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Abstract. Given a graph G, let f(G) denote the maximum number of edges in a bipartite
subgraph of G. Given a fixed graph H and a positive integer m, let f(m,H) denote the
minimum possible cardinality of f(G), as G ranges over all graphs on m edges that contain

no copy of H . In this paper we prove that f(m, θk,s) >
1
2m + Ω(m

(2k+1)/(2k+2)), which

extends the results of N.Alon, M.Krivelevich, B. Sudakov. Write K′
k and K′

t,s for the

subdivisions of Kk and Kt,s. We show that f(m,K′
k) >

1
2m + Ω(m

(5k−8)/(6k−10)) and

f(m,K′
t,s) > 1

2m + Ω(m
(5t−1)/(6t−2)), improving a result of Q. Zeng, J.Hou. We also

give lower bounds on wheel-free graphs. All of these contribute to a conjecture of N.Alon,
B. Bollobás, M.Krivelevich, B. Sudakov (2003).
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1. Introduction

The Max-Cut problem asks for the largest bipartite subgraph of a graph. This

problem has been widely studied in both computer science and combinatorics. Given

a graph G, let f(G) denote the maximum number of edges in a bipartite subgraph

of G. Given a positive integer m, let f(m) denote the minimum value of f(G), as G

ranges over all graphs with m edges. In combinatorics, it is an important problem

to estimate lower bounds on f(m) in terms of m. It is well-known that f(m) > 1
2m.

Answering a conjecture of Erdős, Edwards in [8], [9] proved that

(1) f(m) >
m

2
+

√
8m+ 1− 1

8
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for every m and noted that equality holds for complete graphs with the odd order.

More information on f(m) can be found in [1], [3], [5], [6], [17].

One class which has drawn most of the attention is that of H-free graphs. Given

a graphH , let f(m,H) denote the minimum possible cardinality of f(G), asG ranges

over all graphs onm edges that contain no copy of H . The problem of estimating the

error term more precisely is not easy, even for the relatively simple graph H = C3.

After a series of papers by various researchers (see [16], [18]), Alon in [1] proved that

f(m,C3) =
1
2m + Θ(m4/5) for all m. Furthermore, Alon, Krivelevich and Sudakov

in [4] studied the case that H is an even cycle and showed that for any integer k > 2,

there is a positive constant c(k) such that

(2) f(m,C2k) >
m

2
+ c(k)m(2k+1)/(2k+2)

for all m, and that this is tight up to the value of c(k) for k ∈ {2, 3, 5}. The authors
also studied f(m,H) when H is a complete bipartite graph K2,s, showing that for

any integer s > 2, there is a positive constant c(s) such that

(3) f(m,K2,s) >
m

2
+ c(s)m5/6

for all m and that this is tight up to the value of c(s).

Throughout, all graphs are finite, undirected and have no loops or parallel edges.

All logarithms are with the natural base e, unless otherwise indicated. We write θk,s
for the (k, s)-theta-graph, obtained by joining two vertices by s internally vertex-

independent paths of length k. Our first result is an extension of (2) and (3)

to θk,s-free graphs, by noting that θk,2 = C2k and θ2,s = K2,s.

Theorem 1.1. For any positive integers k and s and for allm, there is a constant

c(k, s) > 0 such that

f(m, θk,s) >
m

2
+ c(k, s)m(2k+1)/(2k+2).

In addition, Alon, Bollobás, Krivelevich and Sudakov in [2], [4] made a number of

intriguing conjectures.

Conjecture 1.2 ([2]). For any fixed graph H and all m, there exists a positive

constant ε = ε(H) such that

f(m,H) >
m

2
+ Ω(m3/4+ε).

Conjecture 1.3 ([4]). For any integers s > t > 2 and all m,

f(m,Kt,s) >
m

2
+ Ω(m(3t−1)/(4t−2)).
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We also consider the above conjectures. Note that the ℓ-subdivision of a graph H

is the graph obtained from H by replacing the edges of H with internally disjoint

paths of length ℓ+ 1. When ℓ = 1, we simply talk about the subdivision of H . Our

second result is the following theorem.

Theorem 1.4. Let K ′
k (K

′
t,s, respectively) denote the subdivision of Kk (Kt,s,

respectively).

(i) For any integer k > 3 and all m, there is a constant c(k) such that

f(m,K ′
k) >

m

2
+ c(k)m(5k−8)/(6k−10).

(ii) For any integers s > t > 2 and all m, there is a constant c(s, t) such that

f(m,K ′
t,s) >

m

2
+ c(s, t)m(5t−1)/(6t−2).

Remark 1.5. Both (i) and (ii) slightly improve the result of Zeng and Hou

in [21]: f(m,H) > 1
2m + Ω(m5/6) for the bipartite graph H = H [X,Y ] with the

vertex degree at most 2 for each vertex in Y .

Our last result gives some small progress towards Conjecture 1.2 for wheel graphs.

Theorem 1.6. Let Wr denote the wheel graph obtained by connecting a single

vertex to all vertices of a cycle of length r.

(i) For any even integer r > 4 and all m, there is a constant c(r) > 0 such that

f(m,Wr) >
m

2
+ c(r)m3/4.

(ii) For any odd integer r > 3 and all m, there is a constant c′(r) > 0 such that

f(m,Wr) >
m

2
+ c′(r)m2r/(3r+1)(logm)(r+1)/(3r+1).

2. Preliminaries

In this section we collect some lemmas that will be needed. Given a graph G,

let χ(G) and α(G) denote the chromatic number and independence number of G,

respectively. The following lower bound on f(G) using the chromatic number plays

the key role in our proofs.

Lemma 2.1 ([2]). Let G be a graph with m edges and the chromatic number at

most χ. Then

f(G) >
χ+ 1

2χ
m.
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Lemma 2.1 implies that graphs with small chromatic number must have large

bipartite subgraphs. In the proof of Theorem 1.6 (ii), we mainly show that the

chromatic number of a W2k+1-free graph is relatively small. Indeed, the chromatic

number of a graph is closely related to its independent number. A graph property

is called monotone if it holds for all subgraphs of a graph which has this property.

The next lemma on monotone properties, presented by Jensen and Toft (see [14]),

gives an upper bound on the chromatic number of G with respect to α(G).

Lemma 2.2 ([14]). For s > 1, let ψ : [s,∞) → (0,∞) be a positive continu-

ous nondecreasing function. Suppose that P is a monotone class of graphs such
that α(G) > ψ(|V (G)|) for every G ∈ P with |V (G)| > s. Then for every such G

with |V (G)| > s,

χ(G) 6 s+

∫ |V (G)|

s

1

ψ(x)
dx.

In order to bound χ(G) through Lemma 2.2, we need to bound α(G). Follow-

ing well-known Turán’s lower bound and another two lemmas from [15], [19] are

crucial to us.

Lemma 2.3 (Turán’s lower bound, [20]). Let G be a graph on n vertices with

average degree at most d. Then

α(G) >
n

1 + d
.

Lemma 2.4 ([15]). Let G be a graph on n vertices with the average degree at

most d. If the average degree of the subgraph induced by the neighbourhood of any

vertex is at most a, then

α(G) > nFa+1(d),

where

Fa(x) =

∫ 1

0

(1− t)1/a

a+ (x− a)t
dt >

log(x/a)− 1

x
(x > 0).

Lemma 2.5 ([19]). For any fixed integer k > 1, let G be a K2k+1-free graph

with n vertices and the average degree d > e. Then there exists a constant ak ∈ (0, 14 )

such that

α(G) >
akn log d

d log log d
.

We also need the following two lemmas, which establish the lower bounds on f(G)

for graphs G in terms of different parameters.
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Lemma 2.6 ([11]). Let G be a graph on n vertices with m edges and a positive

minimum degree. Then

f(G) >
m

2
+
n

6
.

Lemma 2.7 ([1]). Let G = (V,E) be a graph with m edges. Suppose U ⊂ V and

let G′ be the induced subgraph of G on U . If G′ has m′ edges, then

f(G) > f(G′) +
m−m′

2
.

We end this section with a result of Alon, Krivelevich and Sudakov (see [4]), which

provides a useful lower bound on the size of a maximum bipartite subgraph in a graph

each vertex of which has a sparse neighbourhood.

Lemma 2.8 ([4]). There exists an absolute positive constant ε such that for every

positive constant C there is a δ = δ(C) > 0 with the following property. Let G be

a graph on n vertices (with positive degrees) with m edges and the degree sequence

d1, d2, . . . , dn. Suppose, further, that the induced subgraph on any set of d > C

vertices, all of which have a common neighbour, contains at most εd3/2 edges. Then

f(G) >
m

2
+ δ

n
∑

i=1

√

di.

3. Bipartite subgraphs of sparse graphs

In this section, we present proofs of Theorems 1.1 and 1.4 using the idea from [1].

3.1. Theta-graph. To prove Theorem 1.1, we employ the following upper bound,

obtained by Faudree and Simonovits (see [12]), on the maximum number of edges in

θk,s-free graphs.

Lemma 3.1 ([12]). Let k and t be two positive integers and let G be a graph

on n vertices. If G is θk,s-free, then there exists a constant b(k, s) such that

e(G) 6 b(k, s)n1+1/k.

P r o o f of Theorem 1.1. Let G be a θk,s-free graph with n vertices and m edges.

We assume that m is sufficiently large in view of (1). Note that a graph is

D-degenerate if every subgraph contains a vertex of degree at most D. Now let

D = µm1/(k+1), where µ = µ(k, s) > 1 will be chosen later.

Claim 3.2. G is D-degenerate.
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P r o o f. Otherwise, suppose that G contains a subgraph G′ with the minimum

degree greater than D. Note that the number of vertices of G′ is N 6 2m/D =

2Dk/µk+1. Thus, the number of edges of G′ is

e(G′) >
1

2
DN >

(1

2
µN

)1+1/k

.

Since G′ is θk,s-free, by Lemma 3.1, there is a constant b = b(k, s) such that e(G′) 6

(bN)1+1/k, which is a contradiction by choosing µ > 2b. This completes the proof

of Claim 3.2. �

Claim 3.3. There exists a positive constant ℓ such that the neighbourhood of

any vertex of degree d > (ℓ/ε)2 in G induces a subgraph with at most εd3/2 edges,

where ε is a constant defined as in Lemma 2.8.

P r o o f. Note that a spider is a rooted tree in which each vertex has degree one

or two, except for the root. A leg of a spider is a path from the root to a vertex

of degree one. Since G is θk,s-free, the neighbourhood of any vertex of degree d

in G cannot contain a spider of s legs such that every leg has length k − 1. As is

well-known, there is a constant ℓ = ℓ(k, s) such that the induced subgraph of G on

the neighbourhood of any vertex with degree d can span at most ℓd edges, which is

smaller than εd3/2 for all d > (ℓ/ε)2. This completes the proof of Claim 3.3. �

By Claim 3.2, it is easy to see that there exists a labelling v1, v2, . . . , vn of the

vertices of G such that d+i 6 D for every i, where d+i denotes the number of neigh-

bours vj of vi with j < i in G. (Indeed, let vn be the vertex of the minimal degree

in G. Thus, the degree of vn is at most D. Delete it from G and repeat the process.)

Clearly,
n
∑

i=1

d+i = m. Let di be the degree of vi in G for each 1 6 i 6 n. Then

n
∑

i=1

√

di >

n
∑

i=1

√

d+i >

∑n
i=1 d

+
i√

q
=

m√
q
=

1√
µ
m(2k+1)/(2k+2).

This, together with Lemma 2.8 by choosing C = (ℓ/ε)2 and Claim 3.3, implies that

f(G) >
m

2
+ δ

n
∑

i=1

√

di >
m

2
+

δ√
µ
m(2k+1)/(2k+2),

where δ = δ(k, s) is a constant, as required. This completes the proof of Theorem 1.1.

�

3.2. The subdivision of Kk and Kt,s. In this short section, we prove Theo-

rem 1.4. The following two lemmas are needed.
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Lemma 3.4 ([13]). Let k > 3 be an integer and let G be a graph on n vertices.

If G is K ′
k-free, then there exists a constant b(k) such that

e(G) 6 b(k)n3/2−1/(4k−6).

Lemma 3.5 ([7]). Let s > t > 2 be two integers and letG be a graph on n vertices.

If G is K ′
t,s-free, then there exists a constant b(t, s) such that

e(G) 6 b(t, s)n3/2−1/(2t).

The proof of Theorem 1.4 is similar to that of Theorem 1.1.

P r o o f of Theorem 1.4. Let H = {K ′
k,K

′
t,s}. For every H ∈ H , let G be

an H-free graph with n vertices and m edges. Define D = µmα for some fixed

real α ∈ (0, 1), where µ = µ(H) > 1 will be chosen later. In the case of (i), we

set α = (k − 2)/(3k − 5), while in the case of (ii), we set α = (t − 1)/(3t − 1).

As before, we can claim that G is D-degenerate. If not, suppose that G contains

a subgraph G′ with the minimum degree greater than D. It follows that the number

of vertices of G′ is N 6 2m1−α/µ. But this is impossible; in view of Lemma 3.4

(or Lemma 3.5), proceed as in the proof of Claim 3.2 for a suitable chosen value

of µ = µ(H). Note that the neighbourhood of a vertex in G is also H-free. Thus,

by Lemma 3.4 (or Lemma 3.5), the induced subgraph of G on any set of common

neighbours of a vertex with degree d can span less than εd3/2 edges. We apply, again,

Lemma 2.8 and conclude that

f(G) >
m

2
+ δ

n
∑

i=1

√

di >
m

2
+
δm√
D

>
m

2
+

δ√
µ
m1−α/2,

where δ = δ(H) is a constant, as required. This completes the proof of Theorem 1.4.

�

4. Bipartite subgraphs of graphs without wheels

In this section, we prove Theorem 1.6. The lower bound for Theorem 1.6 (ii)

appears in Section 4.1 and the lower bound for (i) appears in Section 4.2.

4.1. Odd wheels. Here we study the maximum bipartite subgraphs in graphs

without odd wheels. Let Pt stand for a simple path with t vertices. The following

two results are needed. The first one is the well-known upper bound of Erdős and

Gallai (see [10]) and another one is from [22].
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Lemma 4.1 ([10]). Let t > 2 be an integer and let G be a graph on n vertices.

If G is Pt-free, then e(G) 6
1
2n(t− 2).

Lemma 4.2 ([22]). Let k > 2 be an integer and let G be a graph on n vertices.

If G is C2k+1-free, then

α(G) >
1

5k2
(nk logn)1/(k+1).

First, we apply Lemmas 2.3 and 2.4 to give a lower bound on the independence

number of a W2k+1-free graph.

Lemma 4.3. For any integer k > 2, let G be a W2k+1-free graph on n vertices.

Then

α(G) >
1

15k2
(nk logk+1 n)1/(2k+1).

P r o o f. Let G be a graph with m edges and the maximum degree ∆. Let G′

be the subgraph of G induced by the neighbourhood of any vertex of G with the

maximum degree ∆, and let G′′ be the subgraph of G′ induced by the neighbourhood

of any vertex of G′ with the maximum degree ∆′ in G′. Clearly, G′ is C2k+1-free

and G′′ is P2k-free.

Claim 4.4.

∆ 6 (nk+1 logk n)1/(2k+1).

P r o o f. Otherwise, suppose that ∆ > (nk+1 logk n)1/(2k+1). By Lemma 4.2,

α(G) > α(G′) >
1

5k2
(∆k log∆)1/(k+1)

>
1

15k2
(nk logk+1 n)1/(2k+1).

This gives the desired result and completes the proof of Claim 4.4. �

Claim 4.5.

∆′ 6
1

3k
(nk logk+1 n)1/(2k+1).

P r o o f. Otherwise, suppose that ∆′ > (1/3k)(nk logk+1 n)1/(2k+1). Note that G′′

is P2k-free. By Lemma 4.1, e(G
′′) 6 (2k−2)∆′/2 and hence the average degree of G′′

is at most 2k − 2. It then follows from Lemma 2.3 that

α(G) > α(G′′) >
∆′

2k − 2 + 1
>

1

3k(2k − 1)
(nk logk+1 n)1/(2k+1).

Hence, we get the desired result and complete the proof of Claim 4.5. �

Claim 4.6.
k + 1

2k + 1
logn− log(∆′ + 1)− 1 >

1

15k2
logn.
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P r o o f. It is trivial when ∆′ 6 1, so assume that ∆′ > 2. It follows that ∆′+1 6
3
2∆

′. Thus, it suffices to show that

log n(k+1)/(2k+1) − logn1/(15k2) > log
(3

2
e∆′

)

.

By Claim 4.5, it suffices to verify

n1/(2k+1)−1/(15k2)
>

e

2k
(logn)(k+1)/(2k+1),

which is equivalent to logn 6 lkn
qk , where lk = (2k/e)(2k+1)/(k+1) and qk =

(15k2 − 2k − 1)/(15k2(k + 1)). Let g(x) = log x − lkx
qk . Obviously, g(1) < 0.

Assume that x > 2. Note that g′(x) = x−1(1− lkqkxqk). So we obtain the stationary
point x(k) = (lkqk)

−1/qk . If k = 2, then one can get the value of x(2). It yields that

the maximum value of the function g(x) < 0. If k > 3, then we have x(k) < 2. It

follows that the function g(x) is monotonically decreasing over the interval [2,∞)

and thus g(x) < 0. Hence, we have logn 6 lkn
qk for all n and complete the proof of

Claim 4.6. �

By Claim 4.4, the average degree of G is at most (nk+1 logk n)1/(2k+1). Combining

with Lemma 2.4 and Claim 4.6, we have

α(G) > nF∆′+1((n
k+1 logk n)1/(2k+1)) > n

(k + 1)/(2k + 1) logn− log(∆′ + 1)− 1

(nk+1 logk n)1/(2k+1)

>
1

15k2
(nk logk+1 n)1/(2k+1).

This completes the proof of Lemma 4.3. �

Next, we use Lemmas 2.2 and 4.3 to obtain an upper bound on the chromatic

number of a W2k+1-free graph G in terms of |V (G)|.

Lemma 4.7. For any integer k > 2, let G be a W2k+1-free graph with n vertices.

Then

χ(G) 6 50k2
( n

logn

)(k+1)/(2k+1)

.

P r o o f. It is trivial if n < e2, so we assume that n > e2. Let

ψ(x) =
1

15k2
(xk logk+1 x)1/(2k+1) and τ(x) =

k + 1

2k + 1

(

1− 1

log x

)

.
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Then α(G) > ψ(n) by Lemma 4.3. Note that ψ(x), τ(x) are continuous non-

decreasing functions and τ(x) > 1
4 for x > e2. Thus, by Lemma 2.2,

χ(G) 6 e2 +

∫ n

e2

1

ψ(x)
dx 6 e2 +

15k2

τ(e2)

∫ n

e2

τ(x)

(xk logk+1 x)1/(2k+1)
dx

< e2 + 50k2
( x

log x

)(k+1)/(2k+1)
∣

∣

∣

∣

n

e2
6 50k2

( n

logn

)(k+1)/(2k+1)

.

This completes the proof of Lemma 4.7. �

However, we need the upper bound on the chromatic number of a W2k+1-free

graph G in terms of e(G). Finally, we establish the following theorem, which plays

a key role in the proof of Theorem 1.6 (ii). The approach we take is an extension of

that by [16].

Theorem 4.8. For any integer k > 2, let G be a W2k+1-free graph with m > 1

edges and let ak be an integer described as in Lemma 2.5. Then

χ(G) 6 100(k2 + a−1
k )

(m log logm

log2m

)(k+1)/(3k+2)

.

P r o o f. Let G be a W2k+1-free graph on n vertices with m > 1 edges and let

n′ =
((m log logm)2k+1

logkm

)1/(3k+2)

.

We prove it by a sequence of claims.

Claim 4.9. n > n′.

P r o o f. For otherwise, suppose that n 6 n′. It follows from m > 1 that n >

3 > e. Note that the function g(x) = x/ log x is monotonically increasing over the

interval (e,∞). Thus, by Lemma 4.7,

(4) χ(G) 6 50k2
( n

logn

)(k+1)/(2k+1)

6 50k2
( n′

logn′

)(k+1)/(2k+1)

6 100k2
(m log logm

log2m

)(k+1)/(3k+2)

.

We get the desired result and complete the proof of Claim 4.9. �

We can delete all the vertices with degree zero or one in G, that is, we can assume

that m > n. Now we construct a graph sequence {Gi}i>0 on G according to the

following greedy iterative procedure. Start with i = 0, G0 = G and n0 = |V (G0)|.
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If ni > n′ we do the following iterative procedure, otherwise we stop. Choose Si to

be the maximum independent set of Gi. Then set Gi+1 = Gi \Si, ni+1 = |V (Gi+1)|,
and an increment i. Let Gt be the graph in the end of the process. Clearly, χ(G) 6

χ(Gt) + t.

Claim 4.10.

χ(Gt) 6 100k2
(m log logm

log2m

)(k+1)/(3k+2)

.

P r o o f. Note that Gt isW2k+1-free and nt 6 n′. It is trivial for nt 6 2. If nt > 3,

then by Lemma 4.7 and (4), the desired result follows. This completes the proof of

Claim 4.10. �

In the following, it is sufficient to bound the value of t. We first bound the value

of |Si|. Let l = ⌈ n
n′
⌉. By Claim 4.9, l > 2. Let I = {0, 1, . . . , t− 1}. For each i ∈ I,

we have ni > n′ > n/l by the definition of l. Let v1, . . . , vn0
be a labelling of the

vertices of G0 such that Si = {vp : ni+1 < p 6 ni} for each i ∈ I. Let S be the union

of Si for all i ∈ I and let J = {2, 3, . . . , l}. Thus for each j ∈ J , put

Vj =
{

vp ∈ S :
n

j
< p 6

n

j − 1

}

and Ij =
{

i ∈ I : ni >
n

j

}

.

Observe that S \ St−1 ⊆ ⋃

j∈J

Vj ⊆ S and I2 ⊆ I3 ⊆ . . . ⊆ Il. Hence for each v ∈ Vj ,

there exists an i ∈ Ij such that v ∈ Si. In addition,

(5) |Vj | 6
⌈ n

j − 1
− n

j

⌉

6
2n

j2
.

Claim 4.11. For each i ∈ Ij 6= ∅,

|Si| >
akn

2

2j2m
Q
(2jm

n

)

,

where Q(x) = (log x)/(log log x) for x > e.

P r o o f. For each i ∈ I, we let di denote the average degree of Gi. For each i ∈ Ij ,

observe that di 6 2m/ni 6 2jm/n. If di > e, the function Q(x)/x is decreasing over

the interval (e,∞). Note that Gi is W2k+1-free, so Gi is also K2k+1-free. Thus, from

Lemma 2.5 and the fact di 6 2jm/n, we have

|Si| >
akniQ(di)

di
>
akn

2

2j2m
Q
(2jm

n

)

.

Otherwise, di 6 e. By Lemma 2.3, |Si| > ni/(1 + e) > 1
4ni > n/(4j). This, together

with the fact that x > Q(x) for x > e and ak <
1
4 , implies the required lower bound

as well. We complete the proof of Claim 4.11. �
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Then, for each v ∈ Si and i ∈ I, let w(v) = |Si|−1. Hence for each v ∈ Si ⊂ Vj ,

Claim 4.11 gives that

w(v) = |Si|−1 6
2j2m

akn2Q(2jm/n)
6

2j2m log logm

akn2 log(2jm/n)
,

where the last inequality holds because j 6 l 6 1
2n by the definitions of l and n

′.

Combining the above inequality, the definition of w(v) and (5), we have

(6)

t−1 =
∑

i∈I\{t−1}

∑

v∈Si

w(v)6
∑

j∈J

∑

v∈Vj

w(v)6

l
∑

j=2

|Vj |w(v)6
4m

akn

l
∑

j=2

log logm

log j + log(m/n)
.

Claim 4.12.

t− 1 6
48

ak

(m log logm

log2m

)(k+1)/(3k+2)

.

P r o o f. Recall that l = ⌈ n
n′
⌉, so l − 1 < n/n′ 6 l. Thus, by the definition of n′,

we have

(7) l
m

n
>

n

n′

m

n
=
m

n′
=

( mk+1 logkm

log2k+1 logm

)1/(3k+2)

.

It follows that max{l,m/n} > m(k+1)/(2(3k+2)) and hence

(8) max
{

log l, log
m

n

}

>
k + 1

2(3k + 2)
logm >

logm

6
.

If l < m/n, then combining (6), (7), (8) and the fact l − 1 < n/n′, we have

t− 1 6
4m

akn

l
∑

j=2

log logm

log(m/n)
6

4m(l − 1)

akn

log logm

log(m/n)

6
4m

akn′

log logm

log(m/n)
6

24

ak

(m log logm

log2m

)(k+1)/(3k+2)

.

Otherwise, l > m/n. Delete the second term of the denominator in (6) and obtain

t− 1 6
4m

akn

l
∑

j=2

log logm

log j
6

8m log logm

akn′ log l
<

48

ak

(m log logm

log2m

)(k+1)/(3k+2)

.

Note that the second inequality holds due to the fact that

l
∑

j=2

1

log j
6

∫ l

2

1

log x
dx 6

2(l − 1)

log l
<

2n

n′ log l

and the last inequality follows from (7) and (8). This completes the proof of

Claim 4.12. �
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Combining Claims 4.10 and 4.12 and noting that χ(G) 6 χ(Gt) + t, we get the

desired result and complete the proof of Theorem 4.8. �

P r o o f of Theorem 1.6 (ii). Let r > 3 be a fixed integer and let G be a Wr-free

graph with m edges. Note that W3 = K4. Thus, the lower bound for the case r = 3

was already proved in [21]. So we assume that r > 5. Set r=2k+1, ak = a and c′(r)=
1
50 (r

2 + 4a−1)−1. The desired result follows from Lemma 2.1 and Theorem 4.8. �

4.2. Even wheels. In this subsection, we prove Theorem 1.6 (i). We need a result

of Shearer, see [18].

Lemma 4.13 ([18]). For any graph G withm edges and vertex degrees d1, . . . , dn,

we have
n
∑

i=1

√
di > m3/4.

The following fact is also needed. See, e.g., [4] for a proof.

Lemma 4.14. Let G = (V,E) be a graph with m edges and the minimum de-

gree at least mθ for some fixed real θ ∈ (0, 1). Suppose that m is sufficiently large

and the induced subgraph on the neighbourhood of any vertex v ∈ V of degree d

contains fewer than sd3/2 edges for some positive constant s. Then for every con-

stant η ∈ (0, 1), there exists an induced subgraph G′ = (V ′, E′) of G satisfying the

following properties:

(i) G′ contains at least 1
2η

2m edges.

(ii) Every vertex v of degree d in G that lies in V ′ has the degree at least 1
2ηd in G

′.

(iii) Every neighbourhood of the vertex v in V ′ contains at most 2η2sd3/2 edges in G′.

P r o o f of Theorem 1.6 (i). Let r = 2k > 4 be a fixed integer. Let G be

a W2k-free graph with m edges and vertex degrees d1, d2, . . . , dn. If k > 2, then

note that C2k = θk,2, and the neighbourhood of any vertex of G contains no copy

of C2k. By Lemma 3.1, there is a constant b = b(k) such that the neighbourhood of

any vertex of degree d in G spans at most bd1+1/k edges. Combining Lemmas 2.8

and 4.13, the desired result follows.

If k = 2, we aim to employ Lemma 2.8 to get the desired result, but there is an

extra twist. We tacitly assume that m is sufficiently large. If n > 1
2m

3/4, then by

Lemma 2.6, we are done. So assume that n < 1
2m

3/4. As long as there is a vertex of

the degree smaller thanm1/4 in G, delete it. Note that n < 1
2m

3/4, hence this process

terminates after deleting fewer than m1/4n < 1
2m edges. It then terminates with an

induced subgraph G∗ = (V ∗, E∗) of G with at least 1
2m edges and the minimum

degree at least m1/4. Clearly, G∗ is W4-free. Hence, the induced subgraph (of G
∗)

on the neighbourhood of any vertex v of degree d in G∗ is C4-free. By Lemma 3.1,
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there exists a constant b′ > 1 such that this induced subgraph spans at most b′d3/2

edges. Now we apply Lemma 4.14 on G∗ by choosing η < ε2/32b′2, where ε is the

constant from Lemma 2.8. Therefore, we obtain an induced subgraph G′ = (V ′, E′)

of G∗ (and hence of G) with n′ vertices and at least 1
4η

2m edges such that the

induced subgraph on all the neighbours of any vertex of degree d′ in G′ contains at

most ε(d′)3/2 edges in G′. From Lemmas 2.8 and 4.13,

f(G′) >
e(G′)

2
+ δ

n′

∑

i=1

√

di >
e(G′)

2
+ δ(e(G′))3/4 >

e(G′)

2
+ δ

(η2

4

)3/4

m3/4,

where δ = δ(G′) is a constant, as needed. Thus, by Lemma 2.7, we conclude that

f(G) > f(G′) +
m− e(G′)

2
>
m

2
+ cm3/4,

where c = δ(14η
2)3/4. This completes the proof of Theorem 1.6 (i). �
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