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Abstract. In this paper some results on direct summands of Goldie extending elements
are studied in a modular lattice. An element a of a lattice L with 0 is said to be a Goldie
extending element if and only if for every b 6 a there exists a direct summand c of a such
that b∧ c is essential in both b and c. Some characterizations of decomposition of a Goldie
extending element in a modular lattice are obtained.
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1. Introduction

The notion of extending modules has been studied by several researchers under

the names such as extending module or a module with C1-property or a CS-module.

These modules and their generalizations are extensively studied by authors such as

Harmanci and Smith (see [7]), Akalan, Birkenmeier and Tercan (see [1]), Dung et

al. (see [4]). A module M is called extending if every submodule of M is essential in

a direct summand of M .

Călugăreanu in [2] studied several concepts from module theory in lattices. In [1],

Akalan, Birkenmeier and Tercan defined a Goldie extending module over an associa-

tive ring. They posed and answered the following open problem.

O p e n P r o b l e m : Determine necessary and/or sufficient conditions for a direct

sum of Goldie extending modules to be Goldie extending.

In [1], Akalan et al. posed five open questions on the notion of Goldie extending

module, see also [10]; out of which the following two are answered by Wu and Wang

in [11]:

c© The author(s) 2021. This is an open access article under the CC BY-NC-ND licence cbnd

DOI: 10.21136/MB.2021.0181-20 359

https://creativecommons.org/licenses/by-nc-nd/4.0
http://dx.doi.org/10.21136/MB.2021.0181-20


(1) Determine necessary and/or sufficient conditions on a module M so that M is

G-extending if and only if M is G+-extending.

(2) Determine necessary and/or sufficient conditions for a direct sum ofG-extending

modules to be G-extending.

As an analogue of the concept of a Goldie extending module, Nimbhorkar and Shroff

(see [9]) defined a Goldie extending element in a modular lattice and proved some

properties of such elements. They also formulated and answered the following open

problem in the context of a modular lattice.

O p e n P r o b l e m : Determine necessary and/or sufficient conditions for a direct

sum of Goldie extending elements in a lattice to be Goldie extending.

In this paper, a lattice theoretic analogue is obtained from the results of Wu and

Wang (see [11]). Some properties of direct summands of a Goldie extending element

are studied in a lattice L with 0 and some properties are obtained in a certain class of

modular lattices by using the concept of relative ejectivity and ojectivity. The second

section deals with preliminaries required in subsequent sections. In the third section,

some properties of direct summands of a Goldie extending element are obtained by

using the concept of ejectivity and ojectivity in modular lattices. The second open

problem stated above is answered for a certain class of lattices.

2. Preliminaries

The concepts of lattice theory used in this paper are from Grätzer (see [5]) and

Crawley and Dilworth (see [3]). Throughout this paper L denotes a lattice with the

least element 0. The following definitions are from Călugăreanu, see [2].

Let a, b ∈ L, a 6 b, a is said to be essential in b (or b is an essential extension

of a) if there is no nonzero c 6 b such that a ∧ c = 0. It is denoted by a 6e b. If

a 6e b and there is no c > b such that a 6e c, then b is called a maximal essential

extension of a. An element a ∈ L is closed (or essentially closed) in b if a has no

proper essential extension in b.

The concept of the max-semicomplement is defined by Nimbhorkar and Shroff

in [8]. If a, b ∈ L and b is a maximal element in the set {x : x ∈ L, a∧x = 0}, then b

is said to be a max-semicomplement of a.

Some properties of essential extensions and closed extensions that are used in

subsequent sections follow.

Lemma 2.1 ([6], Lemma 2). In a lattice L with 0, the following statements hold.

(1) If a, b, c ∈ L, then a 6e b implies a ∧ c 6e b ∧ c.

(2) If a 6 b 6 c, then a 6e b, b 6e c if and only if a 6e c.

360



The concept of direct summands in lattices is introduced by Nimbhorkar and

Shroff in [9]. If a, b, c ∈ L are such that a ∨ b = c and a ∧ b = 0, then a and b are

called direct summands of c and it is denoted by c = a ⊕ b. Here c is a direct sum

of a and b. In a modular lattice L, if a, b, c ∈ L are such that c = a ⊕ b, then a is

a max-semicomplement of b in c. Hence, the direct summands of c are closed in c.

Also, in a modular lattice L if a, b, c ∈ L are such that a 6 b 6 c and a is a direct

summand of c, then a is also a direct summand of b.

Let a ∈ L. If for any two direct summands b, c of a, b∨c is a direct summand of a,

then a satisfies the summand sum property. Also, if for any two direct summands b, c

of a with b ∧ c 6= 0, b ∧ c is a direct summand of a, then a satisfies the summand

intersection property.

In a modular lattice L if an element a satisfies the summand sum (intersection)

property, then every direct summand of a satisfies the summand sum (intersec-

tion) property.

Lemma 2.2 ([6], Lemma 3). Let L be a modular lattice with 0. Suppose that

a, b, c, d ∈ L are such that a 6 b, c 6 d and b ∧ d = 0. Then a 6e b, c 6e d if and

only if a⊕ c 6e b⊕ d.

Throughout this paper, wherever necessary, it is assumed that L satisfies one or

more of the following conditions:

C o n d i t i o n (1): For any a 6 b there exists a maximal essential extension of

a in b.

C o n d i t i o n (2): For any a 6 b and for any c 6 b with c ∧ a = 0, there exists

a max-semicomplement d > c of a in b.

A familiar and important class of lattices with these properties is the class of upper

continuous modular lattices, in particular, the lattices of ideals of a modular lattice

with 0.

Lemma 2.3 ([9]). Let L be a modular lattice with 0 satisfying condition (2). Let

a, b ∈ L and a 6 b. Then a is closed in b if and only if a is a max-semicomplement

of some c 6 b.

Proposition 2.1 ([2], Proposition 4.4). Let L be a modular lattice with 0 sat-

isfying condition (2) and a, b ∈ L be such that a ∧ b = 0. Then a is a max-

semicomplement of b in L if and only if a is closed in L and a ∨ b is essential in L.

An element a of a lattice L is called extending if every nonzero b 6 a is essential

in a direct summand of a.
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Note that in a modular lattice L satisfying condition (1), every nonzero a 6 b

has a maximal essential extension in b and a maximal essential extension is closed.

Hence, a nonzero a ∈ L is extending if every b 6 a, which is closed in a, is a direct

summand of a.

Let L be a modular lattice satisfying conditions (1) and (2) and a 6 b. Then b is

extending if every max-semicomplement in b is a direct summand of b. Also, if a ∈ L

is extending, then every direct summand of a is extending.

As a generalization of an extending element, Nimbhorkar and Shroff in [9] defined

a Goldie extending element in a lattice. They have also defined the following relations

and an a-ejective element in a lattice.

Let a, b ∈ L. Then

(1) a α b if and only if there exists c ∈ L such that a 6e c and b 6e c.

(2) a β b if and only if a ∧ b 6e a and a ∧ b 6e b.

Note that a α b implies a β b, but the converse need not hold. a β b is an equivalence

relation on L. By using the condition β, a Goldie extending element in a lattice L

with 0 is defined.

Definition 2.1. Let L be a lattice and a ∈ L. If for every b 6 a there exists

a direct summand c of a such that b β c, then a is said to be a Goldie extending

(G-extending) element.

Equivalently, a G-extending element in a modular lattice L can be defined as

follows.

An element a ∈ L is called a Goldie extending element if for every closed element

b 6 a there exists a direct summand c of a such that b β c holds.

In the following result a necessary and sufficient condition for an element to be

Goldie extending is given.

Lemma 2.4. Let L be a lattice and a ∈ L. Then the following statements are

equivalent.

(1) a is a G-extending element.

(2) For every b 6 a there exists c 6 a and a direct summand d of a such that c 6e b

and c 6e d.
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3. Direct summands of Goldie extending elements

In this section, the properties of direct summands of G-extending elements are

studied in the context of summand sum property, relative ojectivity and relative

ejectivity. The notion of a module N being M -injective is generalized to M -ejective

by Akalan et al. (see [1], Definition 2.1). An analogue of the same is defined by

Nimbhorkar and Shroff in [9] as follows:

Definition 3.1. Let a, b, c ∈ L be such that a = b ⊕ c. Then b is said to be

c-ejective in a if for every d 6 a such that d ∧ b = 0 there exists an f 6 a such that

a = b ⊕ f and d ∧ f 6e d. If b is c-ejective and c is b-ejective, then b and c are said

to be relatively ejective.

Lemma 3.1. Let L be a modular lattice satisfying conditions (1) and (2) and

a, a1, a2 ∈ L. Suppose that a = a1 ⊕ a2 and a is G-extending and a satisfies the

summand sum property. Then a1 and a2 are relatively ejective.

P r o o f. Let b ∈ L be such that b 6 a and b ∧ a1 = 0. Since a is G-extending,

there exists a direct summand d of a such that b ∧ d 6e b and b ∧ d 6e d. Now

b ∧ a1 = 0 implies that (b ∧ d) ∧ a1 = 0 and b ∧ (d ∧ a1) = 0, b ∧ d 6e d implies that

d ∧ a1 = 0.

Since a satisfies the summand sum property, d∧a1 = 0 implies that d⊕a1 is a direct

summand of a. Hence, there exists a direct summand c of a such that a = a1⊕d⊕ c.

Now it remains to show that b ∧ (d ⊕ c) 6e b. Since b ∧ d 6 b ∧ (d ⊕ c) 6 b and

b ∧ d 6e b, by Lemma 2.1 (2), b ∧ (d⊕ c) 6e b. Hence a1 is a2-ejective.

Similarly, it can be proved that a2 is a1-ejective. �

The concept of an ojective ideal in a lattice is defined by Nimbhorkar and Shroff

in [8] as follows:

Definition 3.2. Let I, J,K ∈ I(L) be such that K = I ⊕ J . The ideal J is said

to be I-ojective if for any max-semicomplement C of J in K, K can be decomposed

as K = C ⊕ I ′ ⊕ J ′ with I ′ ⊆ I and J ′ ⊆ J .

An analogue of this concept is formulated as an ojective element in a lattice as

follows:

Definition 3.3. Let a, b, c ∈ L be such that c = a ⊕ b. The element b is said

to be a-ojective if for any max-semicomplement k of b in c, c can be decomposed as

c = k ⊕ a′ ⊕ b′ with a′ ⊆ a and b′ ⊆ b.

If a is b-ojective and b is a-ojective for some c = a ⊕ b, then a and b are called

mutually ojective.
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E x am p l e 3.1. In the lattice shown in Figure 1, consider the elements k, f , j

such that k = f ⊕ j. Also, j has a max-semicomplement c and there exist elements

a 6 f and d 6 j such that k = f ⊕ j = a⊕ d⊕ c. Hence j is f -ojective.

a b c d e

0

f g h
i j

k

1

Figure 1.

The following proposition is proved by Nimbhorkar and Shroff in [8] for ideals of

a lattice. However, it can be similarly proved for elements of a lattice satisfying

conditions (1) and (2).

Proposition 3.1. Let L be a modular lattice and I, J,K ∈ Id(L) be such that

K = I ⊕ J . Let I1 and J1 be direct summands of I and J , respectively. If J is

I-ojective, then:

(1) J1 is I-ojective,

(2) J is I1-ojective,

(3) J1 is I1-ojective.

Lemma 3.2. Let L be a modular lattice satisfying conditions (1) and (2) and

a, b, c ∈ L be such that c = a⊕ b. Suppose that b is a-ojective and a is G-extending.

If e ∈ L be such that e 6 a and e∧ b = 0, then there exists a direct summand d of c

such that e β d and c = d⊕ a′ ⊕ b′ for a′ 6 a, b′ 6 b.

P r o o f. Let k = (e⊕ b) ∧ a. Then by modularity of L,

b⊕ k = b⊕ [(e ⊕ b) ∧ a] = (b⊕ a) ∧ (e ⊕ b) = c ∧ (e⊕ b) = e⊕ b.

Since a is G-extending, there exist a direct summand a1 of a such that

k ∧ a1 6e k and k ∧ a1 6e a1.

Put f = a1 ⊕ b. Then

(k ∧ a1)⊕ b 6e a1 ⊕ b = f and (k ∧ a1)⊕ b 6e k ⊕ b = e⊕ b.

Now,

k ∧ a1 = (e ⊕ b) ∧ a ∧ a1 = (e⊕ b) ∧ a1.
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By modularity of L,

(k ∧ a1)⊕ b = [(e⊕ b) ∧ a1]⊕ b = (e ⊕ b) ∧ (a1 ⊕ b) = (e ⊕ b) ∧ f.

Hence (k ∧ a1)⊕ b 6e (e⊕ b). This implies that (e⊕ b) ∧ f 6e (e⊕ b).

Again, by modularity for b 6 f , (e ⊕ b) ∧ f = b ⊕ (e ∧ f). Hence, by Lemma 2.2,

e ∧ f 6e e.

Now e∧f 6 e implies that there exists a closed element f1 6 f which is a maximal

essential extension of e ∧ f such that e ∧ f 6e f1.

Now, by using modularity,

(k ∧ a1)⊕ b 6e f ⇒ (e ⊕ b) ∧ f 6e f ⇒ b⊕ (e ∧ f) 6e f.

Since f1 is a maximal essential extension of e∧ f in f and b⊕ (e∧ f) 6e f , it follows

that f1 is a max-semicomplement of b in f . But b is a-ojective and therefore b is

a1-ojective, which yields

f = f1 ⊕ a′1 ⊕ b′, a′1 6 a1, b
′ 6 b.

Now, there exists a direct summand a2 of a such that a = a1 ⊕ a2. Therefore

c = a1 ⊕ a2 ⊕ b = f ⊕ a2 = f1 ⊕ a′1 ⊕ b′ ⊕ a2, a′1 ⊕ a2 6 a, b′ 6 b.

Also, e ∧ f 6 f1 6 f and so e ∧ f = e ∧ f1. Hence, e ∧ f1 6e e, e ∧ f1 6e f1, and so

e β f1 holds. This completes the proof. �

Lemma 3.3. Let L be a modular lattice satisfying conditions (1) and (2) and

a, a1, a2 ∈ L be such that a = a1 ⊕ a2. Suppose that a satisfies the summand sum

property. If a1 is a2-ojective (or a2 is a1-ojective) and a1 (or a2) is G-extending,

then a is G-extending.

P r o o f. Let b ∈ L be such that b 6 a. If b ∧ a1 = 0, then by Lemma 3.2, there

exists a direct summand d of a such that b β d. So a is G-extending.

If b ∧ a1 6= 0, then there exists a maxsemicomplement k 6 b of b ∧ a1 such that

(b∧a1)⊕k 6e b. It is clear that k∧a1 = 0. Then by Lemma 3.2, there exists a direct

summand c of a such that k β c, i.e. k∧ c 6e k, k∧ c 6e c. Note that (k∧ c)∧a1 = 0.

Since a1 is G-extending by Lemma 2.4, for b ∧ a1 there exists some m 6 a1 and

a direct summand d1 of a1 such that m 6e b ∧ a1 and m 6e d1. Then m 6e b ∧ a1,

(b ∧ a1) ∧ k = 0, k ∧ c 6e k together imply that (k ∧ c) ⊕m 6e (b ∧ a1) ⊕ k 6e b.

Hence (k ∧ c) ⊕m 6e b. Also, k ∧ c 6e c and m 6e d1, c ∧ a1 = 0 together imply

that (k ∧ c)⊕m 6e c⊕ d1.

Since a satisfies the summand sum property, c ⊕ d1 is a direct summand of a.

Hence by Lemma 2.4, a is G-extending. �
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Theorem 3.1. Let L be a modular lattice satisfying conditions (1) and (2) and

a, a1, a2 ∈ L be such that a = a1 ⊕ a2. Suppose that a satisfies the summand sum

property. If a1 is a2-ojective (or a2 is a1-ojective) and a1 and a2 are G-extending,

then a1 and a2 are relatively ejective.

P r o o f. Follows from Lemma 3.1 and Lemma 3.3. �

Theorem 3.2. Let L be a modular lattice satisfying conditions (1) and (2). Let

a, ai ∈ L for an indexing set i ∈ I be such that a =
⊕

i∈I

ai with |I| > 2. Suppose that

a satisfies the summand sum property. Then the following statements are equivalent.

(1) a is G-extending.

(2) If there exists i 6= j in I such that for every b 6 a with b∧ ai = 0 or b∧ aj = 0,

then there exists a direct summand d of a such that b β d.

(3) If there exists i 6= j in I such that for every b 6 a with b∧ai 6e b or b∧aj 6e b

or b∧ai = b∧aj = 0, then there exists a direct summand d of a such that b β d.

P r o o f. (1) ⇒ (3): Let a be a G-extending element in L. Then statement (3)

holds by the definition.

(3) ⇒ (2): Let (3) hold and let b 6 a with b ∧ aj = 0. Then there exists a max-

semicompliment m 6 b of b ∧ ai, i 6= j such that

(b ∧ ai)⊕m 6e b.

It is clear that m ∧ ai = m ∧ aj = 0, i 6= j. Then by (3), there exists a direct

summand d of a such that m β d, that is

m ∧ d 6e m, m ∧ d 6e d.

Now it is clear that (b ∧ ai) ∧ ai 6e b ∧ ai. Therefore by (3), there exists a direct

summand k of a such that (b ∧ ai) β k, that is

(b ∧ ai) ∧ k 6e b ∧ ai and (b ∧ ai) ∧ k 6e k.

Hence by Lemma 2.2,

(b ∧ ai) ∧ k 6e b ∧ ai, m ∧ d 6e m

implies that

[(b ∧ ai) ∧ k]⊕ (m ∧ d) 6e (b ∧ ai)⊕m 6e b

and

(b ∧ ai) ∧ k 6e k, m ∧ d 6e d.

This implies that

[(b ∧ ai) ∧ k]⊕ (m ∧ d) 6e (k ⊕ d).
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Since a satisfies summand sum property, k ⊕ d is a direct summand of a. Thus

b β (k ⊕ d).

The case b ∧ ai = 0 is analogous. Hence (2) holds.

(2) ⇒ (1): Let (2) hold and let b 6 a be such that b ∧ ai 6= 0. Then there exists

a max-semicompliment m 6 b of b ∧ ai such that (b ∧ ai)⊕m 6e b. It is clear that

m ∧ ai = 0. Then by (3), there exists a direct summand d of a such that m β d,

that is,

m ∧ d 6e m, m ∧ d 6e d.

Now it is clear that (b ∧ ai) ∧ aj = 0, i 6= j. Therefore by (2), there exists a direct

summand k of a such that

(b ∧ ai) β k,

that is,

(b ∧ ai) ∧ k 6e b ∧ ai and (b ∧ ai) ∧ k 6e k.

Hence by Lemma 2.2,

(b ∧ ai) ∧ k 6e b ∧ ai, m ∧ d 6e m.

This implies that

[(b ∧ ai) ∧ k]⊕ (m ∧ d) 6e (b ∧ ai)⊕m 6e b

and

(b ∧ ai) ∧ k 6e k, m ∧ d 6e d.

This implies

[(b ∧ ai) ∧ k]⊕ (m ∧ d) 6e (k ⊕ d).

Since a satisfies summand sum property, k ⊕ d is a direct summand of a. Thus, by

Lemma 2.4, a is G-extending. �
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