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K Y B E R N E T I K A — V O L U M E 5 8 ( 2 0 2 2 ) , N U M B E R 2 , P A G E S 1 8 0 – 1 9 9

MARKOV DECISION PROCESSES ON FINITE SPACES
WITH FUZZY TOTAL REWARDS

Karla Carrero-Vera, Hugo Cruz-Suárez and Raúl Montes-de-Oca

The paper concerns Markov decision processes (MDPs) with both the state and the decision
spaces being finite and with the total reward as the objective function. For such a kind of
MDPs, the authors assume that the reward function is of a fuzzy type. Specifically, this fuzzy
reward function is of a suitable trapezoidal shape which is a function of a standard non-fuzzy
reward. The fuzzy control problem consists of determining a control policy that maximizes the
fuzzy expected total reward, where the maximization is made with respect to the partial order
on the α-cuts of fuzzy numbers. The optimal policy and the optimal value function for the fuzzy
optimal control problem are characterized by means of the dynamic programming equation of
the standard optimal control problem and, as main conclusions, it is obtained that the optimal
policy of the standard problem and the fuzzy one coincide and the fuzzy optimal value function
is of a convenient trapezoidal form. As illustrations, fuzzy extensions of an optimal stopping
problem and of a red-black gambling model are presented.

Keywords: Markov decision process, total reward, fuzzy reward, trapezoidal fuzzy number,
optimal stopping problem, gambling model

Classification: 90C40, 93C40

1. INTRODUCTION

A common situation which appears in applied mathematics is that the data required to
propose a mathematical model present ambiguity, vagueness or approximate character-
istics of the problem under study, and a possibility to deal with this situation is to use
the fuzzy theory proposed by L. Zadeh in his seminal article: [22]. The fuzzy theory is
well established and there are extensions of this theory in several fields of mathematical
sciences, such as control theory (see for instance [4] and [8]), and also it has impacted
in applied areas (see for instance [9] and [10]).

In the fuzzy theory, the effectiveness of fuzzy number calculations lies in the form of
the membership function (see [21]). Fuzzy numbers with a simpler membership function
allow a more natural interpretation to be associated with it. A membership function with
this characteristic is the one associated with trapezoidal fuzzy numbers (see [1, 6, 17],
and [21]). Furthermore, the class of trapezoidal numbers contains the triangular fuzzy
numbers which have been extensively studied and applied in fuzzy systems [14]. In
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particular, the triangular fuzzy numbers could be used to approximate an arbitrary
fuzzy number (see [2] and [23]).

Now, in this article, taking into account the previous considerations given on the
fuzzy theory, the authors propose a Markov decision process (MDP, in plural MDPs)
(see [16]) with finite state and decision spaces and fuzzy characteristics in its payoff or
reward function. The main idea is the following: a standard model formulation of an
MDP is considered (see Chapter 2 in [16]), with a nonnegative reward R as a basis,

and a new model is induced changing only R by a reward function R̃ with fuzzy values
which is a function of R. Specifically, it is assumed that the fuzzy reward function is
trapezoidal in shape. A relevant point is that a special case of R̃ can be reduced to R
(in fact, R can be trivially seen as a fuzzy number); hence, in this sense, an extension
of the MDPs on finite spaces, nonnegative reward and total reward criterion theory is
obtained. Also, this paper will refer to two kinds of MDPs: an MDP with a reward
function R which will be named the standard MDP or the standard model, and a fuzzy
MDP or a fuzzy model which is an MDP with reward R̃. Note that, in this work, the
model formulation of the standard MDP has identical components of the fuzzy one, the
only difference resides in the reward function; in particular, the set of all admissible
policies is the same for both models.

Thus, with the information of the previous paragraph, the fuzzy control problem
consists of determining a control policy that maximizes the expected total fuzzy reward,
where the maximization is made with respect to the partial order on the α-cuts of fuzzy
numbers (see [11]). And, it is important to mention that the fuzzy optimal control

problem is reduced to the standard optimal problem when R̃ is reduced to R seen as a
fuzzy number (see Remark 5.4, below).

Moreover, the optimal policy and the optimal value function for the fuzzy optimal
control problem are characterized by means of the dynamic programming equation of
the standard optimal control problem and, as main consequences, it is obtained that
the optimal policy of the standard problem and the fuzzy one coincide and the fuzzy
optimal value function is of a convenient trapezoidal form.

To illustrate the theory developed, a fuzzy version of an optimal stopping problem
(see [16]) and a fuzzy extension of the classical gambling model related to the ruin of a
player are presented (see [18] and [19]).

Research works related to the topic developed here are the following: [12] and [20].
In both papers, versions of the discounted fuzzy control problem with finite state and
action spaces are examined.

The paper is organized as follows. Section 2 presents the basic results about fuzzy
numbers. The following section gives the standard theory on MDPs with the total
reward criterion. Sections 4 and 5 present the theory on the fuzzy control problem
under the criterion of the total reward. In Section 6 an optimal stopping problem and
a gambling model to exemplify the theory developed are given and finally, in Section 7
the conclusions are provided.

Notation. In the article, the following standard mathematical symbols will be distin-
guished in the fuzzy context with an asterix symbol: “ * ” . That is, in the fuzzy context,
“≤”, “+” and “

∑
”, will be denoted by “≤∗”, “+∗” and “

∑∗
”, respectively. Similarly,
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in the fuzzy context, the expectation operator “E”, the limit “lim” and the supremum
“sup”, will be denoted by “E∗”, “lim∗” and “sup∗”, respectively. It is important to
mention that the product of a real number λ and a fuzzy number Υ will be simply
denoted as λΥ. Moreover, some special functions which appear as fuzzy quantities say,
the reward function, the optimal value function, and so on, will be distinguished with a
“tilde”; for instance, the fuzzy reward function will be written as R̃.

2. PRELIMINARIES ON FUZZY THEORY

The first part of this section presents some definitions and basic results about the fuzzy
set theory (see [7, 21], and [22]).

Let Λ be a non-empty set. Then a fuzzy set Γ on Λ is defined in terms of the
membership function Γ′, which assigns to each element of Λ a real value from the interval
[0, 1]. The α-cut of Γ, denoted by Γα, is defined to be the set Γα := {x ∈ Λ | Γ′(x) ≥ α}
(0 < α ≤ 1) and Γ0 is the closure of {x ∈ Λ | Γ′(x) > 0} denoted by cl{x ∈ Λ | Γ′(x) >
0}.

Definition 2.1. A fuzzy number Γ is a fuzzy set defined on the set of real numbers R
(i. e., taking Λ = R in the previous definition), which satisfies:

a) Γ′ is normal, i. e., there exists x0 ∈ R with Γ′(x0) = 1;

b) Γ′ is convex, i. e. Γα is convex for all α ∈ [0, 1];

c) Γ′ is upper-semicontinuous;

d) Γ0 is compact.

The set of the fuzzy numbers will be denoted by F(R).

Definition 2.2. A fuzzy number Γ is called a trapezoidal fuzzy number if its membership
function has the following form:

Γ′(x) =



0 if x ≤ l
x−l
m−l if l < x ≤ m
1 if m < x ≤ n
p−x
p−n if n < x ≤ p
0 if p < x ,

(1)

where l, m, n and p are real numbers, with l < m ≤ n < p. A trapezoidal fuzzy number
is simply denoted by (l,m, n, p).

Remark 2.3. a) The case in which m = n in (1) will be named a triangular fuzzy
number and it will be simply denoted as (l,m, p). And, considering the degenerated
case in which l = m = p in a triangular number, the fuzzy representation of the
real number m is obtained with the membership function given by:

m′(x) =

{
1 if x = m

0 if x 6= m.
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b) For a trapezoidal fuzzy number Γ = (l,m, n, p) the corresponding α-cuts are given
by Γα = [(m− l)α+ l, p− (p− n)α], α ∈ [0, 1] (see [17]).

Definition 2.4. Let Γ and Υ be fuzzy numbers. If “ ? ” denotes the addition or the
scalar mutiplication, then it is defined as a fuzzy set on R, Γ ? Υ, by the membership
function:

(Γ ?Υ)′(u) = sup
u=x?y

min{Γ′(x),Υ′(y)},

for all u ∈ R.

As a consequence of Definition 2.4, it is possible to obtain the following result for
trapezoidal fuzzy numbers.

Lemma 2.5. (Rezvani and Molani [17]) If H = (al, am, an, ap) and I = (bl, bm, bn, bp)
be two trapezoidal fuzzy numbers and letting λ be a positive number, then it follows
that

a) λH = (λal, λam, λan, λap), and

b) H +∗ I = (al + bl, am + bm, an + bn, ap + bp).

Let D denote the set of all closed bounded intervals on the real line R. For Ψ = [al, au],
Φ = [bl, bu] ∈ D define

d(Ψ,Φ) = max(|al − bl| , |au − bu|).

It is possible to verify that d defines a metric on D and that (D, d) is a complete metric
space (see [15]). Now, if η̃ ∈ F(R), then, as its membership function satisfies b), c) and d)

of Definition 2.1, it follows that ηα ∈ D. Therefore, it is defined that d̂ : F(R)×F(R) −→
R by

d̂(η̃, µ̃) = sup
α∈[0,1]

d(ηα, µα). (2)

It is straightforward to see that d̂ is a metric in F(R) (see [15]).

Definition 2.6. A sequence {η̃t}∞t=0 of fuzzy numbers is said to be convergent to the

fuzzy number µ̃, written as lim∗t−→∞ η̃t = µ̃ if and only if d̂(η̃t, µ̃) −→ 0 as t −→∞.

Lemma 2.7. (Puri and Ralescu [15]) The metric space (F(R), d̂) is complete.

For trapezoidal fuzzy numbers it is direct to verify that the following statements hold:

Lemma 2.8. a) If {(akl , akm, akn, akp) : 0 ≤ k ≤ M} is a finite set of M trapezoidal
fuzzy numbers, then

M∑∗

k=0

(akl , a
k
m, a

k
n, a

k
p) =

(
M∑
k=0

akl ,

M∑
k=0

akm,

M∑
k=0

akn,

M∑
k=0

akp

)
.
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b) If {ỹk = (akl , a
k
m, a

k
n, a

k
p) : k ≥ 0} is a sequence of trapezoidal numbers and

∑∞
k=0 a

k
i

converges, i ∈ {l,m, n, p}, then {
t∑∗

k=0

ỹk

}

converges when t −→∞ to the trapezoidal fuzzy number (see Definition 2.6):

∞∑∗

k=0

ỹk =

( ∞∑
k=0

akl ,

∞∑
k=0

akm,

∞∑
k=0

akn,

∞∑
k=0

akp

)
.

Now, for η̃, µ̃ ∈ F(R), with α-cuts η̃α = [aα, bα] and µ̃α = [cα, dα], α ∈ [0, 1], respec-
tively, define η̃ 6∗ µ̃ if and only if aα ≤ cα and bα ≤ dα for all α ∈ [0, 1] (see [11]). It is
not difficult to verify that the order “≤∗ ” is, in fact, a partial order on F(R).

Remark 2.9. Take z1, z2 ∈ R, and let z̃1 and z̃2 be fuzzy numbers with membership
functions given by z̃k

′(x)=1, x = zk and z̃k
′(x) = 0, x 6= zk, k = 1, 2, respectively. Then,

it is easy to see that z̃1 6∗ z̃2 is equivalent to z1 ≤ z2.

Following [13] and [15], the next definitions on fuzzy random variables and their
expectations are established. For this, C(R) denotes the class of nonempty compact
subsets of R, and if (Ω1,A1) and (Ω2,A2) are measurable spaces, then A1⊗A2 denotes
the corresponding product σ-algebra associated to the product space Ω1 × Ω2.

Definition 2.10. Let (Ω,A) be a measurable space and (R,B(R)) be the measurable

space of the set of real numbers. A function Ỹ : Ω −→ F(R) is said to be a fuzzy

random variable associated with (Ω,F), if the section Ỹα : Ω −→ C(R) which is the

α-level function defined by Ỹα(ω) = (Ỹ (ω))α for all ω ∈ Ω and α ∈ [0, 1] satisfies that

Gr(Ỹα) = {(ω, x) ∈ Ω× R | x ∈ (Ỹ (ω))α} ∈ A ⊗ B(R), for all α ∈ [0, 1].

Definition 2.11. Given a probability space (Ω,A, P ), a fuzzy random variable Ỹ asso-
ciated to (Ω,A) is said to be an integrably bounded fuzzy random variable with respect
to (Ω,A, P ) if there is a function h : Ω −→ R, h ∈ L1(Ω,A, P ) such that |x| ≤ h(ω), for

all (ω, x) ∈ Ω × R with x ∈ (Ỹ (ω))0 := Ỹ0(ω).

Definition 2.12. Given an integrably bounded fuzzy random variable Ỹ associated
with respect to the probability space (Ω,A, P ), then the fuzzy expected value of Ỹ in

Aumann’sense is the unique fuzzy set of R, E∗[Ỹ ] such that for each α ∈ [0, 1]:(
E∗[Ỹ ]

)
α

=

{∫
Ω

f(ω) dP (ω) | f : Ω −→ R, f ∈ L1(P ), f(ω) ∈ (Ỹ (ω))α a.s. [P ]

}
. (3)
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3. MARKOV DECISION PROCESSES WITH TOTAL REWARD

Let (X,A, {A(i) | i ∈ X}, P,R) be the usual discrete-time Markov decision model (see
[16] and [19]), where both the state space X and the decision/control space A are finite
sets. For each i ∈ X, A(i) ⊂ A, A(i) 6= ∅, is the subset of admissible actions in the
state i. Let K := {(i, a) | i ∈ X, a ∈ A(i)}. P = [pij(a)] is the controlled transition law
on X given K, and for each (i, a) ∈ K, pij(a) ≥ 0 and

∑
j∈X pij(a) = 1. Finally, the

reward per-stage R is a real-valued function on K.

Strategies
A decision strategy π is a (possibly randomized) rule for choosing actions, and at each
time t (t = 0, 1, . . . , ) the decision prescribed by π may depend on the current state as
well as on the history of the previous states and actions. The set of all strategies will
be denoted by Π. Given an initial state i ∈ X and π ∈ Π there is a canonical space
(Ω,A, Pi,π) with the corresponding state-action process {(xt, at)} (for details, see [16]).
Ei,π denotes the expectation operator with respect to the probability measure Pi,π, and
the stochastic process {xt} will be called Markov decision process. F denotes the set of
functions f : X → A such that f(i) ∈ A(i) for all i ∈ X. A strategy π ∈ Π is stationary
if there exists f ∈ F such that, under π, the action f(xt) is applied at each time t. The
class of stationary strategies is naturally identified with F.

Optimality Criterion
Given π ∈ Π and initial state x0 = i ∈ X, let

V (i, π) = Ei,π

[ ∞∑
t=0

R(xt, at)
]

(4)

be the expected total reward when using the strategy π, given the initial state i. Fur-
thermore, the T -stage reward is defined as follows:

VT (i, π) := Ei,π

[
T−1∑
t=0

R(xt, at)

]
. (5)

A strategy πo is said to be optimal if V (i, πo) = Vo(i) for all i ∈ X, where

Vo(i) = sup
π∈Π

V (i, π), (6)

i ∈ X. Vo defined in (6) is called the optimal value function.

Assumption 3.1. 1. For each (i, a) ∈ K, R(i, a) ≥ 0.

2. Vo(i) <∞, for each i ∈ X.
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Lemma 3.2. (Puterman [16], Ross [18])

a) The optimal value function Vo satisfies the following optimality equation: for each
i ∈ X,

Vo(i) = sup
a∈A(i)

R(i, a) +
∑
j

pij(a)Vo(j)

 .
b) If W : X −→ [0,∞) satisfies that W (i) ≥ supa∈A(i)

[
R(i, a) +

∑
j pij(a)W (j)

]
for

every i ∈ X, then W ≥ Vo.

Lemma 3.3. ([5]) Under Assumption 3.1, there exists an optimal stationary policy fo.

4. MARKOV DECISION PROCESSES WITH FUZZY TOTAL REWARD

Now, the new Markov decision model:(
X,A, {A(i) | i ∈ X}, P, R̃

)
, (7)

will be analyzed. Note that this new Markov decision model has the same state and
action spaces, the same restriction sets, and the same transition probability law as
the Markov decision model described in Section 3. Hence, the sets of stationary and
randomized policies coincide for both models, moreover, for each i ∈ X and π ∈ Π there
is a canonical space (Ω,A, Pi,π) with the corresponding sequences {xt} and {at} of states
and decisions, respectively. Next, the objective function will be established, but firstly
the fuzzy reward function R̃ will be presented in the following assumption.

Assumption 4.1. Let B, C, D, and F be nonnegative numbers such that: 0 ≤ B <
C ≤ D < F . It will be supposed that

R̃(i, a) = R(i, a) (B,C,D, F ) ,

for all i ∈ X and a ∈ A(i), where R : K −→ R is a reward function as it was considered
in the previous section, and it is also supposed that Assumption 3.1 holds for the model
(X,A, {A(i) | i ∈ X}, P,R).

Remark 4.2. Observe that 0̃ 6∗ R̃(i, a), for all i ∈ X and a ∈ A(i).

Lemma 4.3. Let i ∈ X and π ∈ Π, and let (Ω,A, Pi,π) be the corresponding canonical
space fixed (see Section 3). Let Y be a nonnegative discrete random variable associated

to (Ω,A, Pi,π) such that Ei,π[Y ] exists. Then, Ỹ = Y (B,C,D, F ) is a fuzzy random
variable associated to (Ω,A, Pi,π), and

E∗i,π[Ỹ ] = Ei,π[Y ](B,C,D, F ). (8)
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P r o o f . Take i ∈ X and π ∈ Π. Let Y be a nonnegative discrete random variable with
finite or denumerable range denoted by Y [Ω] = {y1, y2, . . .} and let [Y = yj ] := {ω ∈ Ω |
Y (ω) = yj}, j = 1, 2, . . .. Put Θ = (B,C,D, F ) with α-cuts Θα = [q(α), s(α)], α ∈ [0, 1].
Fix α ∈ [0, 1]. Consider the following multifunction given by

Ỹα(ω) := (Ỹ (ω))α = (Y (ω)Θ)α = Y (ω)[q(α), s(α)],

ω ∈ Ω.
Now, notice that

Gr(Ỹα) = {(ω, x) ∈ Ω× R | x ∈ Ỹα(ω)}
= {(ω, x) ∈ Ω× R | x ∈ Y (ω)[q(α), s(α)]}

=
⋃
j

([Y = yj ]× yj [q(α), s(α)]).

Hence, Gr(Ỹα) ∈ A⊗B(R). Since α is arbitrary, from Definition 2.10 it yields that Ỹ is
a fuzzy random variable. Next, note that, for each ω ∈ Ω,

(Ỹ (ω))0 := Ỹ0(ω) = Y (ω)[B,F ].

Define h : Ω −→ R given by

h(ω) := Y (ω)F,

ω ∈ Ω. Then, trivially:

|x| ≤ h(ω),

(ω, x) ∈ Ω×R with x ∈ Y (ω)[B,F ]. Also, clearly Ei,π[h] = FEi,π[Y ] is finite. Therefore,

from Definition 2.11, Ỹ is an integrably bounded fuzzy random variable with respect to
(Ω,A, Pi,π).

Now, from Definition 2.12, there is a unique fuzzy expected value E∗i,π[Ỹ ] and it is
direct to verify from (3) that, for each α,

(E∗i,π[Ỹ ])α = Ei,π[Y ][q(α), s(α)]

which, for each α, is the α-cut of the trapezoidal number given for

Ei,π[Y ](B,C,D, F ),

that is,

E∗i,π[Ỹ ] = Ei,π[Y ](B,C,D, F ).

�

Lemma 4.4. Suppose that Assumption 4.1 holds. Take i ∈ X and π ∈ Π, and let
(Ω,A, Pi,π) be the corresponding canonical space fixed. Then,
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a) For each T ≥ 0,

S̃T :=

T∑
t=0

R (xt, at) (B,C,D, F ),

is a fuzzy random variable and

E∗i,π

[
S̃T

]
= Ei,π

[
T∑
t=0

R (xt, at)

]
(B,C,D, F ).

b) Define:

Hfinite =

{
ω ∈ Ω |

∞∑
t=0

R (xt, at) (ω) < +∞

}
and

H∞ =

{
ω ∈ Ω |

∞∑
t=0

R (xt, at) (ω) = +∞

}
.

Then, S̃ given by

S̃(ω) =

{∑∞
t=0R (xt, at) (ω)(B,C,D, F ), ω ∈ Hfinite

0̃, ω ∈ H∞
(9)

is a fuzzy random variable, and

E∗i,π[S̃] = Ei,π

[ ∞∑
t=0

R (xt, at)

]
(B,C,D, F ). (10)

P r o o f .

a) Notice that for each T ≥ 0,
∑T
t=0R (xt, at) is a nonnegative discrete random

variable (recall that X and A are finite sets). Consequently, this part a) follows

from Lemma 4.3, with Y =
∑T
t=0R (xt, at).

b) Denote, for each T ≥ 0, ST :=
∑T
t=0R (xt, at), where its finite range is given by

ST [Ω] = {yT1 , yT2 , . . . , yTkT },

and consider the measurable sets [ST = yTj ] := {ω ∈ Ω | Y (ω) = yTj }, j =

1, 2, . . . , kT . Let S =
∑∞
t=0R (xt, at).

Notice that from Assumption 4.1, 0 ≤ Ei,π[S] < ∞ which implies that S is fi-
nite a.s. [Pi,π] (see Exercise 4Q, p. 39 in [3]), that is, the measurable set H∞
satisfies that Pi,π(H∞) = 0. Now, from Lemma 2.8 in [3] it follows that

S̊(ω) =

{
S(ω), ω ∈ Hfinite

0, ω ∈ H∞,
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is measurable, and with this (9) is established as S̃(ω) = S̊(ω)(B,C,D, F ), ω ∈ Ω,
that is

S̃(ω) =

{
S(ω)(B,C,D, F ), ω ∈ Hfinite

0̃, ω ∈ H∞.

Observe that, for ω ∈ Hfinite, i. e. if S(ω) <∞ it results that

lim
t−→∞

R(xt(ω), at(ω)) = 0,

and recalling that X and A are finite sets and R ≥ 0, it follows that there is a
positive integer τ = τ(ω) such that

R(xt(ω), at(ω)) = 0,

for all t > τ , or
S(ω) = Sτ (ω), (11)

and in this case it also holds that:

S̃(ω) = Sτ (ω)(B,C,D, F ).

Now, take into account the multifunction given by

S̃α(ω) := (S̃(ω))α,

ω ∈ Ω.

Firstly, if ω ∈ Ω \H∞ then, for each α,

S̃α(ω) = (S̊(ω)Θ)α = S(ω)[q(α), s(α)],

(recall that Θ = (B,C,D, F ) with α-cuts Θα = [q(α), s(α)], α ∈ [0, 1]). And, from
(11),

ω ∈
kτ⋃
j=1

[Sτ = yτj ].

Thus, if x ∈ S̃α(ω) = S(ω)[q(α), s(α)] then

(ω, x) ∈

+∞⋃
T=0

kT⋃
j=1

([ST = yTj ]× yTj [q(α), s(α)])

 .
Secondly, if ω ∈ H∞, then for each α,

S̃α(ω) = (0̃)α = {0},

hence, if x ∈ {0} it results that

(ω, x) ∈ H∞ × {0}.
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In conclusion,

Gr(S̃α) =
{

(ω, x) ∈ Ω× R | x ∈ S̃α(ω)
}

⊆

+∞⋃
T=0

kT⋃
j=1

([ST = yTj ]× yTj [q(α), s(α)])

 ∪ [H∞ × {0}] .

On the other hand, it is direct to verify that+∞⋃
T=0

kT⋃
j=1

([ST = yTj ]× yTj [q(α), s(α)])

 ∪ [H∞ × {0}] ⊆ Gr(S̃α).

Consequently,

Gr(S̃α) =

+∞⋃
T=0

kT⋃
j=1

([ST = yTj ]× yTj [q(α), s(α)])

 ∪ [H∞ × {0}] .

Therefore, Gr(S̃α) ∈ A⊗B(R). Since α is arbitrary, from Definition 2.10 it yields

that S̃ is a fuzzy random variable. And a proof similar to the one given in Lemma
4.3 to verify formula (8) allows to validate (10).

�
The following lemma is a direct consequence of Lemmas 2.8 and 4.4.

Lemma 4.5. Suppose that Assumption 4.1 holds. Take i ∈ X and π ∈ Π, and let
(Ω,A, Pi,π) be the corresponding canonical space fixed. Then, for each T ≥ 0,

S̃T =

T∑∗

t=0

R̃ (xt, at) =
T∑
t=0

R (xt, at) (B,C,D, F ),

and

E∗i,π

[
T∑∗

t=0

R̃ (xt, at)

]
= Ei,π

[
T∑
t=0

R (xt, at)

]
(B,C,D, F ).

Moreover,

S̃ =

∞∑∗

t=0

R̃ (xt, at) =

{∑∞
t=0R (xt, at) (B,C,D, F )

0̃,
(12)

and

E∗i,π

[ ∞∑∗

t=0

R̃ (xt, at)

]
= Ei,π

[ ∞∑
t=0

R (xt, at)

]
(B,C,D, F ).
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Remark 4.6. a) The (degenerate) case in which in the decision model (7), R̃(i, a)
has a membership function given by:

(R̃(i, a))′(x) =

{
1 if x = R(i, a)

0 if x 6= R(i, a),

for all i ∈ X and a ∈ A(i) implies that R̃ is a fuzzy random variable and

E∗i,π[R̃(xt, at)] = Ei,π[R(xt, at)]1̃,

for all i ∈ X, π ∈ Π, and t ≥ 0.

b) Note that Lemmas 4.4 and 4.5 validate all the fuzzy random variables and their
expectations of this paper.

5. OPTIMAL CONTROL PROBLEM FOR THE FUZZY MODEL

Definition 5.1. For each i ∈ X and π ∈ Π the fuzzy total reward is defined by (12),
and in this case the corresponding fuzzy expectation is given by:

Ṽ (i, π) := E∗i,π

[ ∞∑∗

t=0

R̃ (xt, at)

]
= Ei,π

[ ∞∑
t=0

R (xt, at)

]
(B,C,D, F ). (13)

Now, let i ∈ X and π ∈ Π, and T ≥ 0:

ṼT (i, π) :=

T∑∗

t=0

E∗i,π

[
R̃ (xt, at)

]
, (14)

VT is known as the T -stage fuzzy total reward.

Remark 5.2. Observe that the T -stage fuzzy total reward (see (14)) is a trapezoidal
fuzzy number, specifically,

ṼT (i, π) = (BVT (i, π), CVT (i, π), DVT (i, π), FVT (i, π)) ,

for π ∈ Π and i ∈ X, where VT is the T -stage total crisp reward (see (5)).

Lemma 5.3. Suppose that Assumption 4.1 holds. Then, for each i ∈ X and π ∈ Π,
{ṼT (i, π)}+∞T=0 converges and

Ṽ (i, π) := lim∗T→∞ṼT (i, π)

=

∞∑∗

t=0

E∗i,π

[
R̃ (xt, at)

]
= (BV (i, π), CV (i, π), DV (i, π), FV (i, π)), (15)

where

V (i, π) =

∞∑
t=0

Ei,π [R (xt, at)] ∈ R.
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P r o o f . Let π ∈ Π and i ∈ X be fixed. To simplify the notation, let us denote “V (i, π)”
by “V ” and “VT (i, π)” by “VT ”. Then, the α-cut of (14), is given by

∆T : = (BVT , CVT , DVT , FVT )α

= [B(1− α)VT + αCVT , F (1− α)VT + αDVT ].

Analogously,

∆ : = (BV,CV,DV, FV )α

= [B(1− α)V + αCV, F (1− α)V + αDV ].

Hence, by (2), it is obtained that

d̂(∆T ,∆) = sup
α∈[0,1]

d(∆T ,∆).

Now, due to the identity max(c, b) = (c+ b+ |b− c|)/2 with b, c ∈ R, it yields that

d(∆T ,∆) = (1− α)D(V − VT ) + αC(V − VT ).

Then,

d̂(∆T ,∆) = sup
α∈[0,1]

(V − VT )(D − α(D − C))

= (V − VT )D.
(16)

Therefore, when T goes to infinity in (16), it concludes that

lim
T−→∞

d̂(ṼT , Ṽ ) = lim
T−→∞

(V − VT )D

= 0.

The second equality is a consequence of (4) and (5). �

Now, the fuzzy optimal control problem is as follows: determine πo ∈ Π (if it exists)
such that:

Ṽ (i, π) ≤∗ Ṽ (i, πo), (17)

for all i ∈ X and π ∈ Π. In this case it is possible to write

Ṽ (i, πo) = sup∗π∈ΠṼ (i, π), (18)

i ∈ X and it is said that πo is optimal. Moreover, the function Ṽo(i) = Ṽ (i, πo) for i ∈ X
will be called the fuzzy optimal value function.

Remark 5.4. Using Remarks 2.9 and 4.6 a) it is direct to see that in the (degenerate)

case when in the decision model (7), R̃(i, a) has a membership function given by:

(R̃(i, a))′(x) =

{
1 if x = R(i, a)

0 if x 6= R(i, a),

for all i ∈ X and a ∈ A(i), then the fuzzy optimal control problem described in (17)
and (18) is reduced to the optimal control problem described in (6).
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Lemma 5.5. Suppose that Assumption 4.1 holds. Then, for each i ∈ X, Ṽo(i) is a

bounded function, i. e. there exists K̃ ∈ F(R) such that Ṽo(i) ≤∗ K̃, i ∈ X.

P r o o f . Take i ∈ X fixed. Then, as a consequence of (15), the α-cut of Ṽ (i, π) is given
by

Ṽ (i, π)α = [BV (i, π) + αV (i, π)(C −B), FV (i, π)− αV (i, π)(F −D)],

for each π ∈ Π. Note that because X is finite, it is possible to take K in order to
V (i, π) ≤ K, for all i ∈ X and π ∈ Π. In consequence, observe that for each π ∈ Π :

BV (i, π) + αV (i, π)(C −B) ≤ BK + α(C −B)K,

and

FV (i, π)− αV (i, π)(F −D) ≤ FK(1− α) + αDK

= FK − α(F −D)K.

Consequently, Ṽ (i, π) 6∗ K̃ := (BK,CK,DK,FK), for each π ∈ Π. Therefore,

Ṽo(i) 6∗ K̃ (see (18)). Since i is arbitrary, the result follows.
�

Theorem 5.6. Under Assumption 4.1, the following statements hold.

a) The optimal policy of the fuzzy control problem is the same as the optimal policy
of the standard optimal control problem.

b) The optimal fuzzy value function is given by

Ṽo(i) = (BVo(i), CVo(i), DVo(i), FVo(i)), i ∈ X.

P r o o f .

a) Let π ∈ Π and i ∈ X be fixed. First, observe that (13) is equivalent to

Ṽ (i, π) = (BV (i, π), CV (i, π), DV (i, π), FV (i, π)),

as a consequence of Assumption 4.1. Then, the α-cut of Ṽ (π, x) is given by

Ṽ (π, x)α = [(C −B)V (i, π)α+BV (i, π), FV (i, π)− (F − C)αV (i, π)].

Now, by Lemma 3.3, there exists fo ∈ F such that

(C −B)V (i, π)α+BV (i, π) ≤ (C −B)V (i, fo)α+BV (i, fo).

and
FV (i, π)α− (F − C)αV (i, π) ≤ FV (i, fo)α− (F − C)V (i, fo).

and since i ∈ X and π ∈ Π are arbitrary, the result follows due to (18).

b) By the part a) of this theorem, it follows that

Ṽo(i) = (BV (i, fo), CV (i, fo), DV (i, fo), FV (i, fo)),

for each i ∈ X; hence, it is concluded that

Ṽo(i) = (BVo(i), CVo(i), DVo(i), FVo(i)), i ∈ X.

�
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6. EXAMPLES

6.1. An optimal stopping problem

Section 7.2.8 in [16] presents several optimal stopping problems seen as total reward
MDPs. Here, a similar version of Example 7.2.6 in [16] and its extension to fuzzy envi-
ronment is provided.

Consider a finite Markov chain with state space X
′

= {i1, i2, i3, i4}, and with tran-
sition probability matrix:

P =


0 1/3 2/3 0

4/5 1/5 0 0
1/3 0 1/3 1/3
0 0 0 1

 .
That is, each entry of P describes the transition probability pij , for i, j ∈ X ′

. Suppose
that at each decision epoch, the controller has two admissible actions: to stop(Q) or to
continue(C). For each i ∈ X ′

, A(i) = {C,Q}. Now, choosing C in state i causes the
system to move to state j ∈ X ′

with probability pij , and choosing Q moves the system
to state δ, at which it receives no subsequent rewards. Notice that X = {i1, i2, i3, i4, δ}
and A(δ) = {C}. In particular, suppose that R(i1, Q) = g(i1) = 8, R(i2, Q) = g(i2) = 5,
R(i3, Q) = g(i3) = 3, R(i4, Q) = g(i4) = 0, and R(δ, C) = 0.

The objective is to determine a policy maximizing the expected total reward, under
the assumption that the rewards are received only upon termination. Then, due to
Theorem 7.2.3 (a) in [16], the optimal value function Vo is the minimal solution in the
class of functions w : X

′ −→ R with w ≥ 0 of the following dynamic programming
equation:

w(i) = max{g(i),
∑
j∈X′

w(j)pij}. (19)

i ∈ X
′

with Vo(δ) = 0. Then, applying the linear programming approach, (19) is
equivalent to the following linear program:

MINIMIZE : w(i1) + w(i2) + w(i3) + w(i4)

subject to

w(i) ≥ g(i), (20)

w(i) ≥
∑
j∈X′

w(j)pij , (21)

i ∈ X ′
. Then, inequalities (20) and (21) are equivalent to

3w(i1)− w(i2)− 2w(i3) ≥ 0,

w(i2)− w(i1) ≥ 0,

2w(i3)− w(i1)− w(i4) ≥ 0,



MDPs on finite spaces with fuzzy total reward 195

w(i1) ≥ 8, w(i2) ≥ 5, w(i3) ≥ 3, w(i4) ≥ 0.

Applying the simplex algorithm, it is obtained that the optimal solution is Vo(i1) = 8,
Vo(i2) = 8, Vo(i3) = 4 and Vo(i4) = 0. Consequently, from Theorem 7.2.22 b) in [16],
the optimal stationary policy fo is given by:

fo(i) =

{
Q if i ∈ {i1, i4}
C if i ∈ {i2, i3}.

(22)

Now, consider the following trapezoidal fuzzy reward function:

R̃(i, Q) = (0,
9

10
R(i, Q),

11

10
R(i, Q), 2R(i, Q)),

i ∈ X ′
with the interpretation that the trapezoidal number (0, 0, 0, 0) is equal to 0̃, and

R̃(δ, C) = 0̃.
Concretely, for the decision Q the fuzzy rewards are given by:

• R̃(i1, Q) = (0, 7.2, 8.8, 16),

• R̃(i2, Q) = (0, 4.5, 5.5, 10),

• R̃(i3, Q) = (0, 2.7, 3.3, 6),

• R̃(i4, Q) = 0̃.

Remark 6.1. Note that, for instance, R̃(i1, Q) = (0, 7.2, 8.8, 16) models the fact that
in state i1, the reward received only upon termination is approximately in the interval
[7.2, 8.8] instead of receiving the exact quantity of g(i1) = 8 in the standard MDP; the
rest of the fuzzy rewards have a similar interpretation.

Now, applying Theorem 5.6, the optimal policy of the fuzzy control problem is the
same as the optimal policy fo of the optimal control problem given in (22), and the
optimal fuzzy value function is given by:

Ṽo(i) = (0,
9

10
Vo(i),

11

10
Vo(i), 2Vo(i)),

i ∈ X ′
. And,

Ṽo(δ) = 0.

Consequently,

• Ṽo(i1) = (0, 7.2, 8.8, 16),

• Ṽo(i2) = (0, 7.2, 8.8, 16),

• Ṽo(i3) = (0, 3.6, 4.4, 8),

• Ṽo(i4) = 0̃.
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6.2. A red-black model

The first part of this subsection is based on [19], pp. 76–83, and later the fuzzy extension
is provided.

An individual possessing i dollars enters a gambling casino that allows any bet as
follows: If you possess i dollars, then you are allowed to bet any positive integer less
than or equal to i. Furthermore, if you bet j then you either

(a) win j with probability p or

(b) lose j with probability 1− p.

The question established in [19] is: What gambling strategy maximizes the probability
that the individual will attain a fortune of N before going broke? The answer to this
question fits the framework of the MDPs with the total reward given in Section 3, where
the state is the gamblers’ fortunes, since if it is supposed that a terminal reward of 1 is
earned if we ever reach the state N and all other rewards are zero, then the expected
total reward equals the probability of ever reaching state N . Specifically, this gambling
model is formulated as follows:

Description of the Model

(a) X = {0, 1, . . . , N}, where we say that the state is i when the present fortune is i.

(b) Let [k] be the integer part of k. If the present fortune is i, then it would never pay
to bet more than N − i, that is,

A = {0, 1, . . . , [N/2]}, A(0) = {0}, A(i) = {1, 2, . . . ,min{i,N − i}}, i 6= 0.

(c) pi,i+a(a) = p, pi,i−a(a) = 1− p, pN0(a) = 1, p00(0) = 1.

(d) R(i, a) = 0, i 6= N , a ∈ A(i), and R(N, 0) = 1.

Remark 6.2. Let Ξ be the set of ever reaching the state N . Notice that, for each
strategy π ∈ Π and i ∈ X, V (i, π) = Pi,π(Ξ) (see [19]).

Define the timid strategy τ to be that strategy which always bets 1, and define the
bold strategy β to be the strategy that, if the present fortune is i,

(a) bets i if i ≤ N

2
,

(b) bets N − i if i ≥ N

2

From Proposition 2.1 and Corollary 2.6 in [19] the following lemma is obtained.
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Lemma 6.3.

(a) If p ≥ 1

2
, then τ maximizes the probability of ever attaining a fortune N , i. e., in

this case, Vo(i) = V (i, τ), for all i ∈ X.

(b) If p ≤ 1

2
, then β maximizes the probability of ever attaining a fortune N , i. e., in

this case, Vo(i) = V (i, β), for all i ∈ X.

Now, applying Theorem 5.6, the result on the fuzzy red-black model will be presented.

Theorem 6.4. Suppose that Assumption 4.1 holds.

(a) If p ≥ 1

2
, then Ṽ (i, π) ≤∗ Ṽ (i, τ), for all π ∈ Π and i ∈ X. Therefore, τ is optimal

and

Ṽ (i, τ) = (BV (i, τ), CV (i, τ), DV (i, τ), FV (i, τ)) ,

i ∈ X.

(b) If p ≤ 1

2
, then Ṽ (i, π) ≤∗ Ṽ (i, β), for all π ∈ Π and i ∈ X. Therefore, β is optimal

and

Ṽ (i, β) = (BV (i, β), CV (i, β), DV (i, β), FV (i, β)) ,

i ∈ X.

Remark 6.5. Observe that in the non-fuzzy red-black model the gambler's goal is to
reach at the end of the game a certain fortune N . Now, following the description of the
nonfuzzy red-black model and Assumption 4.1 it is obtained that for the fuzzy model:
R̃(i, a) = 0̃, i 6= N , a ∈ A(i), and R̃(N, 0) = (B,C,D, F ); therefore, taking C ≤ N ≤ D,
it could be interpreted that the gambler receives at the end of the game a quantity
between the bounds C and D instead of the gambler getting the exact quantity N as in
the nonfuzzy model.

7. CONCLUSIONS

The theory presented in this article takes into account imprecision or ambiguity in the
reward function resulting in an MDPs theory on finite spaces with a fuzzy total reward
function. This extends the standard MDPs theory on finite spaces and the total reward
criterion. And, with the assumptions for the fuzzy optimal problem provided in the
article, the main consequences obtained are that the optimal policy of the fuzzy problem
coincides with the standard non-fuzzy problem and the fuzzy optimal value function is
of a convenient trapezoidal form. It is relevant to remark that, in the fuzzy version
of the gambling model given, the bold and the timid strategies, which are well-known
in the gambling context, appear as the optimal strategies for the player, and that the
fortune N which at the end of the game the player will receive can be substituted by
the fact that N belongs “approximately in a certain interval”.
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