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Abstract. In this paper we are concerned with the steady Boussinesq system with mixed
boundary conditions. The boundary conditions for fluid may include Tresca slip, leak, one-
sided leak, velocity, vorticity, pressure and stress conditions together and the conditions
for temperature may include Dirichlet, Neumann and Robin conditions together. For the
problem involving the static pressure and stress boundary conditions, it is proved that if
the data of the problem are small enough, then there exists a solution and the solution
with small norm is unique. For the problem involving the total pressure and total stress
boundary conditions, the existence of a solution is proved without smallness of the data.
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1. Introduction

In this paper we are concerned with the steady Boussinesq system

(1.1)






−2∇ · (µ(θ)E(v)) + (v · ∇)v +∇p = (1− α0θ)f,

∇ · v = 0,

−∇ · (κ(θ)∇θ) + v · ∇(γ(θ)θ) = g

under mixed boundary conditions. Here v, p and θ are, respectively, velocity, pressure

and temperature, and α0 is a parameter for buoyancy effect, f is a body force, g

is a heat source. The strain tensor E(v) is the one with the components εij(v) =
1
2 (∂xivj + ∂xjvi). Viscosity µ(θ), thermal conductivity κ(θ) and specific heat γ(θ)

of fluid depend on the temperature. The boundary conditions for fluid may include
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Tresca slip, leak, one-sided leaks, velocity, vorticity, pressure and stress conditions

together and the conditions for temperature may include Dirichlet, Neumann and

Robin conditions together.

Several papers are concerned with (1.1). In [11], [12] under homogeneous Dirich-

let boundary condition for velocity and mixture of nonhomogeneous Dirichlet and

Neumann conditions for temperature, the existence of a solution to (1.1) was stud-

ied. In [2] under mixture of nonhomogeneous Dirichlet, total pressure and vorticity

boundary conditions for velocity and mixture of nonhomogeneous Dirichlet, Neu-

mann and Robin boundary conditions for temperature, the existence of a solution

was studied. In [4] variational inequalities for Navier-Stokes type operators were

studied, which can describe (1.1) with one-sided flow boundary conditions for fluid

and heat on a portion of boundary. In [15] under nonhomogeneous Dirichlet bound-

ary condition for velocity and mixture of nonhomogeneous Dirichlet and Neumann

conditions for temperature, where smoothness of boundary data is weaker than [11]

and [12], the existence of a solution to (1.1) was studied. In [10] under homogeneous

Dirichlet boundary condition for velocity and mixture of nonhomogeneous Dirich-

let and homogeneous Neumann boundary conditions for temperature, the existence,

uniqueness and smoothness of a weak solution were studied. In [13] when the bound-

ary consists of several connected components, boundary value problem of (1.1) with

nonhomogeneous Dirichlet boundary condition was studied. In [6] Dirichlet problem

of (1.1) for arbitrarily large and very weak boundary data was studied. In [1] when

the boundary consists of several connected components, Dirichlet problem of (1.1)

under a weaker condition than [13] was studied.

In [14] a more general equation for heat conducting fluid with dissipative heat-

ing was studied under homogeneous Dirichlet condition for velocity and mixture of

nonhomogeneous Dirichlet and homogeneous Neumann boundary conditions for tem-

perature. In [9] the equation as in [14] was studied under more complicated mixed

boundary conditions including friction conditions. From the result of [9] one can get

the existence of solutions to (1.1) with the boundary conditions as in [9]. However,

the result for the case of boundary conditions including the total pressure demands

that the parameter for buoyancy effect α0 is small enough in accordance with the

data of the problem as in [14] (see (5.13) of [9]), and the result for the case of bound-

ary conditions including the static pressure demands that the data of the problem

satisfy two smallness conditions together (see (4.37) and (4.84) of [9]).

In this paper we get the existence of a solution to (1.1) under one smallness

condition on the data of the problem for the case of static pressure, and without

restriction on α0 for the case of total pressure.

This paper consists of 5 sections. In Section 2, the problems and assumptions

are stated. According to the boundary conditions for the fluid, Problem 1 and
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Problem 2 are distinguished. Problem 1 includes the static pressure (correspondingly,

the stress) in the boundary conditions, whereas Problem 2 includes the total pressure

(correspondingly, the total stress).

In Section 3, we get the variational formulations, which consist of one variational

inequality for velocity and a variational equation for temperature (Problems 1–VI

and 2–VI). In the end of Section 3, the main results of this paper are stated (The-

orems 3.1, 3.2). Theorem 3.1 for Problem 1 involving the static pressure and stress

boundary conditions asserts that if the data of the problem are small enough, then

there exists a solution and the solution with small norm is unique. However, Theo-

rem 3.2 for Problem 2 involving the total pressure and total stress boundary condi-

tions asserts the existence of a solution without smallness of the data.

Section 4 is devoted to the proof of Theorem 3.1. First in Subsection 4.1 we

consider an auxiliary problem involving two parameters δ, ζ concerned with the norm

of velocity (which is useful when there is fluid flux across a portion of boundary),

one parameter λ concerned with the norm of temperature (which is useful to deal

with buoyancy effect) and a parameter ε for approximation. We prove the existence

of a solution to the auxiliary problem with parameters δ, ζ, λ, ε (Theorem 4.2).

In Subsection 4.2 when the data of the problem are small enough, we determine

the parameters δ, ζ, λ, and we get estimates independent of ε of solutions to an

approximate problem. In Subsection 4.3 passing to the limits as ε goes to zero, we

get the existence, uniqueness and estimates of a solution to the problem. Section 5 is

devoted to the proof of Theorem 3.2 for Problem 2. To this end, we consider another

auxiliary problem involving parameters ζ, λ, ε. Then, without smallness of the data,

we determine parameters ζ, λ, and we get estimates independent of ε of solutions to

an auxiliary problem. In this way we get the existence of a solution to the problem.

We will use the following notation. Let Ω be a connected bounded open subset of

R
l, l = 2, 3, ∂Ω ∈ C0,1,

∂Ω =
11⋃

i=1

Γi = ΓD ∪ ΓR,

ΓD ∩ ΓR = ∅, Γi ∩ Γj = ∅ for i 6= j, Γi =
⋃
j

Γij , where Γij are connected open

subsets of ∂Ω and Γij ∈ C2 for i = 2, 3, 7 and Γij ∈ C1 for others. When X is

a Banach space, X = X l. Let W k,p(Ω) be Sobolev spaces, H1(Ω) = W 1,2(Ω), and

so H1(Ω) = {H1(Ω)}l. An inner product in the space L2(Ω) or L2(Ω) is denoted by

(·, ·), and (·, ·)Γi is an inner product in L
2(Γi) or L

2(Γi). The duality pairing between

a Sobolev space X and its dual one is denoted by 〈·, ·〉, and 〈·, ·〉Γi means the duality

pairing between H
1/2(Γi) and H

−1/2(Γi) or between H1/2(Γi) and H−1/2(Γi). The

inner product and norms in R
l, respectively, are denoted by (·, ·)Rl and |·|.
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Let n(x) and τ(x) be, respectively, outward normal and tangent unit vectors at x

in ∂Ω. When f ∈ H−1/2(Γi), if 〈f, w〉Γi
> 0 (6 0) for all w ∈ C∞

0 (Γi) with w > 0,

then we denote it by f > 0 (6 0) on Γi. For convergence in spaces, → and ⇀ mean

strong and weak convergence, respectively.

2. Problems and assumptions

For temperature we consider the boundary conditions

(bc1) θ|ΓD = 0,

(bc2) (κ(θ) ∂θ∂n + β(x)θ)|ΓR = gR(x), β(x), gR(x)-given functions on ΓR.

Stress tensor S(θ, v, p) and total stress tensor St(θ, v, p) are, respectively, the ones

with components sij = −pδij + 2µ(θ)εij(v) and stij = −(p+ 1
2 |v|

2)δij + 2µ(θ)εij(v).

Stress vector and total stress vector on the boundary surface, respectively, are

σ(θ, v, p) = S · n and σt(θ, v, p) = St · n. The values of normal stress vector and

total normal stress vector on the boundary surface are respectively σn(θ, v, p) = σ ·n

and σt
n(θ, v, p) = σt · n. And στ (θ, v, p) = σ(θ, v, p) − σn(θ, v, p)n, σt

τ (θ, v, p) =

σt(θ, v, p)− σt
n(θ, v, p)n.

Problem 1 is the one with the boundary conditions including the static pressure

and stress

(bcs1) v|Γ1
= 0,

(bcs2) vτ |Γ2
= 0, −p|Γ2

= φ2,

(bcs3) vn|Γ3
= 0, rot v × n|Γ3

= φ3/µ(θ),

(bcs4) vτ |Γ4
= 0, (−p+ 2µ(θ)εnn(v))|Γ4

= φ4,

(bcs5) vn|Γ5
= 0, 2(µ(θ)εnτ (v) + αvτ )|Γ5

= φ5, α: a matrix,

(bcs6) (−pn+ 2µ(θ)εn(v))|Γ6
= φ6,

(bcs7) vτ |Γ7
= 0, (−p+ µ(θ) ∂v∂n · n)|Γ7

= φ7,

(bcs8) vn = 0, |στ (θ, v)| 6 gτ , στ (θ, v) · vτ + gτ |vτ | = 0 on Γ8,

(bcs9) vτ = 0, |σn(θ, v, p)| 6 gn, σn(θ, v, p)vn + gn|vn| = 0 onΓ9,

(bcs10) vτ = 0, vn > 0, σn(θ, v, p) + g+n > 0, (σn(θ, v, p) + g+n)vn = 0 on Γ10,

(bcs11) vτ = 0, vn 6 0, σn(θ, v, p)− g−n 6 0, (σn(θ, v, p)− g−n)vn = 0 on Γ11.

Problem 2 is the one with the conditions including the total pressure and total

stress

(bct1) v|Γ1
= 0,

(bct2) vτ |Γ2
= 0, −(p+ 1

2 |v|
2)|Γ2

= φ2,

(bct3) vn|Γ3
= 0, rot v × n|Γ3

= φ3/µ(θ),

(bct4) vτ |Γ4
= 0, (−p− 1

2 |v|
2 + 2µ(θ)εnn(v))|Γ4

= φ4,

(bct5) vn|Γ5
= 0, 2(µ(θ)εnτ (v) + αvτ )|Γ5

= φ5, α: a matrix,

(bct6) (−pn− 1
2 |v|

2n+ 2µ(θ)εn(v))|Γ6
= φ6,
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(bct7) vτ |Γ7
= 0, (−p− 1

2 |v|
2 + µ(θ) ∂v∂n · n)|Γ7

= φ7,

(bct8) vn = 0, |σt
τ (θ, v)| 6 gτ , σ

t
τ (θ, v) · vτ + gτ |vτ | = 0 on Γ8,

(bct9) vτ = 0, |σt
n(θ, v, p)| 6 gn, σ

t
n(θ, v, p)vn + gn|vn| = 0 on Γ9,

(bct10) vτ = 0, vn > 0, σt
n(θ, v, p) + g+n > 0, (σt

n(θ, v, p) + g+n)vn = 0 onΓ10,

(bct11) vτ = 0, vn 6 0, σt
n(θ, v, p)− g−n 6 0, (σt

n(θ, v, p)− g−n)vn = 0 on Γ11,

where εn(v) = E(v)n, εnn(v) = (E(v)n, n)Rl , εnτ (v) = E(v)n − εnn(v)n, vn = v · n,

vτ = v−(v·n)n and hi, φi, αij (components of matrix α) are given functions or vectors

of functions. Finally, gτ ∈ L2(Γ8), gn ∈ L2(Γ9), g+n ∈ L2(Γ10), g−n ∈ L2(Γ11),

gτ > 0, gn > 0, g+n > 0, g−n > 0, at a.e. x of the portions of the boundary.

R em a r k 2.1. On the wall of a domain of fluid the stick boundary condition

v = 0 is common, but on the inlets and outlets the pressure boundary condition is

more common, because it is difficult to know the velocity profile except special cases

and it is natural to prescribe the value of the pressure. According to measurement

instruments, we can know the static pressure p or total pressure 1
2 |v|

2+p (Bernoulli’s

pressure). Boundary conditions (bct1)–(bct11) are obtained from (bcs1)–(bcs11) by

replacing p with 1
2 |v|

2 + p. For the meanings and physical background of the bound-

ary conditions of friction types (bcs8)–(bcs11) and (bct8)–(bct11), we refer to Intro-

duction of [8] and the references therein. For the other boundary conditions we refer

the reader to Fig. 1 and the explanation on page 92 of [9].

For convenience in what follows, the problems with boundary conditions (bcs1)–

(bcs11) and (bct1)–(bct11) are called, respectively, the case of static pressure and the

case of total pressure.

We use the following assumption.

Assumption 2.1. We assume the following:

(1) Γ1 6= ∅ and ΓD 6= ∅.

(2) If Γi, where i is 10 or 11, is nonempty, then at least one of {Γj : j ∈

{{2, 4, 7, 9, 10, 11} \ {i}} is nonempty and there exists a diffeomorphism in C1

between Γi and Γj .

Also, Γ2j , Γ3j , Γ7j are convex and

(2.1) ΓR ⊂
( ⋃

i=1,3,5,8

Γi

)
.

(3) For the functions of (1.1) f ∈ L
3(Ω), g ∈ L6/5(Ω) and

µ ∈ C(R), 0 < µ0 6 µ(ξ) 6 µ1 < ∞ ∀ ξ ∈ R,

κ ∈ C(R), 0 < κ0 6 κ(ξ) 6 κ1 < ∞ ∀ ξ ∈ R,

γ ∈ C(R), |γ(ξ)| 6 γ0 ∀ ξ ∈ R.
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(4) For the functions of (bc1)–(bc2), (bcs1)–(bcs11), (bct1)–(bct11), gR ∈ L4/3(ΓR),

β0 > β(x) > 0, β0-a constant, β(x)-measurable, φi ∈ H−1/2(Γi), i = 2, 4, 7, and

φi ∈ H
−1/2(Γi), i = 3, 5, 6, the matrix α is positive, αij ∈ L∞(Γ5).

R em a r k 2.2. For the necessity of (2) in Assumption 2.1 we refer the reader to

Remark 2.1 of [9]. Applying Theorems 2.1, 2.2 of [7] on Γij , i = 2, 3, 7, we will embed

the boundary conditions for pressure, vorticity and an artificial condition into the

variational formulations of the problem, and for the theorems the condition Γij ∈ C2,

i = 2, 3, 7, is necessary. The condition for γ(ξ) of (3) in Assumption 2.1 admits

negative specific heat of the fluid.

3. Variational formulations and main results

Let

V = {u ∈ H
1(Ω): divu = 0, u|Γ1

= 0, uτ |(Γ2∪Γ4∪Γ7∪Γ9∪Γ10∪Γ11) = 0,

un|(Γ3∪Γ5∪Γ8) = 0},

K(Ω) = {u ∈ V : un|Γ10
> 0, un|Γ11

6 0}, W 1,2
ΓD

(Ω) = {y ∈ W 1,2(Ω): y|ΓD = 0}.

By (2.1), vn = 0 on ΓR, and so for v ∈ V, θ ∈ W 1,2(Ω) and ϕ ∈ W 1,2
ΓD

(Ω) we have

(3.1) 〈v · ∇(γ(θ)θ), ϕ〉 = (vnγ(θ)θ, ϕ)ΓR − (γ(θ)θv,∇ϕ) = −(γ(θ)θv,∇ϕ).

3.1. Variational formulations: the case of static pressure. Applying The-

orems 2.1, 2.2 of [7] and (3.1), we can see that smooth solutions (v, p, θ) of problem

(1.1), (bc1)–(bc2), (bcs1)–(bcs11) satisfy the following (see (3.1)–(3.5) of [9]).

(3.2)






2(µ(θ)E(v), E(u)) + 〈(v · ∇)v, u〉+ 2(µ(θ)k(x)v, u)Γ2

+2(µ(θ)S̃ṽ, ũ)Γ3
+ 2(α(x)v, u)Γ5

+ (µ(θ)k(x)v, u)Γ7

−2(µ(θ)εnτ (v), u)Γ8
+ (p− 2µ(θ)εnn(v), un)Γ9∪Γ10∪Γ11

= 〈(1 − α0θ)f, u〉+
∑

i=2,4,7

〈φi, un〉Γi +
∑

i=3,5,6

〈φi, u〉Γi ∀u ∈ V,

(κ(θ)∇θ,∇ϕ) − (γ(θ)θv,∇ϕ) + (βθ, ϕ)ΓR

= 〈gR, ϕ〉ΓR + 〈g, ϕ〉 ∀ϕ ∈ W 1,2
ΓD

(Ω),

|στ (θ, v)| 6 gτ , στ (θ, v) · vτ + gτ |vτ | = 0 on Γ8,

|σn(θ, v, p)| 6 gn, σn(θ, v, p)vn + gn|vn| = 0 on Γ9,

σn(θ, v, p) + g+n > 0, (σn(θ, v, p) + g+n)vn = 0 on Γ10,

σn(θ, v, p) − g−n 6 0, (σn(θ, v, p)− g−n)vn = 0 on Γ11,
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where S̃ is the shape operator of boundary surface, ṽ and ũ are expressions of the

vectors v and u in a local orthogonal curvilinear coordinates on Γ3 and k(x) =

divn(x) (see Theorems 2.1 and 2.2 of [7]).

Define a0(θ; ·, ·), a1(·, ·, ·), f1 ∈ V
∗, b0(θ; ·, ·), and g1 ∈ (W 1,2

ΓD
(Ω))∗ by

(3.3) a0(θ;w, u) = 2(µ(θ)E(w), E(u)) + 2(µ(θ)k(x)w, u)Γ2
+ 2(µ(θ)S̃w̃, ũ)Γ3

+ 2(α(x)w, u)Γ5
+ (µ(θ)k(x)w, u)Γ7

∀w, u ∈ V, θ ∈ W 1,2(Ω),

a1(v, w, u) = 〈(v · ∇)w, u〉 ∀ v, w, u ∈ V,

〈f1, u〉 =
∑

i=2,4,7

〈φi, un〉Γi +
∑

i=3,5,6

〈φi, u〉Γi ∀u ∈ V,

b0(θ; θ̃, ϕ) = (κ(θ)∇θ̃,∇ϕ) + (β(x)θ̃, ϕ)ΓR ∀ θ, θ̃ ∈ W 1,2(Ω), ϕ ∈ W 1,2
ΓD

(Ω),

〈g1, ϕ〉 = 〈gR, ϕ〉ΓR + 〈g, ϕ〉 ∀ϕ ∈ W 1,2
ΓD

(Ω).

Then, taking into account (3.2) and

στ (θ, v) = 2µ(θ)εnτ (v), σn(θ, v, p) = −p+ 2µ(θ)εnn(v),

we introduce the following variational formulation for problem (1.1), (bc1)–(bc2),

(bcs1)–(bcs11).

Problem 1–VE. Find (v, θ, στ , σn, σ+n, σ−n) ∈ K(Ω) × W 1,2
ΓD

(Ω) × L
2
τ (Γ8) ×

L2(Γ9)×H−1/2(Γ10)×H−1/2(Γ11) such that





a0(θ; v, u) + a1(v, v, u)− (στ , uτ )Γ8
− (σn, un)Γ9

− 〈σ+n, un〉Γ10

−〈σ−n, un〉Γ11
− 〈f − α0θf, u〉 = 〈f1, u〉 ∀u ∈ V,

b0(θ; θ, ϕ) − 〈γ(θ)θv,∇ϕ〉 = 〈g1, ϕ〉 ∀ϕ ∈ W 1,2
ΓD

(Ω),

|στ | 6 gτ , στ · vτ + gτ |vτ | = 0 on Γ8,

|σn| 6 gn, σnvn + gn|vn| = 0 on Γ9,

σ+n + g+n > 0, 〈σ+n + g+n, vn〉Γ10
= 0 on Γ10,

σ−n − g−n 6 0, 〈σ−n − g−n, vn〉Γ11
= 0 on Γ11,

where L2
τ (Γ8) is the subspace of L

2(Γ8) consisting of functions so that (u, n)L2(Γ8)=0.

We will find another variational formulation consisting of a variational inequality

and a variational equation, which is equivalent to Problem 1–VE.
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Define the functionals φτ , φn, φ+, φ−, respectively, by

φτ (η) =

∫

Γ8

gτ |η| dx ∀ η ∈ L
2
τ (Γ8),

φn(η) =

∫

Γ9

gn|η| dx ∀ η ∈ L2(Γ9),

φ+(η) =

∫

Γ10

g+nη dx ∀ η ∈ L2(Γ10),

φ−(η) = −

∫

Γ11

g−nη dx ∀ η ∈ L2(Γ11).

Since if u ∈ K(Ω), then u|Γ8
∈ L

2
τ (Γ8), un|Γ9

∈ L2(Γ9), un|Γ10
∈ L2(Γ10),

un|Γ11
∈ L2(Γ11), in what follows we use the notation

φτ (u) = φτ (u|Γ8
), φn(u) = φn(un|Γ9

), φ+(u) = φ+(un|Γ10
), φ−(u) = φ−(un|Γ11

)

for u ∈ K(Ω).

Define a functional Φ: V → R ≡ R ∪ {∞} by

Φ(u) =

{
φτ (u) + φn(u) + φ+(u) + φ−(u) ∀u ∈ K(Ω),

∞ ∀u /∈ K(Ω).

Then Φ is proper, convex lower weak semi-continuous. Note Φ > 0, since un|Γ10
> 0,

un|Γ11
6 0 for all u ∈ K(Ω).

In the same way as for Problem I–VI of [8], we get the following variational

formulation for Problem 1 (the case of static pressure) equivalent to Problem 1–VE

which consists of a variational inequality and a variational equation (cf. Problem I–VI

of [9]).

Problem 1–VI. Find (v, θ) ∈ V ×W 1,2
ΓD

(Ω) such that

(3.4)





a0(θ; v, u − v) + a1(v, v, u− v) + Φ(u)− Φ(v)− 〈f − α0θf, u− v〉

> 〈f1, u− v〉 ∀u ∈ V,

b0(θ; θ, ϕ)− 〈γ(θ)θv,∇ϕ〉 = 〈g1, ϕ〉 ∀ϕ ∈ W 1,2
ΓD

(Ω).

R em a r k 3.1. When (v, θ, στ , σn, σ+n, σ−n) is a smooth solution to Prob-

lem 1–VE, for the existence of p such that (v, θ, p) satisfies (1.1) and boundary

condition (bcs1)–(bcs11), we refer the reader to Theorem 3.1 of [8] (cf. Theorem 3.1

of [9]).

When (v, θ) is a solution to Problem 1–VI, for the existence of στ , σn, σ+n, σ−n

such that (v, θ, στ , σn, σ+n, σ−n) satisfies Problem 1–VE, we refer the reader to The-

orem 3.3 of [8].
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3.2. Variational formulations: the case of total pressure. Taking (v ·∇)v =

rot v×v+ 1
2grad|v|

2 into account, we can see that smooth solutions (v, p, θ) of problem

(1.1), (bc1)–(bc2), (bct1)–(bct11) satisfy the following:

(3.5)





2(µ(θ)E(v), E(u)) + 〈rot v × v, u〉+ 2(µ(θ)k(x)v, u)Γ2

+2(µ(θ)S̃ṽ, ũ)Γ3
+ 2(α(x)v, u)Γ5

+ (µ(θ)k(x)v, u)Γ7

−2(µ(θ)εnτ (v), u)Γ8
+
(
p+

1

2
|v|2 − 2µ(θ)εnn(v), un

)

Γ9∪Γ10∪Γ11

= 〈(1 − α0θ)f, u〉+
∑

i=2,4,7

〈φi, un〉Γi +
∑

i=3,5,6

〈φi, u〉Γi ∀u ∈ V,

(κ(θ)∇θ,∇ϕ) − (γ(θ)θv,∇ϕ) + (βθ, ϕ)ΓR

= 〈gR, ϕ〉ΓR + 〈g, ϕ〉 ∀ϕ ∈ W 1,2
ΓD

(Ω),

|σt
τ (θ, v)| 6 gτ , σt

τ (θ, v) · vτ + gτ |vτ | = 0 on Γ8,

|σt
n(θ, v, p)| 6 gn, σt

n(θ, v, p)vn + gn|vn| = 0 on Γ9,

σt
n(θ, v, p) + g+n > 0, (σt

n(θ, v, p) + g+n)vn = 0 on Γ10,

σt
n(θ, v, p)− g−n 6 0, (σt

n(θ, v, p)− g−n)vn = 0 on Γ11.

Define a2(·, ·, ·) by

a2(v, u, w) = 〈rot v × u,w〉 ∀ v, u, w ∈ V.

Then taking into account (3.5) and

σt
τ (θ, v) = 2µ(θ)εnτ (v), σt

n(θ, v, p) = −
(
p+

1

2
|v|2

)
+ 2µ(θ)εnn(v),

we introduce the following variational formulation for problem (1.1), (bc1)–(bc2),

(bct1)–(bct11).

Problem 2–VE. Find (v, θ, σt
τ , σ

t
n, σ

t
+n, σ

t
−n) ∈ K(Ω) × W 1,2

ΓD
(Ω) × L

2
τ (Γ8) ×

L2(Γ9)×H−1/2(Γ10)×H−1/2(Γ11) such that





a0(θ; v, u) + a2(v, v, u)− (σt
τ , uτ )Γ8

− (σt
n, un)Γ9

−
〈
σt
+n, un

〉
Γ10

−
〈
σt
−n, un

〉
Γ11

− 〈f − α0θf, u〉 = 〈f1, u〉 ∀u ∈ V,

b0(θ; θ, ϕ) − 〈γ(θ)θv,∇ϕ〉 = 〈g1, ϕ〉 ∀ϕ ∈ W 1,2
ΓD

(Ω),

|σt
τ | 6 gτ , σt

τ · vτ + gτ |vτ | = 0 on Γ8,

|σt
n| 6 gn, σt

nvn + gn|vn| = 0 on Γ9,

σt
+n + g+n > 0,

〈
σt
+n + g+n, vn

〉
Γ10

= 0 on Γ10,

σt
−n − g−n 6 0,

〈
σt
−n − g−n, vn

〉
Γ11

= 0 on Γ11.

Then we get Problem 2–VI equivalent to Problem 2–VE, which consists of a vari-

ational inequality and a variational equation (cf. Problem II–VI of [9]).
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Problem 2–VI. Find (v, θ) ∈ V ×W 1,2
ΓD

(Ω) such that

(3.6)





a0(θ; v, u − v) + a2(v, v, u− v) + Φ(u)− Φ(v)− 〈f − α0θf, u− v〉

> 〈f1, u− v〉 ∀u ∈ V,

b0(θ; θ, ϕ)− 〈γ(θ)θv,∇ϕ〉 = 〈g1, ϕ〉 ∀ϕ ∈ W 1,2
ΓD

(Ω).

3.3. Main results. Main results of this paper are the following theorems.

Theorem 3.1. Under Assumption 2.1 assume that f , φi, i = 2, . . . , 7, g, gR are

small enough (depending on α0) in the spaces in (3), (4) of Assumption 2.1 (see

(4.5)).

Then there exists a solution (v, θ) to Problem I–VI such that

(3.7) ‖v‖V 6
µ0

K
, ‖θ‖W 1,2(Ω) 6 c(‖gR‖L4/3(ΓR) + ‖g‖L6/5(Ω)),

where K is the one in (4.3) below.

If µ(θ), κ(θ) and γ(θ) are independent of θ and ‖f‖L3 is small enough, then the

solution satisfying ‖v‖V 6 c, ‖θ‖W 1,2(Ω) 6 c for a constant c small enough is unique.

Theorem 3.2. Under Assumption 2.1 there exists a solution (v, θ) to Prob-

lem 2–VI such that

‖v‖V 6 c

(
‖f‖L3 +

∑

i=2−7

‖φi‖Γi + ‖gR‖L4/3(ΓR) + ‖g‖L6/5(Ω)

)
,(3.8)

‖θ‖W 1,2(Ω) 6 c(‖gR‖L4/3(ΓR) + ‖g‖L6/5(Ω)).

4. Proof of Theorem 3.2

To prove Theorems 3.1 and 3.2, we use the following proposition.

Proposition 4.1. Let A : X → X∗ be an operator on the real reflexive Banach

space X . Let A be coercive and bounded. If for every sequence {xn} such that

xn ⇀ x in X,

lim sup
n→∞

〈Axn, xn − x〉 6 0

there exists a subsequence {xk} such that

lim inf
k→∞

〈Axk, xk − v〉 > 〈Ax, x− v〉 ∀ v ∈ X,

then for any f ∈ X∗ there exists a solution to

Au = f.
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(See Proposition 4.4 and Remark 4.1 of [8].)

For every ε > 0, Φε (the Moreau regularization of Φ) is defined by

Φε(y) = inf
{‖y − u‖2

V

2ε
+Φ(u); u ∈ V

}
, y ∈ V.

When ∂Φ: V → 2V is the sub-differential of Φ, let Jε = (I + ε∂Φ)−1 and (∂Φ)ε :=

ε−1(I − Jε) (the Yosida approximation of ∂φ) for all ε > 0. Then the functional Φε

is convex, continuous, Fréchet differentiable and ∇Φε = (∂Φ)ε ≡ ε−1(I − Jε) for all

ε > 0. Moreover,

Φε(y) =
‖y − Jεy‖

2
V

2ε
+Φ(Jεy) ∀ y ∈ V,(4.1)

lim
ε→0

Φε(y) = Φ(y), Φ(Jεy) 6 Φε(y) 6 Φ(y) ∀ y ∈ V(4.2)

(cf. Theorem2.9 of [3]). The operator ∇Φε is Lipschitz continuous with the

constant ε−1 (see Theorem 2.9 and Proposition 2.3 of [3]) and monotone (see

Lemma 4.10, Chapter III of [5]).

4.1. Existence of a solution to an auxiliary problem. Taking into account

(4.3) |a1(v, v, u)| = |((v · ∇)v, u)| 6 K‖v‖2
V
‖u‖V ∀ v, u ∈ V,

define a1(v) ∈ V
∗ by

〈a1(v), u〉 = a1(v, v, u) ∀ v, u ∈ V.

Also, define γε(t) by

γε(t) :=
γ(t)t

(1 + ε|γ(t)|)(1 + ε|t|)
, t ∈ R, ε > 0.

Let us first consider an auxiliary problem for Problem 1–VI:

Problem 1–VIA. Let δ > 0, ζ > 0, λ > 0 and ε > 0. Find (v, θ) ∈ V ×W 1,2
ΓD

(Ω)

such that

(4.4)





a0(θ; v, u) +
δ

max{δ, ‖a1(v)‖V∗}
a1(v, v, u) + 〈∇Φε(v), u〉

−
〈(

1−
λ

max{λ, ‖θ‖L2}
α0θ

)
f, u

〉
= 〈f1, u〉 ∀u ∈ V,

b0(θ; θ, ϕ) −
ζ

max{ζ, ‖v‖V}
〈γε(θ)v,∇ϕ〉 = 〈g1, ϕ〉 ∀ϕ ∈ W 1,2

ΓD
(Ω).

Theorem 4.1. There exists a solution (vε, θε) ∈ V×W 1,2
ΓD

(Ω) to Problem 1–VIA.
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P r o o f. Let H = V ×W 1,2
ΓD

(Ω) and define an operator A : H → H ∗ by

〈A (v, θ), (u, φ)〉 = a0(θ; v, u) +
δ

max{δ, ‖a1(v)‖V∗}
a1(v, v, u) + 〈∇Φε(v), u〉

−
〈(

1−
α0λ

max{λ, ‖θ‖L2}
θ
)
f, u

〉
+ b0(θ; θ, φ)

−
ζ

max{ζ, ‖v‖V}
〈γε(θ)v,∇φ〉 ∀ (v, θ), (u, φ) ∈ H ,

which is well-defined (cf. (4.10)–(4.14) of [9]). Then the existence of a solution to

Problem 1–VIA is equivalent to the existence of a solution to

A (v, θ) = F , F =

(
f1
g1

)
.

In the same way as in the proof of Theorem 4.5 of [9] we can prove that the op-

erator A satisfies the conditions of Proposition 4.1. Therefore, by virtue of Propo-

sition 4.1 we come to the conclusion. �

R em a r k 4.1. Introducing the parameters δ, λ and ζ, we made a truncated

problem, Problem 1–VIA. Owing to this truncation, we can define the operator A :

H → H ∗ satisfying the conditions of Proposition 4.1 (cf. the proof of Theorem 4.5

of [9]).

In the proof of Theorem 4.3 below, when the data of the problem are small enough,

we will get estimates of the solutions to the truncated problem, which are independent

of the parameters. Then, taking the parameters δ, λ and ζ in accordance with the

estimates, we will show that the solutions to the truncated problem are solutions to

an approximate problem (4.6) below.

4.2. Existence and estimates of solutions to an approximate problem.

Theorem 4.2. If

(4.5) ‖g1‖(W 1,2
ΓD

)∗‖f‖L3 + ‖f + f1‖V∗ 6
µ2
0

Kcα0

,

where K is the one in (4.3) and cα0
is the one in (4.19) below, then there exists

a solution (vε, θε) ∈ V ×W 1,2
ΓD

(Ω) to the problem

(4.6)





a0(θε; vε, u) + a1(vε, vε, u) + 〈∇Φε(vε), u〉 − 〈(1 − α0θε)f, u〉

= 〈f1, u〉 ∀u ∈ V,

b0(θε; θε, ϕ)− 〈γε(θε)vε,∇ϕ〉 = 〈g1, ϕ〉 ∀ϕ ∈ W 1,2
ΓD

(Ω),

and the solution satisfies:

(4.7) ‖vε‖V 6
µ0

K
, ‖θε‖W 1,2

ΓD
(Ω) 6 c‖g1‖(W 1,2

ΓD
)∗ .
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P r o o f. Let (vε, θε) be a solution to (4.4). Putting ϕ = θε in the second equation

of (4.4), we have

(4.8) (κ(θε)∇θε,∇θε) + (β(x)θε, θε)ΓR −
ζ

max{ζ, ‖v‖V}
〈γε(θε)vε,∇θε〉 = 〈g1, θε〉.

Let us prove

(4.9) 〈γε(θε)vε,∇θε〉 = 0.

To this end, define

Ψ(t) :=

∫ t

0

γε(s) ds, t ∈ R.

Then Ψ ∈ C1(R) and

∇Ψ(θ) = γε(θ)∇θ, Ψ(θ) ∈ W 1,2(Ω) ∀ θ ∈ W 1,2(Ω),(4.10)

Ψ(θ)|ΓD = 0 ∀ θ ∈ W 1,2
ΓD

(Ω).

Taking into account vε · n|ΓR = 0, by (4.10) we have

〈γε(θ)vε,∇θε〉 =

∫

Ω

γε(θε)vε · ∇θε dx =

∫

Ω

vε · ∇Ψ(θε) = 0,

which means (4.9). Also,

|〈g1, θε〉| 6
κ0

4
‖θε‖

2
H1 + c‖g1‖

2
(W 1,2

ΓD
)∗
, (β(x)θε, θε)ΓR > 0.(4.11)

By (4.8), (4.9) and (4.11), we have

(4.12) ‖θε‖
2
W 1,2

ΓD

6
2c

κ0
‖g1‖

2
(W 1,2

ΓD
)∗
,

which implies

(4.13) ‖θε‖L2 6 c1‖g1‖(W 1,2
ΓD

)∗ .

Putting

λ = c1‖g1‖(W 1,2
ΓD

)∗

and taking into account (4.13), we have

(4.14)
λ

max{λ, ‖θε‖L2}
= 1

and

(4.15)
∣∣∣
〈 α0λ

max{λ, ‖θε‖L2}
θεf, u

〉∣∣∣ 6 c1α0‖g1‖(W 1,2
ΓD

)∗‖f‖L3‖u‖V.
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Putting u = vε in the first equation of (4.4), we have

(4.16) a0(θε; vε, vε) +
δ

max{δ, ‖a1(vε)‖V∗}
a1(vε, vε, vε) + 〈∇Φε(vε), vε〉

−
〈(

1−
α0λ

max{λ, ‖θε‖L2}
θε

)
f, vε

〉
= 〈f1, vε〉.

Since Γ2j , Γ3j , Γ7j are convex and the matrix α is positive, by Korn’s inequality

and Lemma A.3 of [7] we have from (3.3)

(4.17) a0(θ; v, v) > 2µ0‖v‖
2
V.

Since the operator ∇Φε is monotone and ∇Φε(0V) = 0, we have

(4.18) 〈∇Φε(v), v〉 = 〈∇Φε(v)−∇Φε(0V), v − 0V〉 > 0.

Thus, taking into account (4.3), (4.17), (4.18) and (4.15), we have from (4.16)

(4.19) 2µ0‖vε‖
2
V 6 a0(θε; vε, vε)

6
δ

max{δ, ‖a1(vε)‖V∗}
|a1(vε, vε, vε)|+ |α0〈θεf, vε〉|+ |〈f + f1, vε〉|

6 K‖vε‖
3
V
+ cα0

(‖g1‖(W 1,2
ΓD

)∗‖f‖L3 + ‖f + f1‖V∗)‖vε‖V.

Note that the estimate above is independent of δ. This implies

(4.20) 0 6 K‖vε‖
2
V
− 2µ0‖vε‖V + cα0

(‖g1‖(W 1,2
ΓD

)∗‖f‖L3 + ‖f + f1‖V∗).

Let us consider a quadratic equation for x > 0 concerned with the inequality above:

Kx2 − 2µ0x+ a = 0.

If 0 6 Ka 6 µ2
0, then there exists a nonnegative minimum root x1 (6 µ0/K) and

a maximum root x2. Thus, we can see from (4.20) that if

(4.21) ‖g1‖(W 1,2
ΓD

)∗‖f‖L3 + ‖f + f1‖V∗ 6
µ2
0

Kcα0

,

then

(4.22) ‖vε‖V 6
µ0

K
or ‖vε‖V > x2.

On the other hand, from (4.19) we have another estimation under consideration of δ

2µ0‖vε‖
2
V

6 a0(θε; vε, vε) 6 δ‖vε‖V + cα0
(‖g1‖(W 1,2

ΓD
)∗‖f‖L3 + ‖f + f1‖V∗)‖vε‖V,

which implies

(4.23) ‖vε‖V 6
1

2µ0
(δ + cα0

(‖g1‖(W 1,2
ΓD

)∗‖f‖L3 + ‖f + f1‖V∗)).
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In view of (4.22), let us take δ = K(µ0/K)2 = µ2
0/K.

Thus, in view of (4.5), we have from (4.23)

(4.24) ‖vε‖V 6
δ

2µ0
+

1

2µ0

µ2
0

K
=

µ0

K
.

By (4.24) under condition (4.5) we have that ‖a1(vε)‖V∗ 6 K‖vε‖
2
V

6 µ2
0/K

(cf. (4.3)), and so we get

(4.25)
δ

max{δ, ‖a1(vε)‖V∗}
= 1.

Taking ζ = µ0/K, by (4.24) we get

(4.26)
ζ

max{ζ, ‖vε‖V}
= 1.

By (4.14), (4.25) and (4.26), we see that under condition (4.21), (vε, θε) satisfies (4.6).

By virtue of (4.22) and (4.12), we get (4.7). �

4.3. Existence and uniqueness of a solution. First, by passing to the limit of

solutions in Theorem 4.3, we will prove the existence of a solution to Problem 1–VI.

Since estimate (4.7) is independent of the parameter ε, we can extract subsequences,

which are denoted as before, such that

vε ⇀ v in V,

vε → v in L
q, 1 6 q < 6,

θε ⇀ θ in W 1,2(Ω),

θε → θ in Lq(Ω), 1 6 q < 6,

as ε → 0.

Subtracting the first formula of (4.6) with u = vε from the first formula of (4.6),

we have

(4.27) a0(θε; vε, u− vε) + a1(vε, vε, u− vε) + 〈∇Φε(vε), u− vε〉

− 〈(1− α0θε)f, u− vε〉 = 〈f1, u− vε〉 ∀u ∈ V.

By Corollaries 4.2 and 4.3 of [8]

a0(θε; vε, u) → a0(θ; v, u) as ε → 0,

lim inf
ε→0

a0(θε; vε, vε) > a0(θ; v, v),

which imply that

(4.28) lim sup
ε→0

a0(θε; vε, u− vε) 6 a0(θ; v, u − v).
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It is easy to prove

(4.29) a1(vε, vε, u− vε) → a1(v, v, u− v) as ε → 0.

Since Φε is convex, continuous and Fréchet differentiable, we have

(4.30) Φε(u)− Φε(vε) > 〈∇Φε(vε), u− vε〉 ∀u ∈ V,

which owing to (4.2) implies

(4.31) Φε(u)− Φ(Jεvε) > 〈∇Φε(vε), u− vε〉 ∀u ∈ V.

Since Φ(0V) = 0, by (4.2) Φε(0V) = 0, and so from (4.30) we have

(4.32) Φε(vε) 6 〈∇Φε(vε), vε〉 .

On the other hand, putting u = vε in the first formula of (4.6), we have

(4.33) a0(θε; vε, vε) + a1(vε, vε, vε) + 〈∇Φε(vε), vε〉 = 〈(1 − α0θε)f, vε〉+ 〈f1, vε〉.

From (4.32) and (4.33) we have

a0(θε; vε, vε) + a1(vε, vε, vε) + Φε(vε) 6 〈(1− α0θε)f, vε〉+ 〈f1, vε〉,

from which we get

(4.34) |Φε(vε)| 6 c(‖g1‖(W 1,2
ΓD

)∗‖f‖L3 + ‖f‖L3 + ‖f1‖V∗)‖vε‖V + |a1(vε, vε, vε)|.

By virtue of (4.1), (4.3), (4.23) and (4.34), we have

‖vε − Jεvε‖
2
V 6

[
c(‖g1‖(W 1,2

ΓD
)∗‖f‖L3 + ‖f‖L3 + ‖f1‖V∗)‖vε‖V)

µ0

K
+

µ3
0

K2

]
2ε,

which shows that since vε ⇀ v in V,

Jεvε ⇀ v in V as ε → 0.

Then, by virtue of lower weak semi-continuity of Φ(v)

(4.35) lim inf
ε→0

Φ(Jεvε) > Φ(v).

By (4.2) we have

(4.36) Φε(u) → Φ(u) as ε → 0.
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Taking into account (4.35) and (4.36), we have from (4.31)

(4.37) Φ(u)− Φ(v) > lim sup
ε→0

〈∇Φε(vε), u− vε〉 ∀u ∈ V.

Using

|〈θεf, vε〉 − 〈θf, v〉| 6 |〈θεf, vε〉 − 〈θf, vε〉|+ |〈θf, vε〉 − 〈θf, v〉|

6 ‖θε − θ‖L3‖f‖L2‖vε‖L6 + ‖θ‖L6‖f‖L2‖vε − v‖L3 ,

we can prove

(4.38) 〈(1 − α0θε)f, u − vε〉 → 〈(1− α0θ)f, u− v〉 as ε → 0.

It is easy to prove

(4.39) 〈f1, u− vε〉 → 〈f1, u− v〉 as ε → 0.

By virtue of (4.28), (4.29), (4.37), (4.38) and (4.39), from (4.27) we get

a0(θ; v, u − v) + a1(v, v, u− v) + Φ(u)− Φ(v)

− 〈(1− α0θ)f, u − v〉 > 〈f1, u− v〉 ∀u ∈ V,

which is the first formula in (3.4).

We will get the second equation of (3.4). By Corollary 4.2 of [8], we have

(4.40) b0(θε; θε, ϕ) → b0(θ; θ, ϕ) ∀ϕ ∈ W 1,2
ΓD

(Ω) as ε → 0.

Let us prove

(4.41) 〈γε(θε)vε,∇φ〉 → 〈γ(θ)θv,∇ϕ〉 ∀ϕ ∈ W 1,2
ΓD

(Ω) as ε → 0.

By Hölder’s inequality, we have

(4.42) |〈γε(θε)vε,∇ϕ〉 − 〈γ(θ)θv,∇ϕ〉|

6 |〈γε(θε)vε,∇ϕ〉 − 〈γ(θ)θvε,∇ϕ〉|+ |〈γ(θ)θvε,∇ϕ〉 − 〈γ(θ)θv,∇ϕ〉|

6 ‖γε(θε)− γ(θ)θ‖L3‖vε‖L6‖∇ϕ‖L2 + ‖γ(θ)θ‖L4‖vε − v‖L4‖∇ϕ‖L2 .

By the definition of γε(t), we have

(4.43)

‖γε(θε)− γ(θ)θ‖L3 6

∥∥∥
γ(θε)θε

(1 + ε|γ(θε)|)(1 + ε|θε|)
− γ(θ)θ

∥∥∥
L3

6 ‖γ(θε)θε − γ(θ)θ‖L3 + ε‖γ(θ)θ(|γ(θε)|+ |θε|+ ε|γ(θε)||θε|)‖L3 .

Then we see that γ(θk) converges to γ(θ) in space L
p(Ω) for any p ∈ (1,∞) as ε goes

to zero (see Lemma 4.1 of [8]). Thus, from (4.42), (4.43) we get (4.41).
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By virtue of (4.40) and (4.41), from the second formula of (4.6) we get the second

formula of (3.4). Estimates (3.7) follow from (4.7).

Next, let us prove the uniqueness of the solution. Suppose that there are two

solutions (v1, θ1) and (v2, θ2). Since µ is independent of θ, denoting a0(·; v, u) by

a0(v, u) we have

a0(v1, v2 − v1) + a1(v1, v1, v2 − v1) + Φ(v2)− Φ(v1)− 〈f − α0θ1f, v2 − v1〉

> 〈f1, v2 − v1〉,

a0(v2, v1 − v2) + a1(v2, v2, v1 − v2) + Φ(v1)− Φ(v2)− 〈f − α0θ2f, v1 − v2〉

> 〈f1, v1 − v2〉,

which imply

(4.44) a0(v1 − v2, v1 − v2) 6 |α0||(θ1 − θ2)f, v1 − v2)|

+ |a1(v1, v1, v1 − v2)− a1(v2, v2, v1 − v2)|.

By virtue of (4.44), we have

2µ‖v1 − v2‖
2
V 6

µ

2
‖v1 − v2‖

2
V + c‖f‖2

L3‖θ1 − θ2‖
2

+ |a1(v1 − v2, v1, v1 − v2) + a1(v2, v1 − v2, v1 − v2)|

6
µ

2
‖v1 − v2‖

2
V + c‖f‖2

L3‖θ1 − θ2‖
2 + c1(‖v1‖V + ‖v2‖V)‖v1 − v2‖

2
V

and so

(4.45)
3µ

2
‖v1 − v2‖

2
V 6 c‖f‖2

L3‖θ1 − θ2‖
2 + c1(‖v1‖V + ‖v2‖V)‖v1 − v2‖

2
V.

Since κ(θ), γ(θ) are independent of θ, put κ(θ) = κ, γ(θ) = cv. Then from

(κ∇θ1,∇ϕ) + (β(x)θ1, ϕ)ΓR − cv〈v1θ1,∇ϕ1〉 = 〈g1, ϕ〉,

(κ∇θ2,∇ϕ) + (β(x)θ2, ϕ)ΓR − cv〈v2θ2,∇ϕ〉 = 〈g1, ϕ〉

we have

(4.46) κ(∇θ1 −∇θ2,∇θ1 −∇θ2) + (β(x)(θ1 − θ2), θ1 − θ2)ΓR

− cv〈v1(θ1 − θ2),∇(θ1 − θ2)〉 − cv〈(v1 − v2)θ2,∇(θ1 − θ2)〉 = 0.

Taking into account cv〈v1(θ1 − θ2),∇(θ1 − θ2)〉 = 0 (see (3.1) with γ(θ)=const), we

have from (4.46)

κ‖∇θ1 −∇θ2‖
2
L2 6

cvc

κ
‖v1 − v2‖

2
V‖θ2‖

2
W 1,2

ΓD

+
κ

2
‖∇θ1 −∇θ2‖

2
L2 ,

and so

(4.47)
κ

2
‖θ1 − θ2‖

2
W 1,2 6

cvc

κ
‖v1 − v2‖

2
V
‖θ2‖

2
W 1,2

ΓD

.
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Therefore, summing (4.45) and (4.47), we get

min
{3µ

2
,
κ

2

}
(‖v1 − v2‖

2
V + ‖θ1 − θ2‖

2
W 1,2)(4.48)

6 c‖f‖2
L3‖θ1 − θ2‖

2
L2 + c1(‖v1‖V + ‖v2‖V)‖v1 − v2‖

2
V

+
cvc

κ
‖v1 − v2‖

2
V
‖θ2‖

2
W 1,2

ΓD

.

Thus, if ‖vi‖V, ‖θ2‖W 1,2
ΓD

and ‖f‖L3 are small, then we have from (4.48) that v1 = v2,

θ1 = θ2.

5. Proof of Theorem 3.2

First, we look for solutions to the auxiliary problem:

Problem 2–VIA. Let ζ > 0, λ > 0 and ε > 0. Find (v, θ) ∈ V ×W 1,2
ΓD

(Ω) such

that

(5.1)





a0(θ; v, u) + a2(v, v, u) + 〈∇Φε(v), u〉 −
〈(

1−
α0λ

max{λ, ‖θ‖L2}
θ
)
f, u

〉

= 〈f1, u〉 ∀u ∈ V,

b0(θ; θ, ϕ)−
ζ

max{ζ, ‖vε‖V}
〈γε(θ)v,∇ϕ〉 = 〈g1, ϕ〉 ∀ϕ ∈ W 1,2

ΓD
(Ω).

Theorem 5.1. There exists a solution (vε, θε) ∈ V×W 1,2(Ω) to Problem 2–VIA.

P r o o f. Let H = V ×W 1,2
ΓD

(Ω). Define an operator A : H → H ∗ by

〈A (v, η), (u, φ)〉 = a0(η; v, u) + a2(v, v, u) + 〈∇Φε(v), u〉

−
〈(

1−
α0λ

max{λ, ‖θ‖L2}
θ
)
f, u

〉
+ b0(θ; θ, ϕ)

−
ζ

max{ζ, ‖v‖V}
〈γε(η)v,∇ϕ〉 ∀ (v, η), (u, φ) ∈ H .

Using

a2(v, v, v) = 0, |a2(v, v, u)| 6 K‖v‖2
V
‖u‖V,

|a2(vε, vε, vε − u)| 6 c‖∇vε‖L2‖vε‖L4‖vε − u‖L4,

we can verify that the proof of Theorem 4.2 for Problem 1–VIA is valid for Prob-

lem 2–VIA. Thus, we come to the asserted conclusion (cf. Proof of Theorem 5.1

of [9]). �
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Theorem 5.2. There exists a solution (vε, θε) ∈ V×W 1,2
ΓD

(Ω) to the approximate

problem

(5.2)





a0(θε; vε, u) + a2(vε, vε, u) + 〈∇Φε(vε), u〉 − 〈(1 − α0θε)f, u〉

= 〈f1, u〉 ∀u ∈ V,

b0(θε; θε, ϕ)− 〈γε(θε)vε,∇ϕ〉 = 〈g1, ϕ〉 ∀ϕ ∈ W 1,2
ΓD

(Ω)

and the solution satisfies:

‖vε‖V 6
c

2µ0
(‖g1‖(W 1,2

ΓD
)∗‖f‖L3 + ‖f‖V∗ + ‖f1‖V∗),(5.3)

‖θε‖W 1,2
ΓD

(Ω) 6 c‖g1‖(W 1,2
ΓD

)∗ .

P r o o f. Let (vε, θε) be a solution to (5.1). In the same way as in (4.8)–(4.12) we

have

(5.4) ‖θε‖
2
W 1,2

ΓD

6
2c

κ0
‖g1‖

2
(W 1,2

ΓD
)∗

which implies

‖θε(x)‖L2 6 c1‖g1‖(W 1,2
ΓD

)∗ .

Then putting λ = c1‖g1‖(W 1,2
ΓD

)∗ , we have from the first equation of (5.1)

(5.5) a0(θε; vε, u)+a2(vε, vε, u)+〈∇Φε(vε), u〉−〈(1−α0θε)f, vε〉 = 〈f1, u〉 ∀u ∈ V.

Putting u = vε in (5.5), we have

(5.6) a0(θε; vε, vε) + a2(vε, vε, vε) + 〈∇Φε(vε), vε〉 − 〈(1 − α0θε)f, vε〉 = 〈f1, vε〉.

Taking into account a2(vε, vε, vε) = 0, (4.17), (4.18) and (5.4), we have from (5.6)

2µ0‖vε‖
2
V 6 a0(θ; v, v) 6 c(α0c1‖g1‖(W 1,2

ΓD
)∗‖f‖L3 + ‖f‖V∗ + ‖f1‖V∗)‖vε‖V

which implies

(5.7) ‖vε‖V 6
c

2µ0
(α0c1‖g1‖(W 1,2

ΓD
)∗‖f‖L3 + ‖f‖V∗ + ‖f1‖V∗).

Taking the right-hand side of (5.7) as ζ in (5.1), we get the second equation of (5.2).

By (5.4) and (5.7), we get (5.3). �

Now repeating the arguments in Subsection 4.3 with the solutions of Theorem 5.2,

we complete the proof of Theorem 3.2. �
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