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Abstract. Let Cm : y2 = x3 −m2x+ p2q2 be a family of elliptic curves over Q, where m
is a positive integer and p, q are distinct odd primes. We study the torsion part and the
rank of Cm(Q). More specifically, we prove that the torsion subgroup of Cm(Q) is trivial
and the Q-rank of this family is at least 2, whenever m 6≡ 0 (mod 3), m 6≡ 0 (mod 4) and
m ≡ 2 (mod 64) with neither p nor q dividing m.
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1. Introduction

The arithmetic of elliptic curves is one of the most fascinating branches in mathe-

matics which has exciting practical applications, too. In 2002, Brown and Myers in [2]

showed that Em : y2 = x3−x+m2 has trivial torsion whenm > 1, rank (Em(Q)) > 2

if m > 2, and rank (Em(Q)) > 3 for infinitely many values of m. Antoniewicz in [1]

considered the family Cm : y2 = x3 − m2x + 1 and derived a lower bound on the

rank. He showed that rank (Cm(Q)) > 2 for m > 2 and rank (C4k(Q)) > 3 for the

infinite subfamily with k > 1. Later Petra in [9] gave a parametrization on E : Y 2 =

X3 −T 2X +1 of rank at least 4 over the function fields and with the help of this he

found a family of rank not less than 5 over the field of rational functions and a family

of rank not less than 6 over an elliptic curve. Petra again in another work (see [10])

considered E : Y 2 = x3 − x+ T 2, a parametrization of rank not less than 3 over the

function fields and using this he found families of rank not less than 3, 4 over fields

of rational functions. He also obtained a particular elliptic curve with rank r > 11.

More recently, Juyal and Kumar in [5] considered the family Em,p : y2 = x3−m2x+p2

and showed that the lower bound for the rank of Em,p(Q) is 2.
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Extending the study further, we generalize the family Em,p : y2 = x3 −m2x+ p2

by including one more prime q with some conditions on the integer m.

2. Preliminaries

In this section we recall some basic facts in the theory of elliptic curves and fix

the notations along the way.

Throughout this article, we denote by Cm the family of elliptic curves

y2 = x3 −m2x+ p2q2.

2.1. Elliptic curve.

Definition 2.1. Let K be a number field with the characteristic not equal to 2

or 3. An elliptic curve E over K is defined to be an algebraic curve given by

E : y2 = x3 + bx+ c with b, c ∈ K and ∆ = −(4b3 + 27c2) 6= 0.

It is a smooth curve which is encoded in the discriminant ∆ 6= 0 and this also sig-

nifies that x3+bx+c has 3 distinct roots. This ensures that the curve is nonsingular.

Let E(K) denote the set of all K-rational points on E with an additional point O,

‘the point of infinity’, i.e.,

E(K) = {(x, y) ∈ K ×K : y2 = x3 + bx+ c} ∪ {O}.

Proposition 2.1 ([7]). The set E(K) forms a finitely generated abelian group

under ⊕. The point O is the identity under this operation.

The group E(K) is known as the Mordell-Weil group of E over K. The above

result over Q is due to Mordell and that over any number field is due to Weil.

The Mordell-Weil theorem states that

E(K) ∼= E(K)tors × Zr.

Here E(K)tors (the torsion part of E) is finite. It consists of the elements of finite

order on E and the nonzero positive number r is called the rank of E which gives

us the information of how many independent points of infinite order E has. It is

exactly the number of copies of Z in the above theorem.

The structure of the torsion subgroup of an elliptic curve over Q is well understood.

The Mazur in [6] and Nagell-Lutz theorems in [7] provide a complete description of

the torsion subgroup of any elliptic curve over Q. The rank of an elliptic curve is

a measure of the size of the set of rational points. The rank is very difficult to

compute and it is quite mysterious, too. There exists no known procedure which can

compute the rank with surety.
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3. Main result

Now we state the first main result of the paper.

Theorem 3.1. Let

(3.1) Cm : y2 = x3 −m2x+ p2q2

be a family of elliptic curves with p, q are distinct primes and m being a positive

integer. Then

Cm(Q)tors = {O}

and the Q-rank of this family is at least 2, whenever m 6≡ 0 (mod 3), m 6≡ 0 (mod 4)

and m ≡ 2 (mod 64) with neither p nor q dividing m.

Here are the main steps that are used to prove this theorem. Firstly we use

the technique of reduction modulo a prime of an elliptic curve at good reduction

primes, i.e., the primes which do not divide the discriminant of the curve. Then

the application of Theorem 3.2 gives an injective map from the group of rational

torsion points E(Q)tors into the group E(Fp) to arrive onto the result on the torsion

part. Further we show that our family of concern, Cm, has at least two independent

rational points, showing the rank is at least 2. If P = (x, y) is any point on Cm then

the law for doubling a point on an elliptic curve, denoted 2P = (x′, y′), is given by

(3.2) x′ =
x4 +m4 + 2m2x2 − 8p2q2x

4y2
, y′ = −y −

3x2 −m2

2y
(x′ − x).

The following result regarding the restriction of the reduction modulo p map to the

torsion part will be of our use.

Theorem 3.2 ([4], Theorem 5.1). Let E be an elliptic curve over Q. The restric-

tion of the reduction homomorphism rp|E(Q)tors : E(Q)tors → Ep(Fp) is injective for

any odd prime p, where E has a good reduction and r2|E(Q)tors : E(Q)tors → E2(F2)

has the kernel at most Z/2Z when E has a good reduction at 2.

We begin the journey towards the proof of the above result by proving a couple

of lemmas dealing with points of order 2, 3, 5 and 7 of the family of elliptic curves

under consideration. Here for us m 6≡ 0 (mod 4) is a positive integer and p, q will

always be distinct odd primes.

Lemma 3.1. The family Cm(Q) does not have a point of order 2.
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P r o o f. Suppose Cm(Q) has a point A = (x, y) of order 2, then

2A = {O} ⇔ A = −A ⇔ y = 0, x 6= 0.

Therefore, x3−m2x+p2q2 = 0. Since the order of A is finite, so x must be an integer

(by the Nagell-Lutz theorem, see[7]). Thus,

m2 = x2 +
p2q2

x
.

This implies that

x ∈ {±1,±p,±p2,±q,±q2,±pq,±pq2,±p2q,±p2q2}.

Therefore, the possible choices of m2 fall in

{1±p2q2, p2±pq2, p4±q2, q2±p2q, q4±p2, p2q2±pq, p2q4±p} and {p4q2±q, p4q4±1},

which is a contradiction to the fact that m is an integer. �

Lemma 3.2. The family Cm(Q) does not contain a point of order 3.

P r o o f. Suppose on the contrary that it has a point of order 3 and call it A.

Then 3A = {O}, or equivalently, 2A = −A or x-coordinate of (2A) = x-coordinate

of (−A), where A = (x, y), 2A = (x′, y′) (x′ and y′ are given in (3.2)). Simplifying

the value of x′ gives

(3.3) m4 + 6m2x2 − 3x4 − 12p2q2x = 0.

Reducing (3.3) at mod 3, we obtain m4 ≡ 0 (mod 3) and hence m ≡ 0 (mod 3), so

we get a contradiction via m 6≡ 0 (mod 3). �

Let P ∈ Cm(Q) = (x, y), 2P = (x′, y′) (the notations are as before) and then

double 2P , i.e., 4P = (x′′, y′′), where

(3.4) x′′ =
x′4 +m4 + 2m2x′2 − 8p2q2x′

4y′2
, y′′ = −y′ −

3x′2 −m2

2y′
(x′′ − x′).

Lemma 3.3. The family Cm(Q) does not contain a point of order 5.
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P r o o f. Suppose Cm has an order 5 point A. Then 5A = {O}, or equivalently

4A = −A, or x-coordinate of (4A) = x-coordinate of (−A), where A = (x, y),

4A = (x′′, y′′) (x′′ and y′′ are given in (3.4)). Upon simplification after inserting the

value of x′′, we get

(3.5) (x4 +m4 + 2m2x2 − 8p2q2x)4 + 256m4y8

+ 32m2y4(x4 +m4 + 2m2x2 − 8p2q2x)2

− 512p2q2y6(x4 +m4 + 2m2x2 − 8p2q2x)

= 256xy6
[

−2y2 − (3x2 −m2)
(x4 +m4 + 2m2x2 − 8p2q2x

4y2
− x

)]2

.

If x is even and we read (3.5) modulo 4, that would give m ≡ 0, 2 (mod 4). The

case m ≡ 0 (mod 4) is not possible as we have assumed m 6≡ 0 (mod 4). If m ≡ 2

(mod 4), reducing (3.5) at mod 32 we get a contradiction. In the case when x is odd,

again reducing (3.5) modulo 4 gives

(m2 + 1)8 ≡ 0 (mod 4).

This impliesm ≡ 1, 3 (mod 4), which is again not possible as we have assumedm ≡ 2

(mod 4). �

Appealing to the addition law on Cm once more,

6P = 2P ⊕ 4P = (x′′′, y′′′) (say) with x′′′ =
(y′′ − y′)2

(x′′ − x)2
− x′ − x′′.

Here x′′ and y′′ are given in (3.4).

We now proceed to rule out the existence of an order 7 point on Cm.

Lemma 3.4. The family Cm(Q) does not have a point of order 7.

P r o o f. Let A = (x, y) ∈ Cm(Q) be of order 7. Then 7A = {O} ⇔ 6A = −A ⇔

x-coordinate of (6A) = x-coordinate of (−A).

Thereafter performing some elementary simplifications we arrive at

(3.6) 16y2y′4[4y′2 + (3x′2 −m2)(x′′ − x′)]2

− (x′4 +m4 + 2m2x′2 − 8p2q2x′ − 4xy′2)2

× [y′2(x4 +m4 + 2m2x2 − 8p2q2x) + y2(x′4 +m4 + 2m2x′2 − 8p2q2x′)]

= 4xy2y′2(x′4 +m4 + 2m2x′2 − 8p2q2x′ − 4xy′2)2.

We reduce (3.6) modulo 4 to get

(3.7) −(x′4 +m4 + 2m2x′2)2[y′2(x4 +m4 + 2m2x2) + y2(x′4 +m4 + 2m2x′2)]

≡ 0 (mod 4).
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Now two cases can occur:

Case 1 : x ≡ 0 (mod 2). In this case, m ≡ 0, 2 (mod 4). Here we consider two

subcases:

Subcase 1.1 : m ≡ 0 (mod 4). This is not possible because by assumption m 6≡ 0

(mod 4).

Subcase 1.2 : m ≡ 2 (mod 4). As we know x is even and m ≡ 2 (mod 4), then

reducing (3.6) modulo 256, we get a contradiction. Since Z/256Z is not an integral

domain, so for nilpotent elements we also get a contradiction.

Case 2 : x 6≡ 0 (mod 2). In this case x2 ≡ 1 (mod 8) as x is odd. Now reduc-

ing (3.6) modulo 8, we obtain

(3.8) −(x′4 +m4 + 2m2x′2)2[y′2(1 +m4 + 2m2) + y2(x′4 +m4 + 2m2x′2)]

= 4xy2y′2(x′4 +m4 + 2m2x′2)2 (mod 8).

Further from (3.2) we see that

x′ =
1 +m4 + 2m2

4y2
(mod 8), x′2 =

(1 +m4)2 + 4m4 + 4m2(1 +m4)

16y4
(mod 8),

x′4 =
(1 +m4)4

162y8
(mod 8), y′ = −

1

8y3
(3−m2)(m4 + 6m2 − 4x− 3) (mod 8),

y′2 =
1

64y6
(3−m2)2(1 +m4 + 2m2)2 (mod 8).

Now substituting the values of x′, x′2, x′4, y′ and y′2 into (3.8), we get

(3.9) (1 +m4)8[4(3−m2)2(1 +m4 + 2m2)3 + (1 +m4)4] ≡ 0 (mod 8).

Using m ≡ 2 (mod 64) in (3.9) gives 5 ≡ 0 (mod 8), which is not possible. �

4. Proof of Theorem 3.1

We are now in a position to complete the proof of Theorem 3.1.

P r o o f. Before proceeding towards the proof let us recall that 3 mod p is not

a square in (Z/pZ)∗ for p = 5, 7 and 17. The discriminant of Cm is

∆(Cm) = 16(4m6 − 33p4q4).

(I) If p, q 6= 5 andm 6≡ 0 (mod 4) then 5 ∤ ∆(Cm) and thus Cm has a good reduction

at 5. Now two cases may occur while reducing Cm to F5.
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(a) If p2 ≡ 1 (mod 5) then q is q2 ≡ 1, 4 (mod 5) and that implies p2q2 ≡ 1, 4

(mod 5).

(i) When p2q2 ≡ 1 (mod 5), the curve Cm reduces to y
2 = x3 + 1, y2 =

x3 − x+ 1 and y2 = x3 − 4x+1 according to m2 ≡ 0, 1 or 4 (mod 5),

respectively. The corresponding size of Cm(F5) would be 6, 8 and 9.

(ii) When p2q2 ≡ 4 (mod 5), depending upon whether m2 ≡ 0, 1 or 4

(mod 5), the curve Cm reduces to y
2 = x3 + 4, y2 = x3 − x + 4 and

y2 = x3 − 4x + 4, respectively, with the corresponding cardinality of

Cm(F5) being 6, 8 and 9.

(b) Let p2 ≡ 4 (mod 5). This case is analogous to the previous one.

Theorem 3.2 and Lagrange’s theorem tell us that the possible orders of Cm(Q)tors

are 1, 2, 3, 4, 6, 8 and 9 only. Lemmas 3.1 and 3.2 show that Cm(Q) does not have

points of order 2 and 3. Thus, in this case

Cm(Q)tors = {O}.

(II) Let p = 5 or q = 5 (and p 6= q). Let p = 5, then the defining equation of Cm is

y2 = x3 −m2x+ 25q2 and ∆(Cm) = 16(4m6 − 3354q4), respectively.

(a′) If q 6= 7, then utilising the condition m 6≡ 0 (mod 4) would imply 7 ∤

∆(Cm), and thus Cm has a good reduction at 7. Now three cases may

occur while reducing Cm to F7.

(i) If q2 ≡ 1 (mod 7): depending on m2 ≡ 0, 1, 2 or 4 (mod 7), the

curve Cm reduces to y
2 = x3 + 4, y2 = x3 − x + 4, y2 = x3 − 4x + 4

and y2 = x3 − 2x + 4 with the corresponding cardinality of Cm(F7)

being 3, 10, 10 and 10, respectively.

(ii) If q2 ≡ 2 (mod 7): in this case Cm reduces to y2 = x3 + 1, y2 =

x3−x+1, y2 = x3−2x+1 and y2 = x3−4x+1 according tom2 ≡ 0, 1, 2

or 4 (mod 7) with the corresponding cardinality of Cm(F7) being 12,

12, 12 and 12, respectively.

(iii) If q2 ≡ 4 (mod 7): depending upon whetherm2 ≡ 0, 1, 2 or 4 (mod 7),

Cm reduces to y2 = x3 + 2, y2 = x3 − x + 2, y2 = x3 − 2x + 2 and

y2 = x3 − 4x+ 2 with the corresponding cardinality of Cm(F7) being

9, 9, 9 and 9, respectively.

Thus, the possible orders of Cm(Q)tors are 1, 2, 3, 4, 5, 6, 9, 10 and 12. The results

of Lemmas 3.1, 3.2 and 3.3 show that Cm does not have points of order 2, 3 and 5.

Thus, in this case also

Cm(Q)tors = {O}.
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(b′) Let q = 7. In this case, since 17 ∤ ∆, the curve Cm has good reductions

at 17. Now reducing Cm to F17, the curve Cm has various possibilities:

Cm : y2 ≡ x3 + 1, y2 ≡ x3 − x + 1, y2 ≡ x3 − 2x + 1, y2 ≡ x3 − 4x + 1,

y2 ≡ x3 − 8x+1, y2 ≡ x3 − 9x+1, y2 ≡ x3 − 13x+1, y2 ≡ x3 − 15x+1 or

y2 ≡ x3 − 16x+ 1 according to m2 ≡ 0, 1, 2, 4, 8, 9, 13, 15 or 16 (mod 17),

respectively, with the cardinality of Cm(F17) being 18, 14, 16, 25, 21, 19,

24, 24 or 18, respectively.

Hence, the possible orders of Cm(Q)tors are 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 14, 16, 18,

19, 21, 24 or 25. (Mazur’s theorem tells that 14, 18, 19, 21, 24 and 25 cannot be

a possible order, see [6].) Among the rest the only probable value is 1 because of

Lemmas 3.1 3.2, 3.3 and 3.4. Thus,

Cm(Q)tors = {O}.

�

5. The rank of Cm

The rank of an elliptic curve is a major topic of research for many years now but it

is yet to be understood well. In this section we show that our family of concern, Cm,

has at least two independent rational points, showing the rank is at least 2. These

two points are in fact Am = (0, pq) and Bm = (m, pq), and they are in Cm(Q).

We need to show that Am and Bm are linearly independent, i.e., there do not exist

nonzero integers a and b such that

[a]Am + [b]Bm = O,

where [a]Am denotes the a-times addition of Am.

Points of order 2 satisfy y = 0, while points of order 4 satisfy x = 0, so any rational

point (x, y) on Cm such that xy 6= 0 must be of infinite order. Therefore, in our case

the rank of Cm must be at least 1. To show that the rank is 2 we need to recall the

following result.

Theorem 5.1 ([3]). Let E(Q) (or 2E(Q)) be the group of rational points (or dou-

bles of rational points, respectively) on an elliptic curve E, and suppose that E has

trivial rational torsion. Then the quotient group E(Q)/2E(Q) is an elementary

abelian 2-group of order 2r, where r is the rank of E(Q).

Lemma 5.1. Let A = (x′, y′) and B = (x, y) be points in Cm(Q) such that

A = 2B and x′ ∈ Z. Then

⊲ x ∈ Z,

⊲ x ≡ m (mod 2).
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P r o o f. Substituting x = u/s with (u, s) = 1 into (3.2) and after elementary

simplification,

u4 − 4x′u3s+ 2m2u2s2 + (4m2x′ − 8p2q2)us3 + (m4 − 4p2q2x′)s4 = 0.

This relation implies that s | u4, and therefore s = 1. Thus, x ∈ Z. Again, (3.2) can

be written as

(x2 +m2)2 = 4[x′x3 −m2x+ 25p2 + 50p2x],

which implies that 2 | (x2 +m2). Thus, x ≡ m (mod 2). �

Lemma 5.2. The equivalence class [Am] = [(0, pq)] is a nonzero element

of Cm(Q)/2Cm(Q) for any positive integers m with m ≡ 2 (mod 64) and for odd

primes p and q.

P r o o f. Assume Am = 2C for some C = (x, y) ∈ Cm(Q). Thus,

x4 +m4 + 2m2x2 − 8p2q2x

4y2
= 0.

Upon simplification it becomes

(5.1) x4 +m4 + 2m2x2 − 8p2q2x = 0.

Thus,

(5.2) (x2 +m2)2 = 8p2q2x.

The left hand side of (5.2) is a square and so the right hand side would also be

a square. This implies x = 2(k)2 for some k ∈ Z, where (2, k) = 1.

Proof of the fact that (2, k) = 1: Suppose (2, k) 6= 1, then k = 2k1. Now substi-

tuting the value of x = 8k21 into (5.2), we obtain

(5.3) 84k81 + 16m4 + 128k41m
2 = 64k21p

2q2.

The equation (5.3) implies m is a multiple of 4 which is a contradiction to the fact

that m 6≡ 0 (mod 4).

Putting the value of x into equation (5.1), we obtain

(5.4) 16k8 +m4 + 8k4m2 − 16k2p2q2 = 0.

When m ≡ 2 (mod 64) this implies m2 ≡ 4 (mod 64) and m4 ≡ 16 (mod 64). We

read (5.4) modulo 64 to get

k8 + 1 + 2k4 − k2p2q2 ≡ 0 (mod 4).
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Since k is odd and p, q are odd primes, so p2 ≡ 1 (mod 4) and q2 ≡ 1 (mod 4). Using

this we get a contradiction that 3 ≡ 0 (mod 4). Therefore, the above equation has no

solution modulo 64. Hence, this equation has no solution. Therefore, Am 6∈ 2Cm(Q).

�

Lemma 5.3. The equivalence class [Bm] = [(m, pq)] is a nonzero element

of Cm(Q)/2Cm(Q) for positive integers m ≡ 2 (mod 4) and for odd primes p, q.

P r o o f. Assume Bm = (m, pq) = 2C for some C = (x, y) ∈ Cm(Q). Thus, we get

x4 +m4 + 2m2x2 − 8p2q2x

4y2
= m.

Since x ≡ m (mod 2) (using Lemma 5.1), we can write x − m = 2s and after

simplifying we get

(x−m)4 − 4m2(x−m)2 − 8p2q2(x−m)− 12mp2q2 + 4m4 = 0.

Now using x−m = 2s, we have

(2s2 −m2)2 = p2q2(4s+ 3m).

Since the left hand side is a square this implies the right hans side would also be

square so (4s + 3m) = w2 for some w ∈ Z. Since m ≡ 2 (mod 4), this implies

4s+ 3m ≡ 2 (mod 4). So we get into a contradiction by 2 ≡ 0 or 1 (mod 4). �

Lemma 5.4. The equivalence class [Am+Bm] = [(−m,−pq)] is a nonzero element

of Cm(Q)/2Cm(Q) for positive integers m ≡ 2 (mod 16) and odd primes p, q.

P r o o f. Suppose Am + Bm = (−m,−pq) = 2C for some C = (x, y) ∈ Cm(Q).

Thus,
x4 +m4 + 2m2x2 − 8p2q2x

4y2
= −m.

As x ≡ m (mod 2), we can write x−m = 2s and, after simplifying,

(x−m)4 + 8m(x−m)3 + 20m2(x−m)2 + 16m3(x −m)

− 8p2q2(x−m) + 4m4 − 8p2q2m+ 4mp2q2 = 0.

Now using x−m = 2s, we have

(5.5) 4s4 + 16ms3 + 20m2s2 + 8m3s− 4p2q2s+m4 − p2q2m = 0.
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When m ≡ 2 (mod 16) this implies m2 ≡ 4 (mod 16) and m4 ≡ 0 (mod 16). Now

reducing (5.5) modulo 16 gives

4s4 − 4p2q2s− 2p2q2 ≡ 0 (mod 16).

This in turn implies that 2s4 − 2p2q2s − p2q2 ≡ 0 (mod 8). Since p and q are

odd primes so p2 ≡ 1 (mod 8), and q2 ≡ 1 (mod 8) and using this we arrive at

a contradiction. �

If we show that {[O], [Am], [Bm], [Am] + [Bm]} is a subgroup of Cm/2Cm and

Am, Bm are linearly independent points then the proof that rank of Cm(Q) > 2 will

be completed.

Theorem 5.2. Let m is a positive integer such that m 6≡ 0 (mod 3), m 6≡ 0

(mod 4) and m ≡ 2 (mod 64) with p, q being odd primes then the set

{[O], [Am], [Bm], [Am] + [Bm]}

is a subgroup of Cm/2Cm of order 4 with Am = (0, pq), Bm = (m, pq).

P r o o f. From the above we know that [Am] 6=[O], [Bm] 6=[O] and [Am+Bm] 6=[O].

We now assume [Am] = [Bm], then [Am+Bm] = [Am]+[Bm] = [2Am] = [O], which is

not possible. It is easy to show that [Am] and [Am+Bm] are distinct. Similarly [Bm]

and [Am+Bm] are also distinct. Hence, [O], [Am], [Bm] and [Am]+[Bm] are distinct

classes in Cm/2Cm. Thus, this set is a subgroup of order 4 in Cm/2Cm. �

Theorem 5.3. The points Am and Bm are linearly independent in Cm : y2 =

x3−m2x+p2q2 with Am = (0, pq), Bm = (m, pq) and m is a positive integer such that

m 6≡ 0 (mod 3),m 6≡ 0 (mod 4) andm ≡ 2 (mod 64) with p, q being two odd primes.

P r o o f. Assume, on the contrary, aAm + bBm = O, where a and b are integers

and a is minimal. Four cases needed to be considered.

⊲ If a is even and b is odd, then [aAm + bBm] = [O] and in the group Cm/2Cm, we

obtain [Bm] = [O]. Thus, we get a contradiction by Lemma 5.3.

⊲ If a is odd and b is even, then [aAm + bBm] = [O] implies that [Am] = [O] which

is not possible by Lemma 5.2.

⊲ When both a and b are odd, we get [Am+Bm] = O, which contradicts Lemma 5.4.

⊲ If a and b are both even, then writing a = 2a′, b = 2b′, we get

2[a′Am + b′Bm] = [O].

This implies that [a′Am + b′Bm] is a point of order 2. From Lemma 3.1, we get

[a′Am + b′Bm] = [O] and this contradicts the fact that a is minimal. �
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Thus, we have proved that Am and Bm are linearly independent points and Cm/2Cm

contains a subgroup of order 4. Now by Theorem 5.1, the rank r of Cm(Q) is at least 2

for any positive integer m, with m 6≡ 0 (mod 3), m 6≡ 0 (mod 4), m ≡ 2 (mod 64)

and p, q being two odd primes.

Table 1 confirms the results up to certain values of m, p and q. The table shows that

the rank of the elliptic curves considered is not less than 2.

All the computations have been done with the help of SAGE, see [8].

Rank [m,pq]

2 (2, 21)(2, 33)(194, 33)(2, 39)(194, 51)(2, 57)(194, 57)(2, 55)(2, 65),

(2, 85)(2, 95)(194, 91)(130, 119),

(2, 133)(130, 133)(130, 187)(130, 209),

(194, 209),

(2, 247)(194, 247)

3 (2, 15)(130, 21)(194, 21)(194, 39)(2, 51)(130, 51)(2, 35)(194, 65),

(194, 85)(194, 95)(130, 77)(194, 77),

(194, 133)(2, 143)(2, 187)(2, 209),

(2, 91)(2, 221),

(130, 323)

4 (194, 15)(130, 33)(130, 57)(194, 35)(194, 55)(194, 35)(2, 77),

(2, 119)(194, 119)(194, 143),

(194, 221)(194, 323)

5 (194, 187)(2, 323)

Table 1. Rank of Cm(Q) : y2 = x3 −m2x+ p2q2 for some values of m, p and q.

6. Concluding remarks

If we consider a larger family of elliptic curves (say)

Dm : y2 = x3 −m2x+ (pqr)2,

then following our method the number of cases that have to be dealt becomes quite large

and to handle so many cases will be cumbersome to say the least. Another interesting

phenomena, that we observed while computing the ranks, are, that many curves come

out with rank 3. A natural query would be: Does there exist a subfamily consisting of

infinitely many members amongst the members in Cm with the rank at least 3? Now

proving that a certain set of three points is independent amounts to showing that 7

distinct points are not doubles of rational points, see [1].
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