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Abstract. We give a concrete description of complex symmetric monomial Toeplitz op-
erators Tzpzq on the weighted Bergman space A2(Ω), where Ω denotes the unit ball or the
unit polydisk. We provide a necessary condition for Tzpzq to be complex symmetric. When
p, q ∈ N2, we prove that Tzpzq is complex symmetric on A2(Ω) if and only if p1 = q2 and
p2 = q1. Moreover, we completely characterize when monomial Toeplitz operators Tzpzq

on A2(Dn) are JU -symmetric with the n× n symmetric unitary matrix U .
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1. Introduction

The general study of complex symmetric operators was initiated by Garcia and

Putinar in [4] and followed up by many mathematicians over the past decade,

see [5], [6], [7] for more details. In particular, weighted shifts play a basic role

in exploring the structure of complex symmetric operators. By using Kakutani’s

unilateral weighted shift operator, Zhu et al. in [17] gave a negative answer to the

question of whether or not the class of complex symmetric operators is norm closed.

Garcia and Poore in [3] solved this problem via the unilateral shift and its adjoint

to construct a different counterexample. Guo et al. in [8] characterized the weighted

shifts with nonzero weights to be norm limits of complex symmetric operators.

As a natural extension of the classical weighted shift, monomial Toeplitz operators

on weighted Bergman spaces enjoy interesting structure and properties. Inspired by

Zhu and Li (see [16]), who completely determined when a weighted shift is com-

plex symmetric, the aim of this paper is to give a characterization of monomial

Toeplitz operators on weighted Bergman spaces being complex symmetric. Note
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that dim kerTzpzq = dimkerTzqzp is a necessary condition for Tzpzq to be complex

symmetric, see [5], Proposition 1 for more details. When n = 1, it is easy to check

that dimkerTzpzq = dim kerTzqzp if and only if p = q (i.e., the symbol function is

radial); it is often called the trivial case. In the higher dimensional case, as we all

know, the problem will become more complicated and difficult. Indeed, when n > 2,

dimkerTzpzq = dim kerTzqzp = ∞ will appear for many different pairs (p, q), thus it
is worth to study the complex symmetry of Toeplitz operators Tzpzq . Throughout

this paper we consider the case n > 2. The reader is referred to [1], [9], [10], [12],

[13], [14], [15] for more results about complex symmetric Toeplitz operators.

Let Bn be the unit ball in Cn. For any t > −1, the weighted Lebesgue measure dυt
is defined by

dυt(z) =
Γ(n+ t+ 1)

n! Γ(t+ 1)
(1− |z|2)tdV (z),

where dV (z) denotes the standard volume measure on Bn. Another domain in Cn

we consider is the unit polydisk Dn, write

dυ(z) =
n
∏

i=1

dA(zi),

where dA is the normalized area measure on the unit disk D.

For the sake of simplicity, letting [n] = {1, 2, . . . , n}, denote Ω as Bn or Dn and

let L2(Ω) be the square integrable function spaces equipped with the corresponding

weighted measure dυt(z) or dυ(z). The weighted Bergman space A
2(Ω) is the closed

subspace of L2(Ω) consisting of all holomorphic functions on Ω. Let P be the pro-

jection from L2(Ω) onto A2(Ω). For ϕ ∈ L∞(Ω), the Toeplitz operator Tϕ on A
2(Ω)

is defined by Tϕ(f) = P (ϕf) for all f ∈ A2(Ω).

A conjugation on a complex Hilbert space H is an anti-linear operator C : H → H
such that C2 = I and 〈Cf, Cg〉 = 〈g, f〉 for all f, g ∈ H. A bounded linear operator T
on H is called complex symmetric if there exists a conjugation C such that TC = CT ∗

(CTC = T ∗), we also say that T is a C-symmetric operator.
Before stating our main theorems, we require a few notations.

Definition 1. Given a tuple p, q ∈ Nn, we say a pair (p, q) is in standard form

if (p, q) satisfies the following conditions:

(1) p− q = (a1, . . . , ak1 ,−ak1+1, . . . ,−ak1+k2 , an−k3+1, . . . , an),

where ai > 0 for 1 6 i 6 k1 + k2, ai = 0 for n− k3 + 1 6 i 6 n. Here k1, k2, k3 may

take 0.
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For any fixed mi ∈ N, i ∈ [n], let

Im1,m2,...,mn
= span{zα1

1 zα2
2 . . . zαn

n : m1a1 6 α1 < (m1 + 1)a1, . . . ,mk1+k2ak1+k2

6 αk1+k2 < (mk1+k2 + 1)ak1+k2 ,mn−k3+1 6 αn−k3+1

< mn−k3+1 + 1, . . . ,mn 6 αn < mn + 1}.

It follows that
⊕

m1,m2,...,mn

Im1,m2,...,mn
= A2(Ω).

Observe that for each pair (p, q) there is a permutation matrix V such that

(V p, V q) is in standard form. For example, if p = (1, 3, 4, 6, 0, 1), q = (3, 2, 5, 4, 0, 2),

let

V =



















0 1 0 0 0 0

0 0 0 1 0 0

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0



















,

then V p = (3, 6, 1, 4, 1, 0), V q = (2, 4, 3, 5, 2, 0) (i.e., (V p, V q) is in standard form).

For a pair (p, q) in standard form, write p = (p1, . . . , pn) = (p(1), . . . , p(3)) with p(j) =

(pk1+...+kj−1+1, . . . , pk1+...+kj
) ∈ Nkj for j = 1, 2, 3. There is a similar notation for q.

Definition 2. Suppose that U1 = (bij)16i,j6n is a symmetric permutation of

diag{eiθ1 , eiθ2 , . . . , eiθn}, where θi ∈ R, i ∈ [n]. We say matrix A = (aij)16i,j6n is

mutually associated with U1 if

aij =

{

0 if bij = 0,

1 if bij = eiθj ,

where j ∈ R, i ∈ [n].

Definition 3. The rising factorial is defined by x(n) = x(x + 1)(x + 2) . . .

(x + n − 1). The falling factorial is defined as x(n) = x(x − 1) . . . (x − n + 1).

Moreover, the rising factorial can be extended to real values of n using the gamma

function provided x and x+ n are real numbers that are nonnegative integers:

x(n) =
Γ(x+ n)

Γ(x)
.

And so can the falling factorial:

x(n) =
Γ(x+ 1)

Γ(x− n+ 1)
.
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The following theorem completely characterizes the complex symmetry of Toeplitz

operators Tzpzq on the weighted Bergman space A2(Ω).

Theorem 4. Let p, q ∈ N2. Then Tzpzq is complex symmetric on A2(Ω) if and

only if p1 = q2 and p2 = q1.

An exact description of complex symmetry of Tzpzq on A2(Ω) (when n > 3)

is difficult, though the property of conjugation C can be given, see Lemma 9.
Following this idea, is it natural to ask when Tzpzq is complex symmetric on

A2(Ω) with some special conjugation? We will answer this question for the case

of A2(Dn).

Consider the anti-linear mapping JU : A2(Dn) → A2(Dn), (JUf)(z) = f(Uz),

where f ∈ A2(Dn), z ∈ Dn, U is a symmetric permutation of diag{eiθ1 , eiθ2 , . . . , eiθn}
with θi ∈ R, i ∈ [n]. Since U is symmetric and unitary, it is easy to check that JU

defines a conjugation on A2(Dn).

The following theorem first investigates when a Toeplitz operator Tzpzq (the

pair (p, q) is in standard form) is complex symmetric for some conjugation JU .

Theorem 5. Let p, q ∈ Nn and (p, q) is in standard form. Then the following

statements are equivalent:

(a) Tzpzq is complex symmetric on A2(Dn) for a conjugation JU .

(b) p = (p(1), p(2), p(3)), q = (A1p(2), A
t
1p(1), p(3)), where A1 ∈ Mk1(C) is a per-

mutation matrix. Moreover, we get all possible matrices U such that Tzpzq is

JU -symmetric with

(2) U =





U1

U t
1

U3



 ,

where U1 ∈ Mk1(C) is a permutation matrix of diag{eiθ1 , . . . , eiθk1 } with
(θ1, . . . , θk1) ∈ Rk1 and U3 ∈ Mk3(C) is a symmetric permutation matrix of

diag{eiθk1+k2+1 , . . . , eiθk1+k2+k3 } with (θk1+k2+1, . . . , θk1+k2+k3) ∈ Rk3 .

Note that Proposition 8 shows that Tzpzq is complex symmetric with JU if and only

if TzV pzV q is complex symmetric with JV tUV , where V is a permutation matrix such

that (V p, V q) is in standard form. For general p, q ∈ Nn, combining Proposition 8

with Theorem 5 we have the following result.

Theorem 6. Let p, q ∈ Nn. Then the following statements are equivalent:

(a) Tzpzq is complex symmetric on A2(Dn) for some conjugation JU .
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(b) card{1 6 i 6 n : pi < qi} = card{1 6 j 6 n : pj > qj} and p = V tAV q, where

V is an n× n permutation matrix such that (V p, V q) is in standard form and

A =





A1

At
1

A3



 ,

where A1 ∈ Mk1(C) is a permutation matrix and A3 ∈ Mk3(C) is a symmetric

permutation matrix.

Moreover, in this case the symmetric unitary matrix V tUV must be of the form (2).

In fact, Theorem 6 provides an easy way to determine whether or not Tzpzq is com-

plex symmetric on A2(Dn) for a conjugation JU . For example, let p = (3, 4, 2, 1, 6, 4),

q = (1, 4, 4, 3, 6, 2), choose a permutation matrix V such that V p = (3, 4, 1, 2, 4, 6),

V q = (1, 2, 3, 4, 4, 6), i.e., (V p, V q) is in standard form. Theorem 6 shows that Tzpzq

is JU symmetric if V
tUV is one of the following forms:



















0 0 eiθ1 0 0 0

0 0 0 eiθ2 0 0

eiθ1 0 0 0 0 0

0 eiθ2 0 0 0 0

0 0 0 0 eiθ3 0

0 0 0 0 0 eiθ4



















,



















0 0 eiθ1 0 0 0

0 0 0 eiθ2 0 0

eiθ1 0 0 0 0 0

0 eiθ2 0 0 0 0

0 0 0 0 0 eiθ3

0 0 0 0 eiθ4 0



















,

where θi ∈ R for i ∈ [4].

2. Some propositions

For p, q ∈ Nn, we write p � q if pi > qi for all i ∈ [n], p � q if pi < qi for some

i ∈ [n], p � q if pi > qi for all i ∈ [n] and there exists j ∈ [n] such that pj > qj ,

|p| = p1 + . . .+ pn.

Let {eα : α ∈ Nn} be an orthonormal basis on A2(Ω). Then

eα =











[Γ(n+ |α|+ t+ 1)

α! Γ(n+ t+ 1)

]1/2

zα if Ω = Bn,

n
∏

i=1

√
αi + 1zα if Ω = Dn

for any α ∈ Nn, z ∈ Ω.

The next lemma will be essential for our main results.

Lemma 7. Let p, q ∈ Nn. Then on A2
t (Ω) the following conclusions hold.
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(i) If Ω = Bn for each α ∈ Nn we have

Tzpzq (eα) =

{

Cp,q
α eα+p−q, α+ p � q,

0, α+ p � q,

where

Cp,q
α =

(α + p)!

Γ(n+ |α|+ |p|+ t+ 1)

√

Γ(n+ |α|+ t+ 1)

α!

√

Γ(n+ |α|+ |p| − |q|+ t+ 1)

(α+ p− q)!
.

(ii) If Ω = Dn for each α ∈ Nn we have

Tzpzq (eα) =

{

Hp,q(α)e
α+p−q, α+ p � q,

0, α+ p � q,

where

Hp,q(α) =

n
∏

i=1

√

(αi + 1)(αi + pi − qi + 1)

αi + pi + 1
.

P r o o f. (i) It follows immediately from [2], Lemma 4 and the fact that ‖zα‖2Bn
=

α! Γ(n+ t+ 1)/Γ(n+ |α|+ t+ 1).

(ii) The proof is obvious from [11], Lemma 2.1 and the fact that ‖zα‖2Dn
=

n
∏

i=1

1/(αi + 1). �

The next proposition provides a unitary equivalence relation for C-symmetric
Toeplitz operators.

Proposition 8. Let p, q ∈ Nn and V be an n×n permutation matrix. Then Tzpzq

is complex symmetric on A2(Ω) with respect to conjugation C if and only if TzV pzV q

is complex symmetric with CV tCCV .

P r o o f. Let CV : A2(Ω) → A2(Ω) be defined by (CV f)(z) = f(V z) for all

f ∈ A2(Ω). Since V is a permutation matrix, a direct calculation shows that

(V z)α = zV
tα ∀α ∈ Nn.

For the case Ω = Bn, a computation using Lemma 7 (i) shows that

CV tTzpzqCV (z
α)

= CV tTzpzq (zV
tα)

= CV t

Γ(n+ |α|+ |p| − |q|+ t+ 1)(V tα+ p)!

Γ(n+ |α|+ |p|+ t+ 1)(V tα+ p− q)!
zV

tα+p−q

=
Γ(n+ |α|+ |p| − |q|+ t+ 1)(V tα+ p)!

Γ(n+ |α|+ |p|+ t+ 1)(V tα+ p− q)!
zα+V (p−q) ∀V tα+ p � q
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and

TzV pzV q (zα) =
Γ(n+ |α|+ |p| − |q|+ t+ 1)(α+ V p)!

Γ(n+ |α|+ |p|+ t+ 1)(α+ V p− V q)!
zα+V (p−q) ∀α+ V p � V q.

Since V tα+ p � q is equivalent to α+ V p � V q, we get that

CV tTzpzqCV = TzV pzV q .

Note that CV is a unitary operator on A2
t (Bn) and CV tCCV is also a conjugation

on A2
t (Bn), the desired result then follows from [4], page 1291. For the case of A

2
t (Dn),

the proof is similar. �

When p � q � 0 or q � p � 0, it follows from [10], Corollary 9 that if Tzpzq

is C-symmetric on A2(Ω), then p = q. If p = q, we know that Tzpzp is complex

symmetric. In fact, consider the conjugation Jf(z) = f(z), f ∈ A2(Ω), z ∈ Ω. It is

easy to check that JTzpzpzα = TzpzpJzα for all α ∈ Nn. In the case p � q and p � q

it remains to be found precisely when Tzpzq is complex symmetric. Thus, the use of

our work will focus on p � q and p � q (i.e., k1, k2 > 1 in Definition 1) in Section 3.

Lemma 9. Let p, q ∈ Nn and (p, q) be in standard form. If Tzpzq is complex

symmetric on A2(Ω) with respect to a conjugation C, then we have

C
(

⊕

min{m1,...,mk1
}=l1

min{mk1+1,...,mk1+k2
}=l2

Im1,...,mn

)

=
⊕

min{m1,...,mk1
}=l2

min{mk1+1,...,mk1+k2
}=l1

Im1,m2,...,mn

for any l1, l2 ∈ N.

P r o o f. For the sake of convenience denote Tzpzq = T , Tzpzq = T ∗. By Lemma 7,

we obtain

T (Im1,m2,...,mn
)

=

{

Im1+1,...,mk1
+1,mk1+1−1,...,mk1+k2

−1,mk1+k2+1,...,mn
, mk1+1, . . . ,mk1+k2 > 0,

0, mk1+1, . . . , or mk1+k2 = 0

and

T ∗(Im1,m2,...,mn
)

=

{

Im1−1,...,mk1
−1,mk1+1+1,...,mk1+k2

+1,mk1+k2+1,...,mn
, m1, . . . ,mk1 > 0,

0, m1, . . . , or mk1 = 0.
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It follows that

kerT =
⊕

min{mk1+1,...,mk1+k2
}=0

Im1,m2,...,mn
, kerT ∗ =

⊕

min{m1,...,mk1
}=0

Im1,m2,...,mn
.

Suppose that T is complex symmetric with conjugation C. Then we have

(3) TC
(

⊕

min{m1,...,mk1
}=0

min{mk1+1,...,mk1+k2
}=0

Im1,...,mn

)

= CT ∗

(

⊕

min{m1,...,mk1
}=0

min{mk1+1,...,mk1+k2
}=0

Im1,m2,...,mn

)

= 0

and

(4) T ∗C
(

⊕

min{m1,...,mk1
}=0

min{mk1+1,...,mk1+k2
}=0

Im1,m2,...,mn

)

= CT
(

⊕

min{m1,...,mk1
}=0

min{mk1+1,...,mk1+k2
}=0

Im1,m2,...,mn

)

= 0.

By (3) and (4), we get

(5) C
(

⊕

min{m1,...,mk1
}=0

min{mk1+1,...,mk1+k2
}=0

Im1,m2,...,mn

)

⊂ kerT ∩ kerT ∗

=
⊕

min{m1,...,mk1
}=0

min{mk1+1,...,mk1+k2
}=0

Im1,m2,...,mn
.

Combining (5) with the property that C2 = I, we conclude that

C
(

⊕

min{m1,...,mk1
}=0

min{mk1+1,...,mk1+k2
}=0

Im1,m2,...,mn

)

=
⊕

min{m1,...,mk1
}=0

min{mk1+1,...,mk1+k2
}=0

Im1,m2,...,mn
.

Let L ∈ N be fixed and, in order to use induction, assume that

(6) C
(

⊕

min{m1,...,mk1
}=l1

min{mk1+1,...,mk1+k2
}=l2

Im1,m2,...,mn

)

=
⊕

min{m1,...,mk1
}=l2

min{mk1+1,...,mk1+k2
}=l1

Im1,m2,...,mn
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for any l1 + l2 6 L. We seek to show that

C
(

⊕

min{m1,...,mk1
}=l1

min{mk1+1,...,mk1+k2
}=l2

Im1,m2,...,mn

)

=
⊕

min{m1,...,mk1
}=l2

min{mk1+1,...,mk1+k2
}=l1

Im1,m2,...,mn

for any l1 + l2 = L+ 1.

Let l1, l2 ∈ N be fixed and note that TC = CT ∗ implies T l+1C = C(T ∗)l+1 for any

l ∈ N. Some calculations give that

T l1+1C
(

⊕

min{m1,...,mk1
}=l1

min{mk1+1,...,mk1+k2
}=l2

Im1,m2,...,mn

)

= C(T ∗)l1+1

(

⊕

min{m1,...,mk1
}=l1

min{mk1+1,...,mk1+k2
}=l2

Im1,m2,...,mn

)

= 0

and

(T ∗)l2+1C
(

⊕

min{m1,...,mk1
}=l1

min{mk1+1,...,mk1+k2
}=l2

Im1,m2,...,mn

)

= CT l2+1

(

⊕

min{m1,...,mk1
}=l1

min{mk1+1,...,mk1+k2
}=l2

Im1,m2,...,mn

)

= 0.

Therefore, we deduce that

(7) C
(

⊕

min{m1,...,mk1
}=l1

min{mk1+1,...,mk1+k2
}=l2

Im1,m2,...,mn

)

⊂ kerT l1+1 ∩ ker(T ∗)l2+1

=
⊕

min{m1,...,mk1
}6l2

min{mk1+1,...,mk1+k2
}6l1

Im1,m2,...,mn
.

Thus, for any l1, l2 with l1 + l2 = L+ 1, we get

(8)

C
(

⊕

min{m1,...,mk1
}=l1

min{mk1+1,...,mk1+k2
}=l2

Im1,m2,...,mn

)

⊂
⊕

min{m1,...,mk1
}6l2

min{mk1+1,...,mk1+k2
}6l1

Im1,m2,...,mn

⊂
⊕

min{m1,...,mk1
}+

min{mk1+1,...,mk1+k2
}6L+1

Im1,m2,...,mn
.
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Observe that
(

⊕

min{m1,...,mk1
}=l1

min{mk1+1,...,mk1+k2
}=l2

Im1,m2,...,mn

)

⊥
(

⊕

min{m1,...,mk1
}+

min{mk1+1,...,mk1+k2
}6L

Im1,m2,...,mn

)

for any l1, l2 with l1 + l2 = L+ 1. Since C preserves orthogonality, we have

C
(

⊕

min{m1,...,mk1
}=l1

min{mk1+1,...,mk1+k2
}=l2

Im1,m2,...,mn

)

⊥ C
(

⊕

min{m1,...,mk1
}+

min{mk1+1,...,mk1+k2
}6L

Im1,m2,...,mn

)

,

then by the induction hypothesis (6) we have

(9)

C
(

⊕

min{m1,...,mk1
}=l1

min{mk1+1,...,mk1+k2
}=l2

Im1,m2,...,mn

)

⊥
(

⊕

min{m1,...,mk1
}+

min{mk1+1,...,mk1+k2
}6L

Im1,m2,...,mn

)

.

By (8) and (9), we get

C
(

⊕

min{m1,...,mk1
}=l1

min{mk1+1,...,mk1+k2
}=l2

Im1,m2,...,mn

)

⊂
⊕

min{m1,...,mk1
}+

min{mk1+1,...,mk1+k2
}=L+1

Im1,m2,...,mn
.

Now by using (7), we obtain that

C
(

⊕

min{m1,...,mk1
}=l1

min{mk1+1,...,mk1+k2
}=l2

Im1,m2,...,mn

)

⊂
(

⊕

min{m1,...,mk1
}+

min{mk1+1,...,mk1+k2
}=L+1

Im1,m2,...,mn

)

∩
(

⊕

min{m1,...,mk1
}6l2

min{mk1+1,...,mk1+k2
}6l1

Im1,m2,...,mn

)

=
⊕

min{m1,...,mk1
}=l2

min{mk1+1,...,mk1+k2
}=l1

Im1,m2,...,mn
.

Similarly, we deduce that

C
(

⊕

min{m1,...,mk1
}=l2

min{mk1+1,...,mk1+k2
}=l1

Im1,m2,...,mn

)

⊂
⊕

min{m1,...,mk1
}=l1

min{mk1+1,...,mk1+k2
}=l2

Im1,m2,...,mn

for any l1, l2 with l1 + l2 = L+ 1. Thus,

C
(

⊕

min{m1,...,mk1
}=l1

min{mk1+1,...,mk1+k2
}=l2

Im1,m2,...,mn

)

=
⊕

min{m1,...,mk1
}=l2

min{mk1+1,...,mk1+k2
}=l1

Im1,m2,...,mn
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for any l1, l2 with l1 + l2 = L+ 1. Hence, an induction argument shows that

C
(

⊕

min{m1,...,mk1
}=l1

min{mk1+1,...,mk1+k2
}=l2

Im1,m2,...,mn

)

=
⊕

min{m1,...,mk1
}=l2

min{mk1+1,...,mk1+k2
}=l1

Im1,m2,...,mn

for any l1, l2 ∈ N. This completes the proof. �

3. Proofs of main results

This entire section is devoted to the proofs of Theorems 4 and 5.

3.1. Proof of Theorem 4. Now we are ready to prove Theorem 4 for the case

of the unit ball Bn.

P r o o f. Since p, q ∈ N2, p � q and q � p, by Proposition 8 there is no loss

of generality in assuming that p1 − q1 > 0, q2 − p2 > 0 and we proceed under

this assumption. Suppose that Tzpzq is complex symmetric with conjugation C. By
Lemma 9 we have

CIl1,l2 = Il2,l1 ∀ l1, l2 ∈ N.

Let l1 ∈ N, l2 ∈ N\{0} be fixed and arbitrarily choose an eα ∈ Il1,l2 . By Lemma 7

we have Tzpzqeα = Cp,q
α eα+p−q. This gives that ‖Tzpzqeα‖2 = (Cp,q

α )2. Hence, we

have

‖Tzpzq |Il1,l2
‖2 = max{(Cp,q

α )2 : l1a1 6 α1 < (l1 + 1)a1, l2a2 6 α2 < (l2 + 1)a2}.

Similarly, we obtain

‖Tzqzp |Il2,l1
‖2 = max{(Cq,p

α )2 : l2a1 6 α1 < (l2 + 1)a1, l1a2 6 α2 < (l1 + 1)a2}.

Since CTzpzq = TzqzpC and C is isometric, it holds that

(10) ‖Tzpzq |Il1,l2
‖2 = ‖Tzqzp |Il2,l1

‖2 ∀ l1 ∈ N, l2 ∈ N \ {0}.

Let

(11) F (α) =

∏2
i=1 αi(pi)

αi(qi)

(2 + |α|+ t)(|p|)(2 + |α|+ t)(|q|)
,

where αi > pi, αi > qi, i = 1, 2. Then we have F (α+p) = (Cp,q
α )2, F (α+q) = (Cq,p

α )2.

Set S(α) =
2
∏

i=1

αi(pi)αi(qi) and Q(α) = (2+ |α|+ t)(|p|)(2+ |α|+ t)(|q|). Obviously,

they are two polynomials in α1, α2 and

∂F (α)

∂αi
=

(∂S(α)/∂αi)Q(α) − S(α)(∂Q(α)/∂αi)

Q(α)2
, i = 1, 2.
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Note that the numerator of ∂F (α)/∂αi is also a polynomial. Then we have

∂F (α)/∂αi > 0 or ∂F (α)/∂αi 6 0 for αi large enough, i.e., F (α) is a monotone

function of αi for αi large enough, where i = 1, 2.

Next we will break the discussion into four cases.

Case 1 : For α1, α2 large enough, the function F (α) is monotone increasing

in α1, α2, respectively. It follows from (10) that ‖Tzpzq |Il1,l2
‖2 = ‖Tzqzp |Il2,l1

‖2
for all l1 ∈ N, l2 ∈ N \ {0}, i.e.,

max{(Cp,q
α )2 : l1a1 6 α1 < (l1 + 1)a1, l2a2 6 α2 < (l2 + 1)a2}
= max{(Cq,p

α )2 : l2a1 6 α1 < (l2 + 1)a1, l1a2 6 α2 < (l1 + 1)a2}.

Note that F (α+p) = (Cp,q
α )2, F (α+q) = (Cq,p

α )2 and the function F (α) is monotone

increasing in α1, α2 when α1, α2 are large enough. Thus, we have

(12) F (l1a1 + p1, l2a2 + p2) = F (l2a1 + q1, l1a2 + q2)

and

(13) F ((l1 + 1)a1 − 1 + p1, (l2 + 1)a2 − 1 + p2)

= F ((l2 + 1)a1 − 1 + q1, (l1 + 1)a2 − 1 + q2)

for any l1, l2 large enough. Since F (α) = S(α)/Q(α), where S(α) and Q(α) are

two polynomials in α1, α2, we can deduce that (12) and (13) hold for any l1 ∈ N,

l2 ∈ N \ {0}.
Combining (11) with (12), we have

∏2
i=1[(liai + 1)(pi)(liai + pi)(qi)]

(3 + l1a1 + l2a2 + t)(|p|)(2 + l1a1 + l2a2 + t+ |p|)(|q|)

=
(l2a1 + 1)(q1)(l1a2 + 1)(q2)(l2a1 + q1)(p1)(l1a2 + q2)(p2)

(3 + l2a1 + l1a2 + t)(|q|)(2 + l2a1 + l1a2 + t+ |q|)(|p|)

for any l1 ∈ N, l2 ∈ N \ {0}.
Comparing the highest degree of l1 and the coefficients of the highest degree of l1

on each side of the above equation, respectively, we have

(14) p1 + q1 = p2 + q2

and
[(l2a2 + p2)!]

2

ap2+q2
1 (l2a2)! (l2a2 + p2 − q2)!

=
[(l2a1 + q1)!]

2

ap1+q1
2 (l2a1)! (l2a1 + q1 − p1)!

866



for any l2 ∈ N \ {0} or write

(15)
[(l2a2 + a2 + p2)!]

2

ap2+q2
1 (l2a2 + a2)! (l2a2 + a2 + p2 − q2)!

=
[(l2a1 + a1 + q1)!]

2

ap1+q1
2 (l2a1 + a1)! (l2a1 + a1 + q1 − p1)!

for any l2 ∈ N. By (11) and (13), we see that

∏2
i=1[(liai + ai)

(pi)(liai + ai + pi)(qi)]

(1 + l1a1 + l2a2 + a1 + a2 + t)(|p|)(l1a1 + l2a2 + a1 + a2 + |p|+ t)(|q|)

=
(l2a1 + a1)

(q1)(l1a2 + a2)
(q2)(l2a1 + a1 + q1)(p1)(l1a2 + a2 + q2)(p2)

(1 + l2a1 + l1a2 + a1 + a2 + t)(|p|)(l2a1 + l1a2 + a1 + a2 + |q|+ t)(|p|)

for any l1 ∈ N, l2 ∈ N \ {0}. Then comparing the coefficients of lp2+q2
1 on each side

of the above equation we obtain

(16)
[(l2a2 + a2 + p2 − 1)!]2

ap2+q2
1 (l2a2 + a2 − 1)! (l2a2 + a2 + p2 − q2 − 1)!

=
[(l2a1 + a1 + q1 − 1)!]2

ap1+q1
2 (l2a1 + a1 − 1)!

for any l2 ∈ N \ {0}. It follows from (15) and (16) that

(l2a2 + a2 + p2)
2

(l2a2 + a2)l2a2
=

(l2a1 + a1 + q1)
2

(l2a1 + a1)l2a1
∀ l2 ∈ N \ {0}.

Straightforward computation shows that

0 = a2(l2a1 + a1 + q1)− a1(l2a2 + a2 + p2) = a2q1 − a1p2 = q1q2 − p1p2,

that is p1p2 = q1q2. Now substituting q2 = p1p2/q1 back into (14), we have

0 = p1q1 + q21 − p2q1 − p1p2 = (p1 + q1)(q1 − p2),

which means that p1 = q2, p2 = q1.

Case 2 : For α1, α2 large enough, the function F (α) is monotone decreasing

in α1, α2, respectively. In this case, by (10) we see that

F ((l1 +1)a1 − 1+ p1, (l2 +1)a2 − 1+ p2) = F ((l2 +1)a1 − 1+ q1, (l1 +1)a2 − 1+ q2)

and

F (l1a1 + p1, l2a2 + p2) = F (l2a1 + q1, l1a2 + q2)

for any l1, l2 large enough. Just like in Case 1, we also get p1 = q2, p2 = q1.
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Case 3 : For α1, α2 large enough, the function F (α) is monotone increasing in α1

and F (α) is monotone decreasing in α2. Then (10) implies that

F ((l1 + 1)a1 − 1 + p1, l2a2 + p2) = F ((l2 + 1)a1 − 1 + q1, l1a2 + q2)

and

F (l1a1 + p1, (l2 + 1)a2 − 1 + p2) = F (l2a1 + q1, (l1 + 1)a2 − 1 + q2)

for any l1, l2 large enough. Using a similar argument as in Case 1, one can prove

that p1 = q2, p2 = q1.

Case 4 : For α1, α2 large enough, the function F (α) is monotone decreasing in α1

and F (α) is monotone increasing in α2. In this case, we have

F (l1a1 + p1, (l2 + 1)a2 − 1 + p2) = F (l2a1 + q1, (l1 + 1)a2 − 1 + q2)

and

F ((l1 + 1)a1 − 1 + p1, l2a2 + p2) = F ((l2 + 1)a1 − 1 + q1, l1a2 + q2)

for any l1, l2 large enough. So it follows from Case 3 that p1 = q2, p2 = q1.

Conversely, if p1 = q2, p2 = q1, then consider the conjugation JUf(z) = f(Uz) for

all f ∈ A2
t (Bn), z ∈ Bn, where U =

(

0 1

1 0

)

. It is easy to check that JUTzpzqzα =

TzqzpJUz
α for all α ∈ Nn, thus Tzpzq is complex symmetric. �

Now we will give the proof of Theorem 4 in the case of the unit polydisk.

P r o o f. First we show that H2
p,q(α), H

2
q,p(α) are monotone increasing functions

of α1, α2 when α1, α2 are large enough. In fact,

∂H2
p,q(α)

∂α1
=

(α2 + 1)(α2 + p2 − q2 + 1)[(p1 + q1)α1 + p21 + p1 − p1q1 + q1]

(α2 + p2 + 1)2(α1 + p1 + 1)3
,

∂H2
p,q(α)

∂α2
=

(α1 + 1)(α1 + p1 − q1 + 1)[(p2 + q2)α2 + p22 + p2 − p2q2 + q2]

(α1 + p1 + 1)2(α2 + p2 + 1)3
.

Thus, ∂H2
p,q(α)/∂αi > 0 for αi large enough, where i = 1, 2, therefore, H2

p,q(α) has

the desired property, the result for H2
q,p(α) can be proved in a similar manner.

Suppose that Tzpzq is C-symmetric. Applying the same reasoning as in Theorem 4
(see the first paragraph and Case 1 of the proof of Theorem 4) for any l1, l2 ∈ N\{0}
we have

(17) H2
p,q(l1a1, l2a2) = H2

q,p(l2a1, l1a2)

and

(18) H2
p·q((l1 + 1)a1 − 1, (l2 + 1)a2 − 1) = H2

q,p((l2 + 1)a1 − 1, (l1 + 1)a2 − 1).
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From Lemma 7 (ii) and (18) we obtain that

[(l1 + 1)a1][(l1 + 2)a1][(l2 + 1)a2]l2a2
[(l1 + 1)a1 + p1]2[(l2 + 1)a2 + p2]2

=
[(l2 + 1)a1]l2a1[(l1 + 1)a2][(l1 + 2)a2]

[(l2 + 1)a1 + q1]2[(l1 + 1)a2 + q2]2
∀ l1, l2 ∈ N \ {0}.

After eliminating the molecules, this simplifies to

0 = [(l1 + 1)a1 + p1][(l2 + 1)a2 + p2]− [(l2 + 1)a1 + q1][(l1 + 1)a2 + q2]

= l1(a1p2 − a2q1) + l2(a2p1 − a1q2) + a1p2 − a2q1 + a2p1 − a1q2 + p1p2 − q1q2

= l1(p1p2 − q1q2) + l2(q1q2 − p1p2) + p1p2 − q1q2 ∀ l1, l2 ∈ N \ {0},

which yields that p1p2 = q1q2.

On the other hand, Lemma 7 (ii), along with (17), gives that

(l1a1 + 1)(l1a1 + a1 + 1)(l2a2 + 1)(l2a2 − a2 + 1)

(l1a1 + p1 + 1)2(l2a2 + p2 + 1)2

=
(l2a1 + 1)(l2a1 − a1 + 1)(l1a2 + 1)(l1a2 + a2 + 1)

(l2a1 + q1 + 1)2(l1a2 + q2 + 1)2
∀ l1, l2 ∈ N \ {0}.

By eliminating the denominators, we have

(19) [l21a
2
1 + (2a1 + a21)l1 + 1 + a1][l

2
1a

2
2 + 2(q2 + 1)a2l1 + (q2 + 1)2]

× [l22a
2
2 + (2a2 − a22)l2 + 1− a2][l

2
2a

2
1 + 2(q1 + 1)a1l2 + (q1 + 1)2]

= [l21a
2
2 + (2a2 + a22)l1 + 1 + a2][l

2
1a

2
1 + 2(p1 + 1)a1l1 + (p1 + 1)2]

× [l22a
2
1 + (2a1 − a21)l1 + 1− a1][l

2
2a

2
2 + 2(p2 + 1)a2l1 + (p2 + 1)2].

Comparing the coefficients of l41 and l42 in (19) we obtain that

(20) (1− a1)(p2 + 1)2 = (1− a2)(q1 + 1)2

and

(21) (1 + a1)(q2 + 1)2 = (1 + a2)(p1 + 1)2,

where a1 = p1 − q1, a2 = q2 − p2.

Subtracting Equations (20) and (21) we get

(1−p1+q1)(p2+1)2−(1+p1−q1)(q2+1)2 = (1−q2+p2)(q1+1)2−(1+q2−p2)(p1+1)2.
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By substituting q2 = p1p2/q1 into this equation and simplifying, we have

0 = − p31p
2
2 + p31p2q1 + p21p

2
2q1 − p21p2q

2
1 − p1p

2
2q

2
1 + p1p2q

3
1

+ p22q
3
1 − p2q

4
1 − p21p

2
2 + p21q

2
1 + p22q

2
1 − q41

= p31p2(q1 − p2) + p21p2q1(p2 − q1)− p1p2q
2
1(p2 − q1)

+ p2q
3
1(p2 − q1) + p21(q

2
1 − p22) + q21(p

2
2 − q21)

= p21p2(q1 − p2)(p1 − q1)− p2q
2
1(p2 − q1)(p1 − q1) + (q21 − p22)(p

2
1 − q21)

= (q1 − p2)(p1 − q1)(p
2
1p2 + p2q

2
1 + p1q1 + q21 + p1p2 + p2q1).

Since (p1 − q1)(p
2
1p2 + p2q

2
1 + p1q1 + q21 + p1p2 + p2q1) 6= 0, it then follows that

p1 = q2, p2 = q1.

Conversely, the idea of the proof is the same as in the unit ball, so we omit the

details. �

3.2. Proof of Theorem 5.

P r o o f. First we show (a) implies (b). Suppose that Tzpzq is JU -symmetric,

where U is a symmetric permutation of diag{eiθ1 , eiθ2 , . . . , eiθn}, where θi ∈ R, i ∈ [n],

then we have

JUTzpzqzα = TzqzpJUz
α ∀α ∈ Nn.

Notice that JUz
α = eiθ·αzAα, where matrix A is mutually associated with U .

Using Lemma 7 (ii), some elementary calculations give us that

(22) JUTzpzqzα = JU

( n
∏

i=1

αi + pi − qi + 1

αi + pi + 1

)

zα+p−q

= e−iθ·(α+p−q)

( n
∏

i=1

αi + pi − qi + 1

αi + pi + 1

)

zA(α+p−q) ∀α+ p � q

and

(23) TzqzpJUz
α = e−iθ·αTzqzpzAα

= e−iθ·α

( n
∏

i=1

ασ(i) + qi − pi + 1

ασ(i) + qi + 1

)

zAα+q−p ∀Aα+ q � p,

where Aα = (ασ(1), . . . , ασ(n)), σ is a permutation of [n].
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Let α = (α1, . . . , αn) ∈ Nn with α(2) = q(2) − p(2), αj = 0 for j ∈ [n] \
{k1 + 1, . . . , k1 + k2}, this gives that α + p − q = (p(1) − q(1), 0, . . . , 0). Compar-

ing the degree of z in (22) and (23), we get that

(24) A(p(1) − q(1), p(2) − q(2), 0, . . . , 0) = (q(1) − p(1), q(2) − p(2), 0, . . . , 0).

From Equation (24) we see that

(25)

n
∏

i=1

(αi + pi − qi + 1) =

n
∏

i=1

(ασ(i) + qi − pi + 1).

Let V1 = (p(1) − q(1), p(2) − q(2), 0, . . . , 0), V2 = (q(1) − p(1), q(2) − p(2), 0, . . . , 0), note

that A is a permutation matrix, thus V2 is an elementary row transformation of V1,

then we have

card{1 6 i 6 n : pi < qi} = card{1 6 j 6 n : pj > qj}.

Note that A is a symmetric permutation matrix by Definition 2, this, together

with (24), implies that A must have the following form:

(26) A =





A1

At
1

A3



 ,

where A1 ∈ Mk1(C) is a permutation matrix and A3 ∈ Mk3(C) is a symmetric

permutation matrix. Moreover, we get all possible forms of U such that Tzpzq is

JU -symmetric:

U =





U1

U t
1

U3



 ,

where U1 ∈ Mk1(C) is a permutation of diag{eiθ1 , . . . , eiθk1 } with (θ1, . . . , θk1) ∈ Rk1

and U3 ∈ Mk3(C) is a symmetric permutation of diag{eiθk1+k2+1 , . . . , eiθk1+k2+k3 }
with (θk1+k2+1, . . . , θk1+k2+k3) ∈ Rk3 .

From (24) and (26), we obtain that At
1(p(1)−q(1)) = q(2)−p(2). In addition, by (26)

we have At
1θ(1) = θ(2).

Let α = (α1, . . . , αn) ∈ Nn with α(2) � q(2) − p(2), αj = 0 for j ∈ [n] \
{k1+1, . . . , k1+k2}, this gives that α+p � q and Aα+q � p. Since At

1(p(1)−q(1)) =

q(2) − p(2), we have

e−iθ·(α+p−q) = e−iθ·α+iθ(1)·(q(1)−p(1))+iA1θ(2)·(A1(q(2)−p(2)))

= e−iθ·α+iθ(1)·(q(1)−p(1))+iθ(1)·(p(1)−q(1)) = e−iθ·α.
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Then comparing the coefficients of zAα+q−p in (22) and (23), we see that

(27)

n
∏

i=1

(αi + pi + 1) =

n
∏

i=1

(ασ(i) + qi + 1)

holds for an infinite α ∈ Nn. Observe that both sides of (27) are polynomials in αi,

i ∈ [n], thus Equation (27) holds for any α ∈ Nn, then it is clear that

q(1) = A1p(2), q(2) = At
1p(1),

thus, we get p = (p(1), p(2), p(3)), q = (A1p(2), A
t
1p(1), p(3)), as desired.

Conversely, if p = (p(1), p(2), p(3)), q = (A1p(2), A
t
1p(1), p(3)), where A1 is a k1 × k1

permutation matrix.

Let

A =





A1

At
1

A3



 ,

where A1 ∈ Mk1(C) is a permutation matrix and A3 ∈ Mk3(C) is a symmetric

permutation matrix. It is easy to check that α+ p � q is equivalent to Aα + q � p.

Now let U be a symmetric permutation of diag{eiθ1 , eiθ2 , . . . , eiθn} such that the
above matrix A is mutually associated with U , where θi ∈ R, i ∈ [n]. From the

sufficiency part of the proof of the theorem,

JUTzpzqzα = TzqzpJUz
α ∀α ∈ Nn.

This completes the proof. �

The results in this paper lead us to consider the following problem:

Open question. Let p, q ∈ Nn with n > 3. If Tzpzq is complex symmetric

on A2(Ω) with respect to a conjugation C, what is the relationship between p and q?
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