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Abstract. The irregularity of a graph G = (V, E) is defined as the sum of imbalances
|du − dv| over all edges uv ∈ E, where du denotes the degree of the vertex u in G. This
graph invariant, introduced by Albertson in 1997, is a measure of the defect of regularity of
a graph. In this paper, we completely determine the extremal values of the irregularity of
connected graphs with n vertices and p pendant vertices (1 6 p 6 n− 1), and characterize
the corresponding extremal graphs.
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1. Introduction

We consider finite, undirected, and simple graphs throughout this paper. Let G be

a graph with the vertex set V (G) and edge set E(G). For a nonempty set U ⊆ V (G),

denote by G[U ] the graph induced by the vertices in U . Let G−uv denote the graph

obtained from G by deleting an edge uv ∈ E(G), and if vw /∈ E(G), let G + vw

denote the graph obtained from G by adding an edge between the vertices v and w.

For a vertex v in G, denote by NG(v) the set of vertices that are adjacent to v and

by dG(v) the degree of v, which is equal to |NG(v)|. We call v a pendant vertex if
dG(v) = 1. We also write ∆(G) for the maximum degree of the vertices in G and let

∆2(G) := max({dG(v) : v ∈ V (G)} \ {∆(G)}).
A clique (or an independent set) of G is a set of mutually adjacent (or nonadjacent,

respectively) vertices in G. As usual, let Sn and Pn be the star and the path on n

vertices, respectively. For 1 6 k 6 1
2n− 1, we denote by Dn,k the graph obtained by
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joining the centers of Sk+1 and Sn−k−1 with an edge, which is usually named a double

tree, see Figure 1. For 1 6 ω 6 n − 1, let CSn,ω be the graph obtained by joining

each vertex of a clique of order ω with each vertex of an independent set of order

n−ω, which is usually called a complete split graph. We also use Hn,s,t to denote the

graph obtained by joining the center of Ss+1 with each vertex of CSn−s−1,t, where

1 6 s 6 n− 3 and 1 6 t 6 n− s− 2, see Figure 1.
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Figure 1. The graphs Dn,k and Hn,s,t.

In 1997, Albertson in [3] defined the imbalance of an edge e = uv ∈ E(G) as

imbG(e) = |dG(u)− dG(v)| and the irregularity of a graph G as

irr(G) =
∑

e∈E(G)

imbG(e) =
∑

uv∈E(G)

|dG(u)− dG(v)|.

The idea of imbalance of an edge appeared implicitly in [4] where it was related to

Ramsey problems with repeated degrees. For a connected graph G, irr(G) = 0 if

and only if G is regular, and for an irregular graph G, irr(G) is a measure of the

defect of regularity of G. It should be also mentioned that the irregularity of a graph

has found many applications in chemical graph theory, where it was met under the

names the Albertson index (see [11], [19]), the misbalance deg index (see [21]), and

the third Zagreb index, see [8].

For a general graph G on n vertices, Albertson in [3] first gave an asymptotically

tight upper bound: irr(G) 6 1
274n

3. This upper bound was later improved by Abdo

et al. (see [1]) as irr(G) 6 ⌊ 1
3n⌋⌈ 1

32n⌉(⌈ 1
32n⌉ − 1), with the equality holding if and

only if G ∼= CSn,⌊ 1

3
n⌋, see also [20]. Hansen and Mélot in [12] also characterized

the graphs with n vertices and m edges and having the maximal irregularity. Nasiri

and Fath-Tabar in [16] determined all the connected graphs with the second-minimal

irregularity. Henning and Rautenbach in [13] characterized the structure of bipartite

graphs having the maximal irregularity with given sizes of the partite sets and a given

number of edges, they also derived a corresponding result for bipartite graphs with

given sizes of the partite sets and gave an upper bound on the irregularity of these

graphs. Luo and Zhou in [15], [22] determined the maximal values and corresponding
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extremal graphs of the irregularity of several classes of graphs, including the trees and

unicyclic graphs with a fixed matching number or fixed number of pendant vertices.

For some other results about graph irregularity, one can refer to [2], [5], [6], [7], [9],

[10], [14], [17], [18] and the references cited therein.

Figure 2. A graph in Γ̂
(3)
14,6.

In this paper, we focus on the extremal values and the corresponding extremal

graphs of the irregularity of connected graphs with given order and given number of

pendant vertices. For two positive integers n and p with 1 6 p 6 n− 1, let

Γn,p = {G : G is a connected graph of order n with p pendant vertices}.

Note that Γn,n−1 = {Sn} and Γn,n−2 = {Dn,k : 1 6 k 6 1
2n− 1}. Moreover, let

Γ̂(3)
n,p = {G ∈ Γn,p : ∆(G) = 3 and G[V

(3)
G ] is connected},

where V
(i)
G = {v ∈ V (G) : dG(v) = i}, see Figure 2 for illustration. Note that the

graphs in Γ̂
(3)
n,p all have the same irregularity regardless of the distribution of the

vertices of degree 2 and the internal structure, as every path from a pendant vertex

to a degree 3 vertex whose internal vertices are all of degree 2 contributes 2 to the

irregularity. The main results of this paper are as follows:

Theorem 1. Let G ∈ Γn,p, where n and p are positive integers such that 1 6 p 6

n− 1.

(i) If p = n− 1, then

irr(G) 6 n2 − 3n+ 2

with equality if and only if G ∼= Sn.

(ii) If p = n− 2, then

irr(G) 6 n2 − 5n+ 6

with equality if and only if G ∼= Dn,1.

(iii) If 1 6 p 6 n− 3, then

irr(G) 6 k3 − 2(n− p− 2)k2 + [(n− p− 1)(n− p− 4) + 1]k + (n− 2)(n− 1)
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with equality if and only if G ∼= Hn,p,k, where k = max{1, ⌊ 1
3 (n−p−1)⌋−1+ε},

and

⊲ if n− p− 1 ≡ 0 (mod 3), then ε = 0;

⊲ if n− p− 1 ≡ 1 (mod 3), then ε ∈ {0, 1};
⊲ if n− p− 1 ≡ 2 (mod 3), then ε = 1.

Theorem 2. Let G ∈ Γn,p, where n and p are positive integers such that 1 6 p 6

n− 1. If G ≇ Pn, then irr(G) > 2p, with equality if and only if G ∈ Γ̂
(3)
n,p.

The proofs of Theorems 1 and 2 are given in the following section.

2. Proofs

We first present the proof of Theorem 1. To this end, we need to establish two

auxiliary results in advance.

Lemma 3. Let f(x) := x3 − 2(θ − 1)x2 + (θ2 − 3θ + 1)x + (n − 2)(n − 1) be

a continuous function on the closed interval [1, θ], where n and θ are positive integers

such that 3 6 θ 6 n− 2. Then the function f(x) attains its maximum uniquely at

x = max
{
1, 13

(
2θ − 2−

√
θ2 + θ + 1

)}
.

P r o o f. Consider the derivative of the function f(x) on [1, θ],

f ′(x) = 3x2 − 4(θ − 1)x+ θ2 − 3θ + 1,

whose two zero points are

x1 =
2θ − 2−

√
θ2 + θ + 1

3
and x2 =

2θ − 2 +
√
θ2 + θ + 1

3
.

Note that x1 < 1 if 3 6 θ 6 5 and x1 > 1 if 6 6 θ 6 n− 2. Clearly, f(x) must attain

its maximum at 1, θ, x1(> 1), or x2. Moreover, for 3 6 θ 6 n− 2, we have

f(1)− f(θ) = 2(θ2 − 3θ + 2) > 0,

f(1)− f(x2) =
1

27

[
2
(√

θ2 + θ + 1− θ
)
θ2 +

(
51θ + 2

√
θ2 + θ + 1− 159

)
θ

+ 2
(√

θ2 + θ + 1+ 55
)]

> 0,

f(x1)− f(1) =
1

27

[(
2
√
θ2 + θ + 1 + 2θ − 51

)
θ2 +

(
2
√
θ2 + θ + 1 + 159

)
θ

+ 2
(√

θ2 + θ + 1− 55
)]

> 0;
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one might check that the third inequality holds for 3 6 θ 6 12 by direct calculation

and for θ > 13 by the fact that

f(x1)− f(1) >
θ2

27

(
2
√
θ2 + θ + 1 + 2θ − 51

)
>

θ2

27

(
4θ − 51

)
> 0.

This proves that f(x) attains its maximum uniquely at x = max{1, x1}, as desired,
completing the proof of Lemma 3. �

Lemma 4. Let G ∈ Γn,p, where n and p are positive integers such that 1 6 p 6

n− 3. If G has the maximal irregularity, then ∆(G) = n− 1 and ∆2(G) = n− p− 1.

P r o o f. For convenience, let dv = dG(v) for any vertex v ∈ V (G), and let u1

and u2 be two vertices of G such that du1
= ∆(G) and du2

= ∆2(G), respectively.

We first show that ∆(G) = n− 1. By contradiction, we suppose that ∆(G) 6 n− 2.

Clearly, there is a vertex v1 nonadjacent to the vertex u1 (that is, u1v1 /∈ E(G)). We

consider the following two cases:

Case 1 : NG(v1) * NG(u1). In this case, there exists a vertex u /∈ NG(u1) such

that v1u ∈ E(G). Let G1 = G − v1u + u1v1 + u1u. Obviously, G1 has p pendant

vertices. However,

irr(G1)− irr(G) = (du1
+ 2− dv1) + (du1

+ 2− du)− |dv1 − du|
+

∑

x∈NG(u1)

[(du1
+ 2− dx)− (du1

− dx)]

= 4du1
+ 4− dv1 − du − |dv1 − du|

> 4du1
+ 4− 2max{dv1 , du} > 0,

which contradicts the assumption that G has the maximal irregularity.

Case 2 : NG(v1) ⊆ NG(u1). In this case, for any vertex z ∈ NG(v1), we have

dz > 2. We further consider the following subcases.

Subcase 2.1 : dz 6 dv1 for any vertex z ∈ NG(v1). Let G2 = G + u1v1. One can

see that G2 still has p pendant vertices. However, we have

irr(G2)− irr(G) = [(du1
+ 1)− (dv1 + 1)]

+
∑

x∈NG(u1)

[(du1
+ 1− dx)− (du1

− dx)]

+
∑

y∈NG(v1)

[(dv1 + 1− dy)− (dv1 − dy)]

= 2du1
> 0,

which again contradicts the maximality of G.
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Subcase 2.2 : There is (at least) one vertex w ∈ NG(v1) so that dw > dv1 . If dw > 3,

then let G3 = G−v1w+v1u1. Clearly, G3 has p pendant vertices. However, we obtain

irr(G3)− irr(G) = (du1
+ 1− dv1) + [(du1

+ 1)− (dw − 1)]− (du1
− dw)

− (dw − dv1) +
∑

x∈NG(u1)−{w}

[(du1
+ 1− dx)− (du1

− dx)]

+
∑

y∈NG(w)−{u1,v1}

(|dw − 1− dy| − |dw − dy|)

> 2du1
− 2dw + 4 > 0,

a contradiction.

If dw = 2, then dv1 = 1. Suppose that w′ is a vertex in NG(u1) − {w} such
that dw′ > dz for any vertex z ∈ NG(u1) − {w}. Then, we have dw′ > 2 (since

1 6 p 6 n − 3). Let G4 = G − v1w + v1u1 + ww′. Clearly, G4 still has p pendant

vertices. However, we get

irr(G4)− irr(G) = (du1
+ 1− 1) + (du1

+ 1− 2) + [(du1
+ 1)− (dw′ + 1)]

+ (dw′ + 1− 2)− (du1
− dw′)− (du1

− 2)− (2− 1)

+
∑

x∈NG(u1)−{w,w′}

[(du1
+ 1− dx)− (du1

− dx)]

+
∑

y∈NG(w′)−{u1}

(|dw′ + 1− dy| − |dw′ − dy|)

> 2du1
− 2 > 0,

a contradiction as well. This proves that ∆(G) = n− 1.

Since G has p pendant vertices, there is exactly one vertex of degree n − 1 in G.

We further prove that ∆2(G) = n− p− 1. Again by contradiction, we suppose that

∆2(G) 6 n−p−2. Let U = {v ∈ V (G) : dv 6= 1, dv 6= n−1}. Clearly, |U | = n−p−1

and there is a vertex v2 in U nonadjacent to the vertex u2 (that is, u2v2 /∈ E(G)).

We consider the following two cases:

Case 3 : NG(v2) * NG(u2). In this case, there exists a vertex u /∈ NG(u2) such

that v2u ∈ E(G). Let G5 = G − v2u + u2v2 + u2u. Obviously, G5 has p pendant

vertices. However,

irr(G5)− irr(G) = (du2
+ 2− du) + (du2

+ 2− dv2)− |dv2 − du|
+ [n− 1− (du2

+ 2)]− (n− 1− du2
)

+
∑

x∈NG(u2)−{u1}

[(du2
+ 2− dx)− (du2

− dx)]

> 4du2
− 2max{dv2 , du} > 0,

which contradicts the assumption that G has the maximal irregularity.
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Case 4 : NG(v2) ⊆ NG(u2). In this case, let G6 = G − v2w + v2u2, where w ∈
NG(v2)−{u1}. Note that dw > 3 and hence G6 still has p pendant vertices. However,

we obtain

irr(G6)− irr(G) = [du2
+ 1− (dw − 1)] + (du2

+ 1− dv2)− (du2
− dw)

− |dw − dv2 |+ [n− 1− (du2
+ 1)]− (n− 1− du2

)

+ [n− 1− (dw − 1)]− (n− 1− dw)

+
∑

x∈NG(u2)−{u1,w}

[(du2
+ 1− dx)− (du2

− dx)]

+
∑

y∈NG(w)−{u1,u2,v2}

(|dw − 1− dy| − |dw − dy|)

> 2du2
+ 4− 2max{dv2 , dw} > 0,

a contradiction, as desired. This proves that ∆2(G) = n− p− 1.

The proof of Lemma 4 is thus completed. �

We are now ready to give the proof of Theorem 1.

P r o o f of Theorem 1. Clearly, (i) follows from the fact that Γn,n−1 = {Sn}.
For (ii), noting that Γn,n−2 = {Dn,k : 1 6 k 6 1

2n− 1}, we have

irr(G) = 2k2 − 2k(n− 1) + n2 − 3n+ 2 6 n2 − 5n+ 6,

with equality if and only if k = 1, i.e., G ∼= Dn,1.

For (iii), we can suppose that G(∈ Γn,p) has the maximal irregularity. Then we

have the following claim.

Claim 5. G ∼= Hn,p,k, 1 6 k 6 n− p− 2.

P r o o f of Claim 5. By Lemma 4, we know that ∆(G) = n − 1 and ∆2(G) =

n− p− 1. For 1 6 i 6 n− 1, let V
(i)
G = {z ∈ V (G) : dz = i}. It is easy to see that

|V (1)
G | = p and |V (n−1)

G | = 1. Moreover, let q = |V (n−p−1)
G | and let

W = V (G)− (V
(1)
G ∪ V

(n−p−1)
G ∪ V

(n−1)
G ).

Note that 1 6 q 6 n− p− 3 or q = n− p− 1.

If q = n− p− 1, then |W | = n− p− q − 1 = 0 and hence W = ∅; in this case, we
have G ∼= Hn,p,n−p−2.

If q = n−p−3, then |W | = 2. Moreover, since n−p−1 > dz > q+1 = n−p−2 for

any vertex z ∈ W , W must be an independent set, implying that G ∼= Hn,p,n−p−3.

If 1 6 q 6 n − p − 4, then |W | > 3. We can also prove that W must be an

independent set, which implies that G ∼= Hn,p,q. Indeed, by letting u be a vertex
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in W such that du = max{dz : z ∈ W}, we just need to show that du = q + 1. By

contradiction, we can now suppose that du > q + 1. Let W ′ = W − (NG(u) ∪ {u}).
Since q+1 < du < n− p− 1, we have 1 6 |W ′| 6 |W |− 2. We consider the following

two cases.

Case 1 : W ′ is not an independent set. In this case, there is an edge vw such that

v, w ∈ W ′. Let G1 = G−vw+uv. Clearly, G1 still has p pendant vertices. However,

we obtain

irr(G1)− irr(G) = (du + 1− dv)− |dv − dw|
+ [(n− 1− dw + 1)− (n− 1− dw)]

+ [(n− 1− du − 1)− (n− 1− du)]

+ q[(n− p− 1− dw + 1)− (n− p− 1− dw)]

+ q[(n− p− 1− du − 1)− (n− p− 1− du)]

+
∑

x∈NG(u)∩W

[(du + 1− dx)− (du − dx)]

+
∑

y∈NG(w)∩W−{v}

(|dw − 1− dy| − |dw − dx|)

> 2du + 2− 2max{dv, dw}
> 0,

which contradicts the assumption that G has the maximal irregularity.

Case 2 : W ′ is an independent set.

Subcase 2.1 : There is an edge vw such that v ∈ W ′ and w ∈ NG(u) ∩ W . Let

G2 = G− vw + vu. Clearly, G2 has p pendant vertices. However,

irr(G2)− irr(G) = (du + 1− dv) + [(du + 1)− (dw − 1)]− (du − dw)

− |dv − dw|+ (n− 1− du − 1)− (n− 1− du)

+ (n− 1− dw + 1)− (n− 1− dw)

+ q[(n− p− 1− du − 1)− (n− p− 1− du)]

+ q[(n− p− 1− dw + 1)− (n− p− 1− dw)]

+
∑

x∈NG(u)∩W−{w}

[(du + 1− dx)− (du − dx)]

+
∑

y∈NG(w)∩W−{u,v}

(|dw − 1− dy| − |dw − dy|)

> 2du + 4− 2max{dv, dw}
> 0,

which again contradicts the maximality of G.
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Subcase 2.2 : There is no edge vw such that v ∈ W ′ and w ∈ NG(u) ∩ W . If

q < 1
3 (n − p − 1) − 1, let λ = |W ′| and let G3 be the graph obtained from G by

joining the vertex u with each vertex in W ′. Clearly, G3 has p pendant vertices and

du + p+ λ+ 1 = n. However, we get

irr(G3)− irr(G) = [(n− 1− du − λ)− (n− 1− du)]

+ λ[(n− 1− q − 2)− (n− 1− q − 1)]

+ q[(n− p− 1− du − λ)− (n− p− 1− du)]

+ qλ[(n− p− 1− q − 2)− (n− p− 1− q − 1)]

+ λ(du + λ− q − 2)

+
∑

x∈NG(u)∩W

[(du + λ− dx)− (du − dx)]

= λ(2du − 4q + λ− 5)

= λ(n− p− 1 + du − 4q − 5)

> λ[(n− p− 1)− 3q − 3]

> 0,

a contradiction.

If q > 1
3 (n − p − 1)− 1, let G4 be the graph obtained from G by deleting all the

edges of G[W −W ′]. Clearly, G4 still has p pendant vertices. However,

irr(G4)− irr(G) =
∑

w∈W−W ′

q[n− p− 1− (q + 1)− (n− p− 1− dw)]

+
∑

w∈W−W ′

[n− 1− (q + 1)− (n− 1− dw)]

− 1

2

∑

w∈W−W ′

∑

x∈NG(w)∩W

|dw − dx|

>
∑

w∈W−W ′

(q + 1)(dw − q − 1)

− 1

2

∑

w∈W−W ′

(dw − q − 1)[(n− p− 2)− (q + 2)]

=
1

2
[3q − (n− p− 1) + 5]

∑

w∈W−W ′

(dw − q − 1)

> 0,

a contradiction as well. This proves that du = q+1 and hence W is an independent

set, which implies that G ∼= Hn,p,q. Claim 5 thus follows. �
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We next determine the exact value of k such that irr(Hn,p,k) attains its maximum.

If p = n− 3, then by the definition of Hn,p,k, we have 1 6 k 6 n− p− 2 = 1, that

is, k = 1 = max{1, ⌊ 1
3 (n− p− 1)⌋ − 1 + ε}, where ε ∈ {0, 1}.

If 1 6 p 6 n− 4, by setting θ = n− p− 1, we have 3 6 θ 6 n − 2. Moreover, by

some calculations, we have

irr(Hn,p,k) = [n− 1− (n− p− 1)]k + [n− 1− (k + 1)](n− p− 1− k)

+ (n− 1− 1)p+ [(n− p− 1)− (k + 1)](n− p− 1− k)k

= k3 − 2(θ − 1)k2 + (θ2 − 3θ + 1)k + (n− 2)(n− 1)

= f(k),

where f(x) = x3−2(θ−1)x2+(θ2−3θ+1)x+(n−2)(n−1). By Lemma 3, we know

that f(x) attains its maximum uniquely at x = max{1, 13 (2θ − 2−
√
θ2 + θ + 1)}.

When 3 6 θ 6 5, we have 1
3 (2θ− 2−

√
θ2 + θ + 1) < 1 and hence, f(k) attains its

maximum at k = 1 = max{1, ⌊ 1
3 (n− p− 1)⌋ − 1 + ε}, where ε ∈ {0, 1}.

When 6 6 θ 6 n− 2, we have 1
3 (2θ− 2−

√
θ2 + θ + 1) > 1 and hence f(k) attains

its maximum at

q1 =
⌊2θ − 2−

√
θ2 + θ + 1

3

⌋
or q2 =

⌈2θ − 2−
√
θ2 + θ + 1

3

⌉
.

Observing that 1
3 (θ − 3) < 1

3 (2θ − 2 −
√
θ2 + θ + 1) < 1

3 (θ − 5
2 ), we can check that

q1 = ⌊ 1
3θ⌋ − 1 and q2 = ⌊ 1

3θ⌋. Furthermore, we have
⊲ if θ = 3t, then q1 = t− 1, q2 = t, and f(q1)− f(q2) = 2t > 0;

⊲ if θ = 3t+ 1, then q1 = t− 1, q2 = t, and f(q1)− f(q2) = 0;

⊲ if θ = 3t+ 2, then q1 = t− 1, q2 = t, and f(q1)− f(q2) = −2(t+ 1) < 0.

Now, by combining the above arguments, we may conclude that

k =
⌊n− p− 1

3

⌋
− 1 + ε = max

{
1,
⌊n− p− 1

3

⌋
− 1 + ε

}
,

where ε = 0 if n− p− 1 ≡ 0 (mod 3), ε ∈ {0, 1} if n− p− 1 ≡ 1 (mod 3), and ε = 1

if n− p− 1 ≡ 2 (mod 3), as desired.

This completes the proof of Theorem 1. �

P r o o f of Theorem 2. Suppose that G ∈ Γn,p (1 6 p 6 n − 1). For an integer

l > 1, let Q := u0u1 . . . ul be a path of length l in G. We call Q a pendant path of

length l if du0
> 3, dul

= 1, and dui
= 2 for all i with 1 6 i 6 l − 1. It is easy to

check that the contribution of a pendant path Q in G to irr(G) is always du0
− 1.
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On the other hand, since G ≇ Pn, every pendant vertex of G uniquely determines

a pendant path of G and vice versa, which yields that there are exactly p pendant

paths in G. Thus, we have

(2.1) irr(G) > p · (du0
− 1) > 2p.

Moreover, noting that all pendant paths (of arbitrary length) have the same

minimal irr-value 2 if and only if their initial vertices have degree 3, we can con-

clude that the equality holds in (2.1) if and only if G has p pendant paths whose

initial vertices have degree 3 and all other vertices not in these p pendant paths

(if exist) have degree 3, that is, G ∈ Γ̂
(3)
n,p.

The proof of Theorem 2 is completed. �
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