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Abstract. A group G has the endomorphism kernel property (EKP) if every congruence
relation θ on G is the kernel of an endomorphism on G. In this note we show that all finite
abelian groups have EKP and we show infinite series of finite non-abelian groups which
have EKP.
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1. Introduction

The concept of the (strong) endomorphism kernel property for an universal algebra

has been introduced by Blyth, Fang and Silva in [1] and [3] as follows.

Definition 1.1. An algebra A has the endomorphism kernel property (EKP) if

every congruence relation θ on A different from the universal congruence ιA = A×A

is the kernel of an endomorphism on A.

Let θ ∈ Con(A) be a congruence on A. A mapping f : A → A is said to be

compatible with θ if a ≡ b(θ) implies f(a) ≡ f(b)(θ), it means if it preserves the

congruence θ. An endomorphism of A is called strong if it is compatible with every

congruence θ ∈ Con(A).

The notion of compatibility of functions with congruences has been studied in

various contexts by many authors. We refer to the monograph [16] for an overview.

Compatible functions are sometimes called “congruence preserving functions” or

“functions with substitution property”.
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Definition 1.2. An algebra A has the strong endomorphism kernel property

(SEKP) if every congruence relation θ on A different from the universal congruence ιA
is the kernel of a strong endomorphism on A.

If the algebraA has two or more nullary operations and corresponding elements are

different in A, the universal congruence ιA cannot be the kernel of an endomorphism

and that is the reason why the universal congruence ιA is excluded from the definition

of both EKP and SEKP. It is not necessary to exclude it for algebras with one-element

subalgebras, like groups.

In the original paper [1] Blyth, Fang and Silva proved that finite Boolean algebras,

finite chains as bounded distributive lattices possess EKP, finite bounded distributive

lattice has EKP if and only if it is a product of chains. They also proved a full

characterisation of finite de Morgan algebras having EKP. EKP for finite Stone

algebras has been studied by Gaitan and Cortes in [8], by Guričan in [10]. The

main approach in papers [1] and [8] lies in regarding algebras in question as Ockham

algebras and using the duality theory of Priestley and Urquhart. Another papers

concerning this topic are e.g. [11], [15].

Blyth and Silva considered the case of Ockham algebras and in particular of MS-

algebras in [3]. For instance, a Boolean algebra has SEKP if and only if it has exactly

two elements. A full characterization of MS-algebras having SEKP is provided in [3].

A full characterization of finite distributive double p-algebras and finite double Stone

algebras having SEKP was proved by Blyth, Fang and Wang in [2]. SEKP for

distributive p-algebras and Stone algebras has been studied and fully characterized

by Fang and Fang in [5]. Semilattices with SEKP were fully described by Fang

and Sun in [6]. Guričan and Ploščica described unbounded distributive lattices with

SEKP in [13]. Halušková described monounary algebras with SEKP in [14]. Double

MS-algebras with SEKP were described by Fang in [4]. Guričan proved in [12] that

all finite relative Stone algebras have SEKP. Finite abelian groups with SEKP were

described by Fang and Sun in [7].

2. Preliminaries

We shall start with an obvious characterization of EKP.

Theorem 2.1 ([1]). Algebra A has EKP if and only if every homomorphic image

of A is isomorphic to a subalgebra of A.

It means that a group G has EKP if and only if every homomorphic image of G, it

means every factor group of a group G, is isomorphic to a subgroup of G. We shall

consider only nilpotent groups throughout this paper.
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Let G be a finite group, |G| = pa1

1 . . . pak

k , where p1, . . . , pk are pairwise different

prime numbers. Then G is nilpotent if and only if

(2.1) G ∼= G1 ×G2 × . . .×Gk,

where Gi is (isomorphic to) a Sylow pi-subgroup of G for every i ∈ {1, . . . , k}, it

means that |G1| = pa1

1 , . . . , |Gk| = pak

k .

We shall use the following well known theorem.

Theorem 2.2. Let G be a finite nilpotent group written in this way as a product

of its Sylow pi-groups Gi,

G = G1 ×G2 × . . .×Gk.

Let H be a subgroup of G. Then there exist subgroups Hi of Gi, i = 1, . . . , k, such

that

H = H1 ×H2 × . . .×Hk.

Moreover, if H ⊳ G, then Hi ⊳ Gi for i = 1, . . . , k.

Using this decomposition, the factor group G/H (in the case when H ⊳ G) can be

written as a product of factor groups in the form

G/H ∼= G1/H1 × . . .×Gk/Hk.

Combining Theorems 2.1 and 2.2 we get:

Theorem 2.3. Let each of Sylow subgroups G1, . . . , Gk of a finite nilpotent

group G (written in the form (2.1)) have EKP. Then also G has EKP.

P r o o f. Homomorphic image of G is isomorphic to a factor group of G. Using

Theorem 2.1, it is enough to prove that for any normal subgroup H of G, the factor

group G/H is isomorphic to a subgroup of G.

Let G be a finite nilpotent group, |G| = pa1

1 . . . pak

k , where p1, . . . , pk are pairwise

different prime numbers. Without loss of generality we can assume that

G = G1 ×G2 × . . .×Gk,

where Gi, i = 1, . . . , k are isomorphic to Sylow subgroups of G. Let H ⊳ G. By

Theorem 2.2 we know that

G/H ∼= G1/H1 × . . .×Gk/Hk

for suitable normal subgroups Hi of Gi, i = 1, . . . , k. For any i = 1, . . . , k, the

group Gi is a Sylow subgroup of G and therefore Gi/Hi is isomorpic to a subgroup

of Gi by Theorem 2.1. Therefore the product G1/H1 × . . . × Gk/Hk is isomorphic

to a subgroup of G1 ×G2 × . . .×Gk. Hence, G has EKP. �
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3. Finite abelian groups

Let us consider finite abelian groups now. Every abelian group is nilpotent. Let

us start with a special case of homomorphic images of a finite abelian p-group.

Cyclic group with n elements will be denoted by Zn. Let p be a prime number.

By a structure theorem for finite abelian groups a finite abelian p-group G can be

uniquely written as G ∼= Zpa1 × . . .×Zpan , a1 6 . . . 6 an. Numbers p
a1 , . . . , pan are

called abelian invariants of a p-group G. We shall use additive notation for a group

operation in this section, it means that for the nth power of a group element g we

shall write n× g. The subgroup generated by elements a1, . . . , an will be denoted by

[a1, . . . , an].

Lemma 3.1. Let k > 1, a1 6 . . . 6 ak and l1, . . . , lk ∈ {1, . . . , p− 1}. Then

H = Zpa1 × . . .× Zpak /[(l1 × pa1−1, . . . , lk × pak−1)]

is isomorphic to Zpa1−1 × Zpa2 × . . .× Zpak .

P r o o f. We shall calculate abelian invariants of a group H . Let Z be the group

of integers, K = [(l1 × pa1−1, . . . , lk × pak−1)], ei = (0, . . . , 0, 1, 0, . . . , 0) be a k-tuple

with just one 1 on the ith coordinate.

Let ϕ : Z
k → H be a homomorphism given by:

ϕ(e1) = (1, 0, . . . , 0) +K,

ϕ(e2) = (0, 1, . . . , 0) +K,

...

ϕ(ek) = (0, . . . , 0, 1) +K.

It means

ϕ(b1, . . . , bk) = (b1 mod pa1 , . . . , bk mod pak) +K.

We use

K = {l× (l1 × pa1−1, . . . , lk × pak−1); l = 0, . . . , p− 1}

to see that ϕ(b1, . . . , bk) = (0, . . . , 0) +K if and only if

(b1 mod pa1 , . . . , bk mod pak) = l × (l1 × pa1−1, . . . , lk × pak−1)

for some l ∈ {0, . . . , p− 1}.
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Let bi mod pai = ri, then (b1, . . . , bk) = (r1 + q1 × pa1 , . . . , rk + qk × pak) and

(r1, . . . , rk) = l× (l1 × pa1−1, . . . , lk × pak−1), which means that (b1, . . . , bk) ∈ ker(ϕ)

if and only if

(b1, . . . , bk) = l × (l1 × pa1−1, . . . , lk × pak−1) + (q1 × pa1)e1 + . . .+ (qk × pak)ek

for some integers l, q1, . . . , qk and

ker(ϕ) = [(l1 × pa1−1, l2 × pa2−1, . . . , lk × pak−1), pa1e1, p
a2e2, . . . , p

akek].

Therefore we can form a matrix

A =















l1p
a1−1 l2p

a2−1 . . . lkp
ak−1

pa1 0 . . . 0

0 pa2 . . . 0
...

...
. . .

...

0 0 . . . pak















and if we denote

ηm(A) = gcd{det(Ai1...im
j1...jm

) : 1 6 i1 < . . . < im 6 k + 1, 1 6 j1 < . . . < jm 6 k},

where Ai1...im
j1...jm

is a submatrix of A consisting of elements from rows 1 6 i1 < . . . <

im 6 k + 1 and columns 1 6 j1 < . . . < jm 6 k, then abelian invariants of a factor

group H are d1, . . . , dk defined by

d1 = η1(A), d2 = η2(A)/η1(A), . . . , dk = ηk(A)/ηk−1(A).

We know that for any m = 1, . . . , k the number ηm(A) divides

det(A2...m+1
1...m ) = det











pa1 0 . . . 0

0 pa2 . . . 0
...

...
. . .

...

0 0 . . . pam











= pa1+...+am

and therefore ηm(A) does not depend on numbers l1, . . . , lk, because these numbers

are coprime with p.
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As a1 6 . . . 6 ak, it is also clear that for l = 1, . . . , k the least power of p in

det(Ai1...im
j1...jm

) has the determinant of the “left upper corner” of A, it means

det(A1...m
1...m) = det















l1p
a1−1 l2p

a2−1 . . . lmpam−1

pa1 0 . . . 0 0

0 pa2 . . . 0 0
...

...
. . .

...

0 0 . . . pam−1 0















= l1p
a1−1 · 0 + . . .+ lm−1p

am−1−1 · 0 + lmpam−1 · pa1+...+am−1

= lm · pa1+...+am−1+(am−1)

and therefore ηm(A) = p(a1−1)+a2+...+am .

We get d1 = pa1−1 and for i = 2, . . . , k we have

di = p(a1−1)+a2+...+ai/p(a1−1)+a2+...+ai−1 = pai .

It means that abelian invariants of H are pa1−1, pa2 , . . . , pak , therefore

H ∼= Zpa1−1 × Zpa2 × . . .× Zpak .

�

Using this we get:

Lemma 3.2. Let G be a finite abelian p-group, G = Zpa1 × . . . × Zpan , K be

a subgroup of G, |K| = p. Then there exist 1 6 i 6 n such that

G/K ∼= Zpa1 × . . .× Zpai−1 × Zpai−1 × Zpai+1 × . . .× Zpan ,

which means that the group G/K is isomorphic to a subgroup of G.

P r o o f. Let G = Zpa1 × . . . × Zpan . Let us describe subgroups with p el-

ements first. Let (g1, . . . , gn) ∈ K \ {(0, . . . , 0)}. Then K = [(g1, . . . , gn)] and

ord((g1, . . . , gn)) = p. It means

p× (g1, . . . , gn) = 0 in G

and therefore for every i = 1, . . . , n

p× gi = 0 in Zpai .

It means that either gi = 0 or gi = li × pai−1, li ∈ {1, . . . , p− 1}.

352



Now, let X = {i ∈ {1, . . . , n} : gi 6= 0}. Suppose that X = {i1, . . . , ik}, i1 < i2 <

. . . < ik. Let Y = {1, . . . , n} \ X , Y = {j1, . . . , jn−k}, j1 < j2 < . . . < jn−k and

lj1 , . . . , ljn−k
= 0. Then (g1, . . . , gn) = (l1 × pa1−1, . . . , ln × pan−1) and

G/K ∼= Zpa1 × . . .× Zpan /[(l1 × pa1−1, . . . , ln × pan−1)]

∼= Zp
aj1 × . . .× Z

p
ajn−k

× (Zp
ai1 × . . .× Zp

aik /[(li1 × pai1
−1, . . . , lik × paik

−1)]).

Using Lemma 3.1 we see that

Zp
ai1 × . . .× Zp

aik /[(li1 × pai1
−1, . . . , lik × paik

−1)]

is isomorphic to Z
p
ai1

−1 × Zp
ai2 × . . .× Zp

aik , which finishes the proof. �

Theorem 3.3. Let G be a finite abelian p-group, |G| = pn. Then for any sub-

group H of G, the factor group G/H is isomorphic to a subgroup of G.

P r o o f. We shall proceed by induction. If n = 1, G has no proper subgroups.

Let |G| = pn+1, H be a subgroup of G. If |H | = p, the result follows from Lemma 3.2.

Let |H | = pk, k > 2. There exist a subgroup K of H such that |K| = p. By the

isomorphism theorem we know that

G/H ∼= (G/K)/(H/K).

The group G/K is a p-group with pn elements and using the induction assump-

tion, the factor group (G/K)/(H/K) is isomorphic to a subgroup of G/K, which is

isomorphic to a subgroup of G by Lemma 3.2. This means that G/H is isomorphic

to a subgroup of G and this finishes the proof. �

Using this we get the main result of this section.

Theorem 3.4. Let G be a finite abelian group. Then G has EKP.

P r o o f. The group G is a finite nilpotent group. Sylow subgroups of G are

abelian p-groups. Combining Theorem 2.1 and Theorem 3.3 we know that all Sylow

subgroups of G have EKP. Hence, G has EKP by Theorem 2.3. �
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4. Finite nilpotent groups

We shall show infinitely many finite non-abelian groups with EKP in this section.

We suppose that p is a prime in this section. We will use multiplication for a group

operation. Let G be a group, Z(G) be the centre of G. Let us start with some well

known facts/theorems.

Theorem 4.1.

(1) Let G be a finite p-group. Then Z(G) is nontrivial.

(2) Let G be a group. If G/Z(G) is cyclic, then G is abelian.

(3) Let G be a finite p-group, H ⊳ G, |H | = p. Then H ⊆ Z(G).

(4) Let G be a group, |G| = p2. Then G is abelian, it means G is either cyclic or

G ∼= Zp × Zp.

Corollary 4.2. Let G be a non-abelian group, |G| = p3. Then there is exactly

one normal subgroup of G which has p elements. Morever, this normal subgroup is

the center Z(G) and

G/Z(G) ∼= Zp × Zp.

P r o o f. Let G be a non-abelian group. According to Theorem 4.1 (2), G/Z(G)

is not cyclic. We know also that Z(G) is not trivial. It means that |G/Z(G)| = p2

and therefore |Z(G)| = p.

Now, let H ⊳ G, |H | = p. By Theorem 4.1 (3), H ⊆ Z(G). But this means that

H = Z(G). So Z(G) is the only one normal subgroup of G. Moreover, we know that

G/Z(G) is not cyclic and it has p2 elements, therefore

G/Z(G) ∼= Zp × Zp

by Theorem 4.1 (4). �

The following statement is Corollary 5.3.8 in [17].

Corollary 4.3. Suppose that G is a p-group all of whose abelian subgroups are

cyclic. Then G is cyclic or a quaternion group.

Hence, as a direct consequence we have:

Theorem 4.4. Let G be a non-abelian group, |G| = p3, where p > 2, or G ∼= D4

(dihedral 8 element group). Then G has a non-cyclic abelian subgroup H , it means

a subgroup H such that

H ∼= Zp × Zp.
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Lemma 4.5. Let G be a non-abelian group, |G| = p3.

(1) If p > 2, then G has EKP.

(2) If p = 2 and G ∼= D4, then G has EKP.

P r o o f. We have to show that a homomorphic image of G, it means a factor

group of G, is isomorphic to a subgroup of G. Let H ⊳ G.

If |H | = p2, then |G/H | = p and we know that G contains a subgroup with p

elements.

If |H | = p, then H = Z(G) and by Corollary 4.2 we have

G/H = G/Z(G) ∼= Zp × Zp.

By Theorem 4.4, group D4 has a subgroup isomorphic to Z2×Z2, a group G with p
3

elements for an odd prime number p has a subgroup isomorphic to Zp × Zp. This

finishes the proof. �

Next lemma generalizes the previous one.

Lemma 4.6. Let P be a non-abelian group, |P | = p3 for an odd prime number p

or P = D4. Let G = Zk
p × P . Then G has EKP.

P r o o f. Let H ⊳ G. Let (a, b) ∈ H ⊆ Zk
p × P , it means a ∈ Zk

p , b ∈ P . Let us

remind that Z(P ) is a cyclic group with p elements. We shall consider three cases:

Case 1. b /∈ Z(P ): There is g ∈ P such that gbg−1b−1 6= e. Also (a−1, b−1) ∈ H

and because H is invariant, also (a, gbg−1) ∈ H and finally (e, gbg−1b−1) ∈ H .

Denote z = gbg−1b−1. We have that z is a commutator since z = [g, b].

As P/Z(P ) ∼= Zp×Zp, it is an abelian group. Therefore the commutator subgroup

satisfies [P, P ] ⊆ Z(P ). Group P is not abelian, it means that [P, P ] = Z(P ),

z ∈ Z(P ). We know that (e, z) ∈ H , therefore {e} × Z(P ) = [(e, z)] ⊳ H . Clearly,

also {e} × Z(P ) ⊳ G. Now, G/({e} × Z(P )) ∼= Zk
p ×Zp ×Zp and it is isomorphic to

a subgroup of G. G/({e}×Z(P )) is an abelian group and therefore by Theorem 3.2,

factor groupG/H ∼= (G/({e}×Z(P )))/(H/({e}×Z(P ))) is isomorphic to a subgroup

of G/({e} × Z(P )) and finally, G/H is isomorphic to a subgroup of G.

In the next two cases we assume that there is no element (a, b) ∈ H with b /∈ Z(P ).

Case 2. b ∈ Z(P ) and there exists an element (a1, b1) ∈ H such that for some l we

have bl = b1, a
l 6= a1: We have also (a

−1
1 , b−1

1 ) ∈ H , it means (al, bl) · (a−1
1 , b−1

1 ) =

(c, e) ∈ H , c 6= e. Let K = [c]. Then K ⊳ Zk
p , we see that K × {e} ⊳ H and

also K × {e} ⊳ G. Further, G/(K × {e}) ∼= (Zk
p /K)× P . By Lemma 3.2, Zk

p/K is

isomorphic to Zk−1
p .
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We can proceed by induction. For k = 1,

K = Z1
p and G/(K × {e}) ∼= (Z1

p/K)× P ∼= P

and P is isomorphic to a subgroup of G = Z1
p × P . Therefore

G/H ∼= (G/(K × {e}))/(H/(K × {e}))

is isomorphic to a subgroup of P and therefore also isomorphic to a subgroup of G.

Now, let the statement be true for all k′ < k, we shall prove that it is true for

the number k. We know that Zk
p /K is isomorphic to Z

m
p for m < k, it means that

G/(K × {e}) ∼= Zm
p × P and therefore

G/H ∼= (G/(K × {e}))/(H/(K × {e})

is isomorphic to a subgroup of Zm
p × P by induction. Finally, we get that G/H is

isomorphic to a subgroup of G = Zk
p × P .

Case 3. b ∈ Z(P ) and for an element (a1, b1) ∈ H , whenever for some l we have

bl = b1, then also al = a1: Let us rename b to z. The group H = [(a, z)] in this

case. It is clear that z is a generator of the centre Z(P ). Let a = (l1, . . . , lk) ∈ Zk
p ,

X = {i ∈ {1, . . . , k}; li 6= 1} = {i1, . . . , im}, Y = {1, . . . , k} \X = {j1, . . . , jk−m}.

Now, let Ci = Zp. Then

(Zk
p × P )/[(a, z)] ∼= Cj1 × . . .× Cjk−m

× ((Ci1 × . . .× Cim × P )/[((li1 , . . . , lim), z)]).

It is enough to prove that Ci1 × . . . × Cim × P/[((li1 , . . . , lim), z)] is isomorphic to

a subgroup of Ci1 × . . .× Cim × P = Zm
p × P . To simplify indexing, we shall prove

that for a = (l1, . . . , lm), l1, . . . , lm 6= 1, Zm
p × P/[((l1, . . . , lm), z)] is isomorphic to

a subgroup of Zm
p × P . As Zp is a cyclic group with p elements, Zp = [li], therefore

we shall represent Zm
p as [l1]× . . .× [lm].

Ifm = 1, we can consider the map ϕ : [l1]×P → P given by ϕ(ln1 , b) = bz−n. Then

(ln1 , b) ∈ ker(ϕ) if and only if bz−n = e, it means if and only if b = zn. Therefore

ker(ϕ) = {(ln1 , z
n); n = 0, . . . , p− 1} = [(l1, z)].

It is easy to check that ϕ is a homomorphism (we shall present the proof for more

general case later). The group [l1]×P has p4 elements, ker(ϕ) has p elements and P

has p3 elements, therefore the map ϕ is surjective and [l1]×P/[(l1, z)] ∼= P . It means

that [l1]× P/[(l1, z)] is isomorphic to a subgroup of P .

Let us consider a general case now. Let ϕ : [l1]×. . .×[lm]×P → [l2]×. . .×[lm]×P

be given by

ϕ(la1

1 , . . . , lam

m , b) = (la1−a2

2 , la2−a3

3 , . . . , lam−1−am

m , bz−am).
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Then (la1

1 , . . . , lam
m , b) ∈ ker(ϕ) if and only if

a1 − a2 = 0, a2 − a3 = 0, . . . , am−1 − am = 0, bz−am = e,

which is true if and only if a1 = . . . = am and b = zam . Therefore

ker(ϕ) = [(l1, . . . , lm, z)].

The map ϕ is a homomorphism:

ϕ((la1

1 , . . . , lam

m , c) · (lb11 , . . . , lbmm , d))

= ϕ(la1+b1
1 , . . . , lam+bm

m , cd)

= (l
(a1+b1)−(a2+b2)
2 , . . . , l(am−1+bm−1)−(am+bm)

m , cd · z−am−bm)

= (l
(a1−a2)+(b1−b2)
2 , . . . , l(am−1−am)+(bm−1−bm)

m , cz−amd · z−bm)

= (la1−a2

2 , . . . , lam−1−am

m , cz−am) · (lb1−b2
2 , . . . , lbm−1−bm

m , dz−bm)

= ϕ((la1

1 , . . . , lam

m , c)) · ϕ((lb11 , . . . , lbmm , d)).

The equalities on the last coordinate are valid because z is an element of the centre

of P . By counting elements in [l1]×. . .×[lm]×P , ker(ϕ) and in [l2]×. . .×[lm]×P , we

see that ϕ is surjective. Therefore Zm
p ×P/[(a, z)] ∼= Zm−1

p ×P , which is isomorphic

to a subgroup of G = Zm
p × P .

We see that in every possible case, G/H is isomorphic to a subgroup of G and

therefore G has EKP. �

Using this result and the ideas from the section on abelian groups we get:

Theorem 4.7. Let G be a finite nilpotent group written in the form (2.1). Let

each Sylow group Gi be (isomorphic to) one of the following groups:

(1) an abelian group,

(2) Zki
pi

× Pi, where ki > 0, pi > 2 and Pi is a non-abelian group of order p
3
i ,

(3) Zki

2 ×D4, where ki > 0 and D4 is a dihedral 8-element group.

Then G has EKP.

R em a r k 4.8. Lemma 4.6 does not provide all non-abelian p-groups which have

EKP. Direct computation in GAP (see [9]) shows that for example there are 6 non-

abelian groups of order 34 = 81 which have EKP (GAP identifications returned by

IdSmallGroup() of these groups are [81,6], [81,7], [81,8], [81,9], [81,12], [81,13]), but

only 2 of them are of the form Z3 × P , where P is a non-abelian group of order 33.

There are 4 non-abelian groups of order 81 which do not have EKP (GAP id’s of

these groups are [81,3], [81,4], [81,10], [81,14]).
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