_{j i}\left|x_{j}\right|
\end{aligned}
$$

Theorem 2.2. Suppose (1.2)-(1.4) and (2.1)-(2.3) hold. Suppose that

$$
L_{i} \alpha_{i} \sum_{j=1}^{2} \varrho_{j i}+T\left(\theta_{i} \gamma_{i}+\beta_{i} \alpha_{i}\right) \leq 1, \quad i=1,2
$$

and $2 T \alpha_{i} V_{i}<1, i=1,2$, where $V_{i}=\max \left(\eta_{1 i}+\eta_{3 i}, \eta_{2 i}+\eta_{4 i}\right)$. Then (1.1) has a T-periodic solution.

Proof: In order to prove that (1.1) has a T-periodic solution, we shall make sure that A and B satisfy the conditions of Lemma 2.1. For all $\left(x_{1}, x_{2}\right) \in \Omega_{M}$, we have $\left(x_{1}, x_{2}\right)(t+T)=\left(x_{1}, x_{2}\right)(t)$ and $\left\|\left(x_{1}, x_{2}\right)\right\| \leq M$. Now let us discuss $B\left(x_{1}, x_{2}\right)+A\left(x_{1}, x_{2}\right)$. We have

$$
\begin{aligned}
& B_{i}\left(x_{1}, x_{2}\right)(t+T) \\
& \quad=\int_{t+T}^{t+2 T} G_{i}(t+T, u) g_{i}\left(u, x_{1}(u), x_{2}(u), x_{1}\left(u-\tau_{1}(u)\right), x_{2}\left(u-\tau_{2}(u)\right)\right) \mathrm{d} u \\
& \quad=\int_{t}^{t+T} G_{i}(t, u) g_{i}\left(u, x_{1}(u), x_{2}(u), x_{1}\left(u-\tau_{1}(u)\right), x_{2}\left(u-\tau_{2}(u)\right)\right) \mathrm{d} u \\
& \quad=B_{i}\left(x_{1}, x_{2}\right)(t), \quad i=1,2
\end{aligned}
$$

and

$$
\begin{aligned}
& A_{i}\left(x_{1}, x_{2}\right)(t+T) \\
&= \int_{t+T}^{t+2 T} G_{i}(t+T, u) \int_{-\infty}^{u} C_{i}(u, s) f_{i}\left(x_{1}(s), x_{2}(s)\right) \mathrm{d} s \mathrm{~d} u \\
&+\int_{t+T}^{t+2 T}\left[h_{i}(u) H_{i}(t+T, u)-r_{i}(u) G_{i}(t+T, u)\right] x_{i}\left(u-\tau_{i}(u)\right) \mathrm{d} u \\
&= \int_{t}^{t+T} G_{i}(t, u) \int_{-\infty}^{u} C_{i}(u, s) f_{i}\left(x_{1}(s), x_{2}(s)\right) \mathrm{d} s \mathrm{~d} u \\
&+\int_{t}^{t+T}\left[h_{i}(u) H_{i}(t, u)-r_{i}(u) G_{i}(t, u)\right] x_{i}\left(u-\tau_{i}(u)\right) \mathrm{d} u \\
&= A_{i}\left(x_{1}, x_{2}\right)(t), \quad i=1,2 .
\end{aligned}
$$

Then $E_{i}\left(x_{1}, x_{2}\right)(t+T)=E_{i}\left(x_{1}, x_{2}\right)(t), i=1,2$. Therefore, $E\left(x_{1}, x_{2}\right)(t+T)=$ $E\left(x_{1}, x_{2}\right)(t)$.

For any $\left(x_{1}, x_{2}\right) \in \Omega_{M}$, we will show that $\left|E\left(x_{1}, x_{2}\right)(t)\right| \leq M$. In view of the above estimates, we have for $i=1,2$,

$$
\begin{aligned}
& \left|B_{i}\left(x_{1}, x_{2}\right)(t)\right| \\
& \quad \leq \int_{t}^{t+T} G_{i}(t, u)\left|g_{i}\left(u, x_{1}(u), x_{2}(u), x_{1}\left(u-\tau_{1}(u)\right), x_{2}\left(u-\tau_{2}(u)\right)\right)\right| \mathrm{d} u \\
& \quad \leq T K_{i} \alpha_{i}
\end{aligned}
$$

and

$$
\begin{aligned}
\left|A_{i}\left(x_{1}, x_{2}\right)(t)\right| \leq & \int_{t}^{t+T} G_{i}(t, u) \int_{-\infty}^{u}\left|C_{i}(u, s)\right|\left|f_{i}\left(x_{1}(s), x_{2}(s)\right)\right| \mathrm{d} s \mathrm{~d} u \\
& +\int_{t}^{t+T}\left[\left|h_{i}(u)\right|\left|H_{i}(t, u)\right|+\left|r_{i}(u)\right| G_{i}(t, u)\right]\left|x_{i}\left(u-\tau_{i}(u)\right)\right| \mathrm{d} u \\
\leq & L_{i} M_{i} \alpha_{i}+T\left(\theta_{i} \gamma_{i}+\beta_{i} \alpha_{i}\right) M
\end{aligned}
$$

As a consequence of (2.4), we have

$$
\frac{\left(T K_{i}+L_{i} M_{i}\right) \alpha_{i}}{1-T\left(\theta_{i} \gamma_{i}+\beta_{i} \alpha_{i}\right)} \leq M
$$

so,

$$
\left(T K_{i}+L_{i} M_{i}\right) \alpha_{i} \leq\left(1-T\left(\theta_{i} \gamma_{i}+\beta_{i} \alpha_{i}\right)\right) M .
$$

This implies that

$$
\begin{aligned}
\left|E_{i}\left(x_{1}, x_{2}\right)(t)\right| & \leq T K_{i} \alpha_{i}+L_{i} M_{i} \alpha_{i}+T\left(\theta_{i} \gamma_{i}+\beta_{i} \alpha_{i}\right) M \\
& \leq\left(1-T\left(\theta_{i} \gamma_{i}+\beta_{i} \alpha_{i}\right)\right) M+T\left(\theta_{i} \gamma_{i}+\beta_{i} \alpha_{i}\right) M=M
\end{aligned}
$$

Thus, E maps Ω_{M} into itself, i.e. $E\left(\Omega_{M}\right) \subseteq \Omega_{M}$.
We will now show that A is continuous. For $n \in \mathbb{N}$, let $\left\{\left(x_{1 n}, x_{2 n}\right)\right\}$ be a sequence in Ω_{M} such that

$$
\lim _{n \rightarrow \infty}\left\|\left(x_{1 n}, x_{2 n}\right)-\left(x_{1}, x_{2}\right)\right\|=0
$$

Since Ω_{M} is closed, we have $\left(x_{1}, x_{2}\right) \in \Omega_{M}$. Then by the definition of A we have

$$
\begin{aligned}
\left\|A\left(x_{1 n}, x_{2 n}\right)-A\left(x_{1}, x_{2}\right)\right\|=\max \left\{\max _{t \in[0, T]}\left|A_{1}\left(x_{1 n}, x_{2 n}\right)(t)-A_{1}\left(x_{1}, x_{2}\right)(t)\right|,\right. \\
\left.\max _{t \in[0, T]}\left|A_{2}\left(x_{1 n}, x_{2 n}\right)(t)-A_{2}\left(x_{1}, x_{2}\right)(t)\right|\right\},
\end{aligned}
$$

in which for $i=1,2$,

$$
\begin{aligned}
& \left|A_{i}\left(x_{1 n}, x_{2 n}\right)(t)-A_{i}\left(x_{1}, x_{2}\right)(t)\right| \\
& \leq \int_{t}^{t+T} G_{i}(t, u) \int_{-\infty}^{u}\left|C_{i}(u, s)\right|\left|f_{i}\left(x_{1 n}(s), x_{2 n}(s)\right)-f_{i}\left(x_{1}(s), x_{2}(s)\right)\right| \mathrm{d} s \mathrm{~d} u \\
& \quad+\int_{t}^{t+T}\left[\left|h_{i}(u)\right|\left|H_{i}(t, u)\right|+\left|r_{i}(u)\right| G_{i}(t, u)\right]\left|x_{i n}\left(u-\tau_{i}(u)\right)-x_{i}\left(u-\tau_{i}(u)\right)\right| \mathrm{d} u
\end{aligned}
$$

The continuity of f_{i} along with the Lebesgue dominated convergence theorem implies that

$$
\lim _{n \rightarrow \infty} \max _{t \in[0, T]}\left|A_{i}\left(x_{1 n}, x_{2 n}\right)(t)-A_{i}\left(x_{1}, x_{2}\right)(t)\right|=0
$$

Thus

$$
\lim _{n \rightarrow \infty}\left\|A\left(x_{1 n}, x_{2 n}\right)-A\left(x_{1}, x_{2}\right)\right\|=0
$$

This result proves that A is continuous.
We now have to show that A is compact. For $n \in \mathbb{N}$, let $\left\{\left(x_{1 n}, x_{2 n}\right)\right\}$ be a sequence in Ω_{M}, then we have for $i=1,2$,

$$
\begin{aligned}
\left|A_{i}\left(x_{1 n}, x_{2 n}\right)(t)\right| \leq & \int_{t}^{t+T} G_{i}(t, u) \int_{-\infty}^{u}\left|C_{i}(u, s)\right|\left|f_{i}\left(x_{1 n}(s), x_{2 n}(s)\right)\right| \mathrm{d} s \mathrm{~d} u \\
& +\int_{t}^{t+T}\left[\left|h_{i}(u)\right|\left|H_{i}(t, u)\right|+\left|r_{i}(u)\right| G_{i}(t, u)\right]\left|x_{i n}\left(u-\tau_{i}(u)\right)\right| \mathrm{d} u \\
\leq & \left(L_{i} \alpha_{i} \sum_{j=1}^{2} \varrho_{j i}+T\left(\theta_{i} \gamma_{i}+\beta_{i} \alpha_{i}\right)\right) M \leq M
\end{aligned}
$$

Thus

$$
\left\|A\left(x_{1 n}, x_{2 n}\right)\right\| \leq M
$$

If we calculate $\left(A\left(x_{1 n}, x_{2 n}\right)\right)^{\prime}(t)$, then for $i=1,2$,

$$
\begin{aligned}
\left(A _ { i } \left(x_{1 n},\right.\right. & \left.\left.x_{2 n}\right)\right)^{\prime}(t) \\
= & \int_{t}^{t+T}\left[-b_{i}(t) G_{i}(t, u)+H_{i}^{*}(t, u)\right] \int_{-\infty}^{u} C_{i}(u, s) f_{i}\left(x_{1 n}(s), x_{2 n}(s)\right) \mathrm{d} s \mathrm{~d} u \\
& +h_{i}(t) x_{i n}\left(t-\tau_{i}(t)\right)-\int_{t}^{t+T}\left[b_{i}(t)\left(h_{i}(u) H_{i}(t, u)-r_{i}(u) G_{i}(t, u)\right)\right. \\
& \left.+r_{i}(u) H_{i}^{*}(t, u)\right] x_{i n}\left(u-\tau_{i}(u)\right) \mathrm{d} u
\end{aligned}
$$

Hence, for some positive constant D_{i}, we obtain

$$
\begin{aligned}
& \left|\left(A_{i}\left(x_{1 n}, x_{2 n}\right)\right)^{\prime}(t)\right| \\
& \quad \leq \int_{t}^{t+T}\left(\left|b_{i}(t)\right| G_{i}(t, u)+\left|H_{i}^{*}(t, u)\right|\right) \int_{-\infty}^{u}\left|C_{i}(u, s)\right|\left|f_{i}\left(x_{1 n}(s), x_{2 n}(s)\right)\right| \mathrm{d} s \mathrm{~d} u
\end{aligned}
$$

$$
\begin{aligned}
& +\left|h_{i}(t)\right|\left|x_{i n}\left(t-\tau_{i}(t)\right)\right|+\int_{t}^{t+T}\left[\left|b_{i}(t)\right|\left(\left|h_{i}(u)\right|\left|H_{i}(t, u)\right|+\left|r_{i}(u)\right| G_{i}(t, u)\right)\right. \\
& \left.+\left|r_{i}(u)\right|\left|H_{i}^{*}(t, u)\right|\right]\left|x_{i n}\left(u-\tau_{i}(u)\right)\right| \mathrm{d} u \\
\leq & \left(\delta_{i} \alpha_{i}+\gamma_{i}\right) L_{i} M \sum_{j=1}^{2} \varrho_{j i}+\theta_{i} M+T\left[\delta_{i}\left(\theta_{i} \gamma_{i}+\beta_{i} \alpha_{i}\right)+\beta_{i} \gamma_{i}\right] M \leq D_{i} .
\end{aligned}
$$

Thus

$$
\left\|\left(A\left(x_{1 n}, x_{2 n}\right)\right)^{\prime}\right\| \leq D
$$

where $D=\max \left(D_{1}, D_{2}\right)$. Thus, the sequence $\left(A\left(x_{1 n}, x_{2 n}\right)\right)$ is uniformly bounded and equi-continuous. The Arzelà-Ascoli theorem implies that there exists a subsequence $\left(A\left(x_{1 n_{k}}, x_{2 n_{k}}\right)\right)$ of $\left(A\left(x_{1 n}, x_{2 n}\right)\right)$ converging uniformly to a continuous T-periodic function. Thus, A is compact.

For all $\left(x_{11}, x_{21}\right),\left(x_{12}, x_{22}\right) \in \Omega_{M}$, and for $i=1,2$,

$$
\begin{aligned}
&\left|B_{i}\left(x_{11}, x_{21}\right)(t)-B_{i}\left(x_{12}, x_{22}\right)(t)\right| \\
& \leq \int_{t}^{t+T} G_{i}(t, u) \mid g_{i}\left(u, x_{11}(u), x_{21}(u), x_{11}\left(u-\tau_{1}(u)\right), x_{21}\left(u-\tau_{2}(u)\right)\right) \\
&-g_{i}\left(u, x_{21}(u), x_{22}(u), x_{21}\left(u-\tau_{1}(u)\right), x_{22}\left(u-\tau_{2}(u)\right)\right) \mid \mathrm{d} u \\
& \leq T \alpha_{i}\left(\eta_{1 i}\left|x_{11}(t)-x_{21}(t)\right|+\eta_{3 i}\left|x_{11}\left(t-\tau_{1}(t)\right)-x_{21}\left(t-\tau_{1}(t)\right)\right|\right. \\
&\left.+\eta_{2 i}\left|x_{21}(t)-x_{22}(t)\right|+\eta_{4 i}\left|x_{21}\left(t-\tau_{2}(t)\right)-x_{22}\left(t-\tau_{2}(t)\right)\right|\right) \\
& \leq T \alpha_{i}\left(\eta_{1 i} \max _{t \in[0, T]}\left|x_{11}(t)-x_{21}(t)\right|+\eta_{3 i} \max _{t \in[0, T]}\left|x_{11}\left(t-\tau_{1}(t)\right)-x_{21}\left(t-\tau_{1}(t)\right)\right|\right. \\
&\left.+\eta_{2 i} \max _{t \in[0, T]}\left|x_{21}(t)-x_{22}(t)\right|+\eta_{4 i} \max _{t \in[0, T]}\left|x_{21}\left(t-\tau_{2}(t)\right)-x_{22}\left(t-\tau_{2}(t)\right)\right|\right) \\
& \leq T \alpha_{i}\left(\left(\eta_{1 i}+\eta_{3 i}\right) \max _{t \in[0, T]}\left|x_{11}(t)-x_{21}(t)\right|+\left(\eta_{2 i}+\eta_{4 i}\right) \max _{t \in[0, T]}\left|x_{21}(t)-x_{22}(t)\right|\right) \\
& \leq 2 T \alpha_{i} V_{i} \max \left(\max _{t \in[0, T]}\left|x_{11}(t)-x_{21}(t)\right|, \max _{t \in[0, T]}\left|x_{21}(t)-x_{22}(t)\right|\right),
\end{aligned}
$$

hence B_{i} is a contraction because $2 T \alpha_{i} V_{i}<1$. Then

$$
\begin{aligned}
& \left|B\left(x_{11}, x_{21}\right)(t)-B\left(x_{12}, x_{22}\right)(t)\right| \\
& =\max \left\{\left|B_{1}\left(x_{11}, x_{21}\right)(t)-B_{1}\left(x_{12}, x_{22}\right)(t)\right|,\right. \\
& \left.\left|B_{2}\left(x_{11}, x_{21}\right)(t)-B_{2}\left(x_{12}, x_{22}\right)(t)\right|\right\},
\end{aligned}
$$

this implies that

$$
\begin{aligned}
& \left\|B\left(x_{11}, x_{21}\right)-B\left(x_{12}, x_{22}\right)\right\| \\
& \quad \leq 2 T \alpha V \max \left(\max _{t \in[0, T]}\left|x_{11}(t)-x_{21}(t)\right|, \max _{t \in[0, T]}\left|x_{21}(t)-x_{22}(t)\right|\right)
\end{aligned}
$$

where $\alpha V=\max \left(\alpha_{1} V_{1}, \alpha_{2} V_{2}\right)$. Hence B is a contraction.

Thus, the conditions of Lemma 2.1 are satisfied and there is a $\left(x_{1}, x_{2}\right) \in \Omega_{M}$, such that $\left(x_{1}, x_{2}\right)=A\left(x_{1}, x_{2}\right)+B\left(x_{1}, x_{2}\right)$.

In the next theorem for $i=2$ we relax condition (2.1).
Theorem 2.3. Suppose (1.2)-(1.4), (2.1) for $i=1$, (2.2) and (2.3) hold. Suppose that

$$
L_{i} \alpha_{i} \sum_{j=1}^{2} \varrho_{j i}+T\left(\theta_{i} \gamma_{i}+\beta_{i} \alpha_{i}\right) \leq 1, \quad i=1,2
$$

and $2 T \alpha_{i} V_{i}<1, i=1,2$, where $V_{i}=\max \left(\eta_{1 i}+\eta_{3 i}, \eta_{2 i}+\eta_{4 i}\right)$. In addition, we assume the existence of continuous nondecreasing function W_{2} such that

$$
\left|f_{2}\left(x_{1}, x_{2}\right)\right| \leq f_{2}\left(\left|x_{1}\right|, x_{2}\right) \leq N_{2} W_{2}\left(\left|x_{1}\right|\right)
$$

for some positive constant N_{2}, and for $u>0$ we ask that

$$
\begin{equation*}
\frac{W_{2}(u)}{u}+\frac{T K_{2}}{L_{2} N_{2} u} \leq \frac{1-T\left(\theta_{2} \gamma_{2}+\beta_{2} \alpha_{2}\right)}{L_{2} N_{2} \alpha_{2}} \tag{2.6}
\end{equation*}
$$

Then (1.1) has a T-periodic solution.
Proof: Set

$$
\begin{equation*}
\sigma=\frac{\left(T K_{1}+L_{1} M_{1}\right) \alpha_{1}}{1-T\left(\theta_{1} \gamma_{1}+\beta_{1} \alpha_{1}\right)} \tag{2.7}
\end{equation*}
$$

For any $\left(x_{1}, x_{2}\right) \in \Omega_{\sigma}$, we have by the proof of Theorem 2.2 that

$$
\left|E_{1}\left(x_{1}, x_{2}\right)(t)\right| \leq \sigma
$$

Thus

$$
\begin{aligned}
& \left|B_{2}\left(x_{1}, x_{2}\right)(t)\right| \\
& \quad \leq \int_{t}^{t+T} G_{2}(t, u)\left|g_{2}\left(u, x_{1}(u), x_{2}(u), x_{1}\left(u-\tau_{1}(u)\right), x_{2}\left(u-\tau_{2}(u)\right)\right)\right| \mathrm{d} u \\
& \quad \leq T K_{2} \alpha_{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\left|A_{2}\left(x_{1}, x_{2}\right)(t)\right| \leq & \int_{t}^{t+T} G_{2}(t, u) \int_{-\infty}^{u}\left|C_{2}(u, s)\right| f_{2}\left(\left|x_{1}(s)\right|, x_{2}(s)\right) \mathrm{d} s \mathrm{~d} u \\
& +\int_{t}^{t+T}\left[\left|h_{2}(u)\right|\left|H_{2}(t, u)\right|+\left|r_{2}(u)\right| G_{2}(t, u)\right]\left|x_{2}\left(u-\tau_{2}(u)\right)\right| \mathrm{d} u
\end{aligned}
$$

$$
\begin{aligned}
\leq & N_{2} W_{2}(\sigma) \int_{t}^{t+T} G_{2}(t, u) \int_{-\infty}^{u}\left|C_{2}(u, s)\right| \mathrm{d} s \mathrm{~d} u \\
& +\sigma \int_{t}^{t+T}\left[\left|h_{2}(u)\right|\left|H_{2}(t, u)\right|+\left|r_{2}(u)\right| G_{2}(t, u)\right] \mathrm{d} u \\
\leq & L_{2} N_{2} \alpha_{2} W_{2}(\sigma)+T\left(\theta_{2} \gamma_{2}+\beta_{2} \alpha_{2}\right) \sigma .
\end{aligned}
$$

As a consequence of (2.6), we get

$$
\frac{\left(T K_{2}+L_{2} N_{2} W_{2}(\sigma)\right) \alpha_{2}}{1-T\left(\theta_{2} \gamma_{2}+\beta_{2} \alpha_{2}\right)} \leq \sigma
$$

so, we have

$$
\left(T K_{2}+L_{2} N_{2} W_{2}(\sigma)\right) \alpha_{2} \leq\left(1-T\left(\theta_{2} \gamma_{2}+\beta_{2} \alpha_{2}\right)\right) \sigma
$$

This implies that

$$
\begin{aligned}
\left|E_{2}\left(x_{1}, x_{2}\right)(t)\right| & \leq T K_{2} \alpha_{2}+L_{2} \alpha_{2} N_{2} W_{2}(\sigma)+T\left(\theta_{2} \gamma_{2}+\beta_{2} \alpha_{2}\right) \sigma \\
& \leq\left(1-T\left(\theta_{2} \gamma_{2}+\beta_{2} \alpha_{2}\right)\right) \sigma+T\left(\theta_{2} \gamma_{2}+\beta_{2} \alpha_{2}\right) \sigma=\sigma
\end{aligned}
$$

The rest of the proof follows along the lines of the proof of Theorem 2.2.
In the next theorem for $i=1$ we relax condition (2.1).
Theorem 2.4. Suppose (1.2)-(1.4), (2.1) for $i=2$, (2.2) and (2.3) hold. Suppose that

$$
L_{i} \alpha_{i} \sum_{j=1}^{2} \varrho_{j i}+T\left(\theta_{i} \gamma_{i}+\beta_{i} \alpha_{i}\right) \leq 1, \quad i=1,2
$$

and $2 T \alpha_{i} V_{i}<1, i=1,2$, where $V_{i}=\max \left(\eta_{1 i}+\eta_{3 i}, \eta_{2 i}+\eta_{4 i}\right)$. In addition, we assume the existence of continuous nondecreasing function W_{1} such that

$$
\left|f_{1}\left(x_{1}, x_{2}\right)\right| \leq f_{1}\left(x_{1},\left|x_{2}\right|\right) \leq N_{1} W_{1}\left(\left|x_{2}\right|\right)
$$

for some positive constant N_{1}, and for $u>0$ we ask that

$$
\begin{equation*}
\frac{W_{1}(u)}{u}+\frac{T K_{1}}{L_{1} N_{1} u} \leq \frac{1-T\left(\theta_{1} \gamma_{1}+\beta_{1} \alpha_{1}\right)}{L_{1} N_{1} \alpha_{1}} \tag{2.8}
\end{equation*}
$$

Then (1.1) has a T-periodic solution.
The proof follows along the lines of the proof of Theorem 2.3, and hence we omit it here.

3. An example

Example 3.1. Consider the following coupled integro-differential system

$$
\begin{align*}
x_{1}^{\prime \prime}(t) & +\frac{1}{\pi} x_{1}^{\prime}(t)+\frac{1}{10^{3}} x_{1}(t)=\frac{1}{10^{9}} \sin \left(x_{1}(t)\right)+\frac{2}{10^{9}} \sin \left(x_{2}(t)\right) \\
& +\frac{1}{10^{8}} \sin \left(x_{1}(t-2 \pi)\right)+\frac{3}{10^{8}} \sin \left(x_{2}(t-4 \pi)\right) \\
& +\frac{2}{10^{8}} \sin (t) x_{1}^{\prime}(t-2 \pi) \\
& +\int_{-\infty}^{t} \frac{1-\mathrm{e}^{-2 \pi}}{\pi 10^{8}} \mathrm{e}^{-2 t+2 s}\left(\frac{1}{10} \sin \left(x_{1}(s)\right)+\frac{1}{10^{3}} \sin \left(x_{2}(s)\right)\right) \mathrm{d} s, \\
x_{2}^{\prime \prime}(t) & +\frac{1}{\pi} x_{2}^{\prime}(t)+\frac{1}{10^{3}} x_{2}(t)=\frac{2}{10^{8}} \sin \left(x_{1}(t)\right)+\frac{1}{10^{8}} \sin \left(x_{2}(t)\right) \tag{3.1}\\
& +\frac{3}{10^{9}} \sin \left(x_{1}(t-2 \pi)\right)+\frac{1}{10^{9}} \sin \left(x_{2}(t-4 \pi)\right) \\
& +\frac{3}{10^{8}} \sin (t) x_{2}^{\prime}(t-4 \pi) \\
& +\int_{-\infty}^{t} \frac{1}{10^{9}} \mathrm{e}^{-t+s}\left(\frac{1}{10^{2}} \sin \left(x_{1}(s)\right)+\frac{1}{10^{4}} \sin \left(x_{2}(s)\right)\right) \mathrm{d} s .
\end{align*}
$$

Then

$$
\begin{array}{lll}
p_{1}(t)=p_{2}(t)=\frac{1}{\pi}, & q_{1}(t)=q_{2}(t)=\frac{1}{10^{3}}, & T=2 \pi, \\
\tau_{1}(t)=2 \pi, & \tau_{2}(t)=4 \pi, & c_{1}(t)=\frac{2}{10^{8}} \sin (t), \\
c_{2}(t)=\frac{3}{10^{8}} \sin (t), & C_{1}(t, s)=\frac{1-\mathrm{e}^{-2 \pi}}{\pi 10^{8}} \mathrm{e}^{-2 t+2 s}, & C_{2}(t, s)=\frac{1}{10^{9}} \mathrm{e}^{-t+s}, \\
g_{1}\left(t, x_{1}(t), x_{2}(t), x_{1}(t-2 \pi), x_{2}(t-4 \pi)\right) \\
=\frac{1}{10^{9}} \sin \left(x_{1}(t)\right)+\frac{2}{10^{9}} \sin \left(x_{2}(t)\right)+\frac{1}{10^{8}} \sin \left(x_{1}(t-2 \pi)\right)+\frac{3}{10^{8}} \sin \left(x_{2}(t-4 \pi)\right), \\
g_{2}\left(t, x_{1}(t), x_{2}(t), x_{1}(t-2 \pi), x_{2}(t-4 \pi)\right) \\
\quad=\frac{2}{10^{8}} \sin \left(x_{1}(t)\right)+\frac{1}{10^{8}} \sin \left(x_{2}(t)\right)+\frac{3}{10^{9}} \sin \left(x_{1}(t-2 \pi)\right)+\frac{1}{10^{9}} \sin \left(x_{2}(t-4 \pi)\right),
\end{array}
$$

and

$$
\begin{aligned}
& f_{1}\left(x_{1}(t), x_{2}(t)\right)=\frac{1}{10} \sin \left(x_{1}(t)\right)+\frac{1}{10^{3}} \sin \left(x_{2}(t)\right) \\
& f_{2}\left(x_{1}(t), x_{2}(t)\right)=\frac{1}{10^{2}} \sin \left(x_{1}(t)\right)+\frac{1}{10^{4}} \sin \left(x_{2}(t)\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \left|g_{1}\left(t, x_{1}(t), x_{2}(t), x_{1}(t-2 \pi), x_{2}(t-4 \pi)\right)\right| \\
& \quad \leq \frac{1}{10^{9}}\left|x_{1}(t)\right|+\frac{2}{10^{9}}\left|x_{2}(t)\right|+\frac{1}{10^{8}}\left|x_{1}(t-2 \pi)\right|+\frac{3}{10^{8}}\left|x_{2}(t-4 \pi)\right|, \\
& \left|g_{2}\left(t, x_{1}(t), x_{2}(t), x_{1}(t-2 \pi), x_{2}(t-4 \pi)\right)\right| \\
& \quad \leq \frac{2}{10^{8}}\left|x_{1}(t)\right|+\frac{1}{10^{8}}\left|x_{2}(t)\right|+\frac{3}{10^{9}}\left|x_{1}(t-2 \pi)\right|+\frac{1}{10^{9}}\left|x_{2}(t-4 \pi)\right|, \\
& \quad\left|f_{1}\left(x_{1}, x_{2}\right)\right| \leq \frac{1}{10}\left|x_{1}(t)\right|+\frac{1}{10^{3}}\left|x_{2}(t)\right|,
\end{aligned}
$$

and

$$
\left|f_{1}\left(x_{1}, x_{2}\right)\right| \leq \frac{1}{10^{2}}\left|x_{1}(t)\right|+\frac{1}{10^{4}}\left|x_{2}(t)\right|
$$

So,

$$
\begin{array}{llll}
\eta_{11}=\frac{1}{10^{9}}, & \eta_{21}=\frac{2}{10^{9}}, & \eta_{31}=\frac{1}{10^{8}}, & \eta_{41}=\frac{3}{10^{8}}, \\
\eta_{12}=\frac{2}{10^{8}}, & \eta_{22}=\frac{1}{10^{8}}, & \eta_{32}=\frac{3}{10^{9}}, & \eta_{42}=\frac{1}{10^{9}}, \\
\varrho_{11}=\frac{1}{10}, & \varrho_{21}=\frac{1}{10^{3}}, & \varrho_{12}=\frac{1}{10^{2}}, & \varrho_{22}=\frac{1}{10^{4}} .
\end{array}
$$

We check the conditions of Lemma 1.1 for $i=1,2$,

$$
\begin{array}{rl}
R_{i} & =\max _{t \in[0,2 / \pi]} \left\lvert\, \int_{t}^{t+2 \pi} \frac{\mathrm{e}_{t}^{s}(1 / \pi) \mathrm{d} u}{\mathrm{e}_{0}^{2 \pi}(1 / \pi) \mathrm{d} u}-1\right. \\
10^{3} \\
\mathrm{~d} s & 1 \simeq 0.003 \\
Q_{i} & =\left(1+\mathrm{e}^{\int_{0}^{2 \pi}(1 / \pi) \mathrm{d} u}\right)^{2} R_{i}^{2} \simeq 0.0006
\end{array}
$$

and

$$
\frac{R_{i}}{2 \pi Q_{i}}\left(\mathrm{e}^{\int_{0}^{2 \pi}(1 / \pi) \mathrm{d} u}-1\right) \simeq 5.0842 \geq 1
$$

this implies

$$
a_{i}(t)=0.0032, \quad b_{i}(t)=0.3152, \quad i=1,2 .
$$

We check the conditions of Lemma 1.5

$$
\Gamma_{i}=\int_{0}^{2 \pi} \frac{1}{\pi} \mathrm{~d} u=2, \quad \Lambda_{i}=(2 \pi)^{2} \mathrm{e}^{(1 / 2 \pi) \int_{0}^{2 \pi} \ln \left(1 / 10^{3}\right) \mathrm{d} u} \simeq 0.0395
$$

and

$$
2^{2} \geq 4 \cdot 0.0395 \Rightarrow \Gamma_{i}^{2} \geq 4 \Lambda_{i}, \quad i=1,2
$$

then we have for $i=1,2$,

$$
\begin{aligned}
\min \left\{\int_{0}^{2 \pi} 0.0032 \mathrm{~d} u, \int_{0}^{2 \pi} 0.3152 \mathrm{~d} u\right\} & \geq \frac{1}{2}\left(\Gamma_{i}-\sqrt{\Gamma_{i}^{2}-4 \Lambda_{i}}\right) \\
& \simeq \frac{1}{2}\left(2-\sqrt{2^{2}-4 \cdot 0.0395}\right)=l_{i} \simeq 0.0199 \\
\max \left\{\int_{0}^{2 \pi} 0.0032 \mathrm{~d} u, \int_{0}^{2 \pi} 0.3152 \mathrm{~d} u\right\} & \leq \frac{1}{2}\left(\Gamma_{i}+\sqrt{\Gamma_{i}^{2}-4 \Lambda_{i}}\right) \\
& \simeq \frac{1}{2}\left(2+\sqrt{2^{2}-4 \times 0.0395}\right)=m_{i} \simeq 1.9801
\end{aligned}
$$

By Corollary 1.6, we get

$$
\begin{aligned}
\frac{2 \pi}{\left(\mathrm{e}^{1.9801}-1\right)^{2}} & \simeq 0.1611 \leq G_{i}(t, s) \leq \frac{2 \pi \mathrm{e}^{\int_{0}^{2 \pi}(1 / \pi) \mathrm{d} v}}{\left(\mathrm{e}^{0.0199}-1\right)^{2}} \simeq 1.15 \cdot 10^{5}, \quad i=1,2 \\
\left|H_{i}(t, s)\right| & \leq \frac{\mathrm{e}^{1.9801}}{\mathrm{e}^{0.0199}-1} \simeq 3.61 \cdot 10^{2}, \quad i=1,2
\end{aligned}
$$

We obtain

$$
\begin{aligned}
& \alpha_{i}=1.15 \cdot 10^{5}, \quad \gamma_{i}=3.61 \cdot 10^{2}, \quad \lambda_{i}=0.0032, \quad \delta_{i}=0.3152, \quad i=1,2, \\
& \theta_{1}=\max _{t \in[0,2 \pi]}\left|h_{1}(t)\right|=\max _{t \in[0,2 \pi]}\left|c_{1}(t)\right|=\max _{t \in[0,2 \pi]}\left|\frac{2}{10^{8}} \sin (t)\right|=\frac{2}{10^{8}}, \\
& \theta_{2}=\max _{t \in[0,2 \pi]}\left|h_{2}(t)\right|=\max _{t \in[0,2 \pi]}\left|c_{2}(t)\right|=\max _{t \in[0,2 \pi]}\left|\frac{3}{10^{8}} \sin (t)\right|=\frac{3}{10^{8}}, \\
& \beta_{1}=\max _{t \in[0,2 \pi]}\left|r_{1}(t)\right|=\max _{t \in[0,2 \pi]}\left|a_{1}(t) c_{1}(t)+c_{1}^{\prime}(t)\right| \\
&=\max _{t \in[0,2 \pi]}\left|0.0032 \cdot \frac{2}{10^{8}} \sin (t)+\frac{2}{10^{8}} \cos (t)\right|=\frac{2.0064}{10^{8}}, \\
& \beta_{2}=\max _{t \in[0,2 \pi]}\left|r_{2}(t)\right|=\max _{t \in[0,2 \pi]}\left|a_{2}(t) c_{2}(t)+c_{2}^{\prime}(t)\right| \\
&=\max _{t \in[0,2 \pi]}\left|0.0032 \cdot \frac{3}{10^{8}} \sin (t)+\frac{3}{10^{8}} \cos (t)\right|=\frac{3.0096}{10^{8}}, \\
&\left|f_{1}\left(x_{1}(t), x_{2}(t)\right)\right| \leq M_{1}=\frac{101}{10^{3}}, \quad\left|f_{2}\left(x_{1}(t), x_{2}(t)\right)\right| \leq M_{2}=\frac{101}{10^{4}}, \\
& \quad\left|g_{1}\left(t, x_{1}(t), x_{2}(t), x_{1}(t-2 \pi), x_{2}(t-4 \pi)\right)\right| \leq K_{1}=\frac{43}{10^{9}} \\
&\left|g_{2}\left(t, x_{1}(t), x_{2}(t), x_{1}(t-2 \pi), x_{2}(t-4 \pi)\right)\right| \leq K_{2}=\frac{34}{10^{9}}
\end{aligned}
$$

$$
\begin{gathered}
\int_{t}^{t+2 \pi} \int_{-\infty}^{u}\left|\frac{1-\mathrm{e}^{-2 \pi}}{\pi 10^{8}} \mathrm{e}^{-2 u+2 s}\right| \mathrm{d} s \mathrm{~d} u \leq L_{1}=\frac{0.9982}{10^{8}} \\
\int_{t}^{t+2 \pi} \int_{-\infty}^{u}\left|\frac{1}{10^{9}} \mathrm{e}^{-u+s}\right| \mathrm{d} s \mathrm{~d} u \leq L_{2}=\frac{2 \pi}{10^{9}}
\end{gathered}
$$

Therefore,

$$
\begin{aligned}
& L_{1} \alpha_{1} \sum_{j=1}^{2} \varrho_{j 1}+T\left(\theta_{1} \gamma_{1}+\beta_{1} \alpha_{1}\right)=0.0145 \leq 1 \\
& L_{2} \alpha_{2} \sum_{j=1}^{2} \varrho_{j 2}+T\left(\theta_{2} \gamma_{2}+\beta_{2} \alpha_{2}\right)=0.0218 \leq 1
\end{aligned}
$$

and

$$
\begin{aligned}
& V_{1}=\max \left(\eta_{11}+\eta_{31}, \eta_{21}+\eta_{41}\right)=\max \left(\frac{1}{10^{9}}+\frac{1}{10^{8}}, \frac{2}{10^{9}}+\frac{3}{10^{8}}\right)=\frac{32}{10^{9}} \\
& V_{2}=\max \left(\eta_{12}+\eta_{32}, \eta_{22}+\eta_{42}\right)=\max \left(\frac{2}{10^{8}}+\frac{3}{10^{9}}, \frac{1}{10^{8}}+\frac{1}{10^{9}}\right)=\frac{23}{10^{9}}
\end{aligned}
$$

so,

$$
\begin{aligned}
& 2 T \alpha_{1} V_{1}=4 \pi \cdot 1.15 \cdot 10^{5} \cdot \frac{32}{10^{9}}=0.0462<1 \\
& 2 T \alpha_{2} V_{2}=4 \pi \cdot 1.15 \cdot 10^{5} \cdot \frac{23}{10^{9}}=0.0332<1
\end{aligned}
$$

The conditions of Theorem 2.2 are satisfied, then (3.1) has a 2π-periodic solution.

Acknowledgment. The authors would like to thank the anonymous referee for the valuable comments.

References

[1] Adıvar M., Raffoul Y. N., Existence of periodic solutions in totally nonlinear delay dynamic equations, Electron. J. Qual. Theory Differ. Equ. 2009 (2009), Special Edition I, no. 1., 20 pages.
[2] Ardjouni A., Djoudi A., Periodic solutions for a second-order nonlinear neutral differential equation with variable delay, Electron. J. Differential Equations 2011 (2011), no. 128, 7 pages.
[3] Ardjouni A., Djoudi A., Existence of periodic solutions for a second order nonlinear neutral differential equation with functional delay, Electron. J. Qual. Theory Differ. Equ. 2012 (2012), no. 31, 9 pages.
[4] Ardjouni A., Djoudi A., Existence of periodic solutions for a second order nonlinear neutral differential equation with variable delay, Palest J. Math. 3 (2014), no. 2, 191-197.
[5] Ardjouni A., Djoudi A., Periodic solutions for a second order nonlinear neutral functional differential equation with variable delay, Matematiche (Catania) 69 (2014), no. 2, 103-115.
[6] Biçer E., Tunç C., On the existence of periodic solutions to non-linear neutral differential equations of first order with multiple delays, Proc. of the Pakistan Academy of Sciences 52 (2015), no. 1, 89-94.
[7] Gabsi H., Ardjouni A., Djoudi A., Existence of periodic solutions for two types of secondorder nonlinear neutral integro-differential equations with infinite distributed mixed-delay, Advances in the Theory of Nonlinear Analysis and Its Applications 2 (2018), no. 4, 184-194.
[8] Hafsia D., Existence of periodic solutions for a second order nonlinear integro-differential equations with variable delay, Canad. J. Appl. Math. 2 (2020), no. 1, 36-44.
[9] Liu Y., Ge W., Positive periodic solutions of nonlinear Duffing equations with delay and variable coefficients, Tamsui Oxf. J. Math. Sci. 20 (2004), no. 2, 235-255.
[10] Mansouri B., Ardjouni A., Djoudi A., Existence of positive periodic solutions for two types of third-order nonlinear neutral differential equations with variable coefficients, Differ. Uravn. Protsessy Upr. 3 (2018), no. 3, 46-63.
[11] Raffoul Y., Analysis of periodic and asymptotically periodic solutions in nonlinear coupled Volterra integro-differential systems, Turkish. J. Math. 42 (2018), no. 1, 108-120.
[12] Raffoul Y. N., Periodic solutions for neutral nonlinear differential equations with functional delay, Electron. J. Differential Equations 2003 (2003), no. 102, 7 pages.
[13] Smart D. R., Fixed Point Theorems, Cambridge Tracts in Mathematics, 66, Cambridge University Press, London, 1974.
[14] Wang Y., Lian H., Ge W., Periodic solutions for a second order nonlinear functional differential equation, Appl. Math. Lett. 20 (2007), no. 1, 110-115.
B. Mansouri:

Faculty of Sciences, Department of Mathematics, Badji-Mokhtar-Annaba University, P. O. Box 12, 17 Hassen Chaouche, Annaba, 23000, Algeria

E-mail: mansouri.math@yahoo.fr
A. Ardjouni:

Faculty of Sciences and Technology, Department of Mathematics and Informatics, Université Med-Cherif Messaadia de Souk Ahras, P. O. Box 1553, Souk Ahras, 41000, Algeria

E-mail: abd_ardjouni@yahoo.fr
A. Djoudi:

Applied Mathematics Lab., Faculty of Sciences, Department of Mathematics, Badji-Mokhtar-Annaba University, P. O. Box 12, 17 Hassen Chaouche, Annaba, 23000, Algeria

E-mail: adjoudi@yahoo.com
(Received November 16, 2020, revised May 5, 2021)

