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ON EXACT SOLUTIONS OF A CLASS
OF INTERVAL BOUNDARY VALUE PROBLEMS

Nizami A. Gasilov

In this article, we deal with the Boundary Value Problem (BVP) for linear ordinary differ-
ential equations, the coefficients and the boundary values of which are constant intervals. To
solve this kind of interval BVP, we implement an approach that differs from commonly used
ones. With this approach, the interval BVP is interpreted as a family of classical (real) BVPs.
The set (bunch) of solutions of all these real BVPs we define to be the solution of the interval
BVP. Therefore, the novelty of the proposed approach is that the solution is treated as a set of
real functions, not as an interval-valued function, as usual.

It is well-known that the existence and uniqueness of the solution is a critical issue, especially
in studying BVPs. We provide an existence and uniqueness result for interval BVPs under
consideration. We also present a numerical method to compute the lower and upper bounds of
the solution bunch. Moreover, we express the solution by an analytical formula under certain
conditions. We provide numerical examples to illustrate the effectiveness of the introduced
approach and the proposed method. We also demonstrate that the approach is applicable to
non-linear interval BVPs.

Keywords: interval differential equations, boundary value problem, bunch of functions,
linear differential equations

Classification: 34B05, 93B03, 65G40

1. INTRODUCTION

To predict or understand the behavior of a dynamic system in engineering and science
problems, we create a mathematical model based on a differential equation. Often the
exact values of many parameters involved in the equation are unknown, but it is possible
to determine the intervals where these values lie. Thus, interval-valued differential equa-
tions arise. Interval-valued differential equations can be considered also as a particular
case of set-valued differential equations. Many significant studies are devoted to set and
interval differential equations [2, 6, 7, 12, 15, 17, 18, 22, 23, 29]. These studies mainly
differ in the differentiability concepts that they use. The fact is that most researchers
share the idea that to tackle problems with uncertainty, it is necessary to create a set-
valued calculus (in particular, an interval-valued calculus). They expect that if this
set-valued calculus had the same properties as the classical (real) calculus, then the ex-
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isting classical methods could be adapted to solve problems with uncertainty. Different
concepts of derivative such as Huygens derivative [5], π-derivative [3], Markov-derivative
[20], T -derivative [25], Hukukara derivative [13], strongly generalized derivative [4], gH-
derivative [28] and dH-derivative [16] are proposed and investigated in different studies.
These concepts have been employed to solve various differential equations with uncer-
tainty [1, 6, 12, 19, 21, 24, 27, 29, 30, 31]. Undoubtedly, the above-mentioned studies
enriched the theory of set-valued functions. Nevertheless, the main expectation regard-
ing the set-valued calculus is still not met. We can indicate three essential difficulties:
(i) The proposed derivatives are generally not easy to calculate and apply for problem
solving (The main reason for this is that set-valued arithmetic is underdeveloped, es-
pecially for non-convex sets); (ii) The existence and uniqueness of solution cannot be
guaranteed even for Initial Value Problems (IVPs); (iii) The solutions produced are not
always consistent with the nature of the studied real-life problem. The main source
of these difficulties is the difference operation. The Hukuhara difference is not always
defined, while any other difference operation is not the opposite of addition, unlike real
arithmetic. As a result, attempts to create a set-valued calculus similar to real calculus
fail.

Despite the fact that interval arithmetic is relatively simple, reflections of the dif-
ficulties mentioned above are also encountered when we treat interval-valued calculus
for solving interval differential equations. The main challenge in this case is as follows.
To solve an interval differential equation, most studies employ the strongly generalized
(Hukuhara) differentiability [28]. Unfortunately, this differentiability concept has some
serious difficulties. The main difficulty is that generalized differentiability is suitable
only for solutions with monotone (either increasing or decreasing) uncertainty. How to
proceed in cases where the uncertainty alternately increases and decreases is an open
question. Namely, to construct such a solution one should a priori anticipate the switch-
ing points, where a type of generalized derivative (say, (1, 2)-derivative) passes to another
derivative (say, (2, 2)-derivative). But, up to now, there is no clear recommendation for
this. Another difficulty lies in the fact that, under generalized derivative, the solution
may not be unique, or may not exist at all.

Our first motivation in this article is to suggest a new approach to overcome the
aforementioned difficulties. Another motivation is that the suggested approach produces
results that are consistent with the nature of the real-life problems under investigation.
To achieve our goals, we apply the concept of a bunch of real functions [8]. This concept
allows us to dispense without using a set/interval derivative and, thus, to avoid the
above-mentioned drawbacks of the generalized differentiability approach. The employed
approach was applied earlier in studies [8, 10, 11] for interval IVPs and systems. The
novelties of the present study compared to them are: (i) An exact solution is obtained
for linear interval BVPs, for the first time; (ii) Existence and uniqueness results are
formulated neatly and completely; (iii) The advantages of the proposed approach over
the generalized differentiability approach are exhibited for interval BVPs; (iv) The ap-
plicability of the proposed approach to non-linear interval BVPs is demonstrated, and
the difficulties encountered are described.
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2. PRELIMINARIES

In this section, we provide some basic information about a bunch of functions, which is
the key concept of our approach, and about boundary value problems.

2.1. Bunch of functions

Interpreting a function with interval uncertainty as an interval-valued function is a
common, but not the only practice. In this article, we model such a function as a bunch
of real functions (see, [8]). This concept can be briefly explained as follows. Let a set F of
real functions like fα (where α ∈ Λ, and Λ is a set of indices) be given. If the functions
are related to each other in some way, then we call this set a bunch of functions:
F = {fα(·) | α ∈ Λ}. For a given t, we define the set F (t) = {fα(t) | fα ∈ F } to be
the value of the bunch F at t. That is, F (t) is the set consisting of the values of all
functions that constitute the bunch, at t. By definition, F (t) is a subset of the set of real
numbers. Geometrically, it may consist of two or more disconnected parts (intervals, or
isolated points). However, in practice, F (t) is usually an interval.

The following subsection contains the necessary background on boundary value prob-
lems for linear differential equations, existence and uniqueness issues, and some formulas.

2.2. BVP for second-order linear ordinary differential equations

2.2.1. Existence and uniqueness questions

The classical Boundary Value Problem (BVP) for a second-order linear differential equa-
tion is as follows: 

y′′ + p(t)y′ + q(t)y = f(t)

y(0) = a

y(l) = b,

(1)

where a, b and l > 0 are given real numbers; p(t), q(t) and f(t) are given real functions.
Note that in the above setting, the coefficients are not necessarily constants.

It is well-known that initial-value problems (IVPs) have unique solutions (if the func-
tions involved are sufficiently well-behaved). But, boundary-value problems can have
no solution, a unique solution, or even an infinite number of solutions. In what follows,
we will refer to the lemma below to verify the existence and uniqueness of the solution
(The proof can be found in [9]).

Lemma 2.1. Consider the BVP (1), where p(t), q(t) and f(t) are continuous real func-
tions. Let y1(t) and y2(t) be any two linearly independent solutions of the associated
homogeneous equation y′′ + p(t)y′ + q(t)y = 0. BVP (1) has exactly one solution for
every a and b, if and only if y1(0)y2(l)− y1(l)y2(0) 6= 0.

We notice that the existence and uniqueness depend on l and coefficients functions
(p(t) and q(t)), not on the right-hand side function (f(t)).
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2.2.2. A representation for the solution

Consider the boundary value problem for a second-order homogeneous linear differential
equation  y′′ + p(t)y′ + q(t)y = 0

y(0) = a
y(l) = b.

(2)

Below we create a representation for the solution, which we will use in further derivations.
Let w1(t) be the solution of  y′′ + p(t)y′ + q(t)y = 0

y(0) = 1
y(l) = 0

(3)

and w2(t) be the solution of  y′′ + p(t)y′ + q(t)y = 0
y(0) = 0
y(l) = 1.

(4)

Under conditions of Lemma 2.1, the functions w1(t) and w2(t) exist, and the solution
to BVP (2) is

y(t) = a w1(t) + b w2(t). (5)

Remark 2.2. The functions w1(t) and w2(t) can be computed also as follows [9]. If
y1(t) and y2(t) are any two linearly independent solutions of the differential equation

y′′ + p(t)y′ + q(t)y = 0 (6)

then
w1(t) = y2(l)y1(t)−y1(l)y2(t)

y1(0)y2(l)−y1(l)y2(0)

w2(t) = y1(0)y2(t)−y2(0)y1(t)
y1(0)y2(l)−y1(l)y2(0) .

(7)

Remark 2.3. By formula (5), the solution of BVP (2) linearly depends on the boundary
values a and b.

By using functions w1(t) and w2(t) we can establish a new criterion for existence and
uniqueness. Based on Lemma 2.1, we can conclude the following.

Lemma 2.4. BVP (1) has exactly one solution for every a and b, if and only if both of
the problems (3) and (4) have solutions, i. e., if the functions w1(t) and w2(t) exist.

2.2.3. The case of constant coefficients

In this case, i. e. when the coefficients p(t) and q(t) are constants, the functions w1(t)
and w2(t) can be expressed by explicit formulas given below. Consider the differential
equation

y′′ + 2py′ + qy = 0. (8)
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(To make further mathematical expressions a little simpler, hereinafter we take 2p in-
stead of p(t)). The characteristic equation is

r2 + 2pr + q = 0.

We have 3 cases for its roots depending on the sign of the discriminant ∆ = 4
(
p2 − q

)
.

Case 1: Distinct real roots (∆ > 0). When ∆ > 0, the roots are r1 = u − v =

−p −
√
p2 − q and r2 = u + v = −p +

√
p2 − q. y1 = er1t and y2 = er2t are linear

independent solutions. Then, by (7), we have:

w1 =
er2l+r1t − er1l+r2t

er2l − er1l
, w2 =

er2t − er1t

er2l − er1l
(9)

or, by using hyperbolic functions,

w1 =
eut sinh v(l − t)

sinh vl
, w2 =

eu(t−l) sinh vt

sinh vl
, (10)

where u = −p and v =
√
p2 − q.

Case 2: Repeated real roots (∆ = 0). In this case, r1 = r2 = −p, and y1 = er1t

and y2 = ter1t. Then

w1 =
(l − t)eut

l
, w2 =

teu(t−l)

l
, (11)

where u = −p.

Case 3: Complex roots (∆ < 0). In this case, r1 = u+ vi = −p+
√
q − p2 i, r2 =

u− vi = −p−
√
q − p2 i, and y1 = eut cos vt, y2 = eut sin vt. Then

w1 =
eut sin v(l − t)

sin vl
, w2 =

eu(t−l) sin vt

sin vl
, (12)

where u = −p and v =
√
q − p2.

When w1(t) and w2(t) are already calculated, the solution of (8) with boundary values
y(0) = a and y(l) = b is determined by (5):

y(t) = a w1(t) + b w2(t).

Remark 2.5. In Cases 1 and 2, the denominators (sinh vl and l) in (10) and (11),
respectively, are positive. Consequently, w1(t) and w2(t) are definite functions. Then,
by Lemma 2.4, the solution of BVP (8) exists and is unique. In Case 3, the solution
exists and is unique (for every a and b), if and only if sin vl 6= 0 ⇔ vl 6= πk, k ∈ Z ⇔
vl
π /∈ Z, where Z denotes the set of integer numbers.

In other words, if p2 − q ≥ 0, then the solution exists and it is unique regardless of
the value of l (as well as the values of a and b). But, if p2 − q < 0, then the value of l
becomes a critical factor:
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If

√
q−p2 l
π is not an integer number, then the solution exists and is unique (for every a

and b);

If

√
q−p2 l
π is an integer number, then, depending on the values a and b, there are either

an infinite number of solutions, or no solution. Namely, if b = ae−pl cos
√
q − p2 l, then

there are an infinite number of solutions: y = e−pt
(
a cos

√
q − p2 t+ c sin

√
q − p2 t

)
,

c ∈ R; otherwise, no solution exists.

3. LINEAR DIFFERENTIAL EQUATIONS WITH INTERVAL COEFFICIENTS

3.1. Formulation of the problem

In this article, we investigate an interval BVP of the following form: Y ′′ + 2PY ′ +QY = 0
Y (0) = A
Y (l) = B,

(13)

where P =
[
p, p

]
, Q =

[
q, q

]
, A = [a, a], B =

[
b, b

]
are given constant intervals and

l > 0 is a given real number.
Usually, researchers consider BVP (13) under generalized Hukuhara differentiability

[13, 28] or differential inclusions approach [14]. But, the generalized differentiability
approach has some essential deficiencies, indicated in Introduction. The main difficulty
with differential inclusions is that there is no derivative concept behind this approach.
Consequently, in the frame of this approach, developing effective solution methods is not
an easy task. Therefore, our aim is to provide a new formalization of interval BVPs.

We interpret interval BVP (13) as a family of real (classical) BVPs such as y′′ + 2py′ + qy = 0
y(0) = a
y(l) = b,

(14)

where p ∈ P , q ∈ Q, a ∈ A and b ∈ B. Under the conditions of Lemma 2.1 (or 2.4),
BVP (14) has a unique solution ypqab, which depends on p, q, a and b.

Our solution concept for (13) is as follows.

Definition 3.1. (Solution). Let an interval BVP (13) be given. We interpret this
problem as the family of all classical BVPs (14), where p ∈ P , q ∈ Q, a ∈ A and b ∈ B.
Suppose each BVP (14) has a unique solution, say ypqab(·). Then, the bunch (set) of all
these real functions ypqab(·) we define to be the solution Y of interval BVP (13).

By Remark 2.5, we have the following criterion for existence and uniqueness.

Theorem 3.2. (Existence and uniqueness criterion). If p2 − q ≥ 0, or

√
q−p2 l
π /∈ Z

(when p2 − q < 0), for all p ∈
[
p, p

]
and q ∈

[
q, q

]
, then, in sense of Definition 3.1, the

solution Y of interval BVP (13) exists and is unique.



382 N.A. GASILOV

Definition 3.1 determines the solution Y conceptually. However, the main interest is
to calculate Y (t), the value of Y for a given t. According to our definition, the bunch Y
consists of solutions of all BVPs (14). It can be seen that the solution of (14) continuously
depends on input parameters p, q, a and b. Then, the set Y (t) determines an interval:
Y (t) =

[
y(t), y(t)

]
. Thus, to finish the task we should compute the boundaries of this

interval: y(t) and y(t).

3.2. Numerical algorithm

A numerical algorithm for calculation y(t) and y(t) is given in [11] and can be explained
briefly as follows.

First, we focus on how to calculate the upper boundary y(t) of the solution bunch Y ,
for a fixed value of t. By Definition 3.1,

y(t) = max
p∈P, q∈Q, a∈A, b∈B

ypqab(t). (15)

By using repeated maximums, the right-hand side of (15) can be represented as follows:

max
p∈P, q∈Q, a∈A, b∈B

ypqab(t) = max
p∈P, q∈Q

(
max

a∈A, b∈B
ypqab(t)

)
.

When the maximum in parentheses

ypq(t) = max
a∈A, b∈B

ypqab(t) (16)

is assessed, p and q are fixed. Then, we can determine the functions w1(t) and w2(t),
and represent the solution as

ypqab(t) = aw1(t) + bw2(t).

Due to the linearity of this representation we obtain:

ypq(t) = max {aw1(t), aw1(t)}+ max
{
bw2(t), b w2(t)

}
. (17)

As a result, we have:

y(t) = max
p∈P, q∈Q

ypq(t). (18)

The lower boundary y(t) of the solution bunch is evaluated similarly.

Based on (18) and (17), the following algorithm is proposed. If we use a grid of n
equally spaced points for each of the intervals P and Q, then we will have n2 pairs (p, q).
For each pair (p, q), we can determine the functions w1(t) and w2(t) and compute ypq(t).
The maximum of these n2 values ypq(t) provides an approximation for y(t). As a result,
the computational complexity of the proposed algorithm is O(n2).

Below we try to explain visually our solution concept and computational algorithm
using a numerical example.
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Example 3.3. Consider interval BVP (13) with l = 5, P = [0.1, 0.3], Q = [10.75, 11.25],
A = [−2.5, −1.5] and B = [0.25, 0.75].

First, we check whether the existence and uniqueness criterion is satisfied. The first
sufficient condition does not hold because p2 − q ≤ 0.32 − 11.25 < 0. Therefore, to

examine the second one we evaluate

√
q−p2 l
π . Since the given intervals P and Q are

located on the positive semi-axis, we have

√
q−p2 l
π ≤

√
q−p2 l
π ≤

√
q−p2 l
π , i. e., 5.196 ≤√

q−p2 l
π ≤ 5.336. Therefore,

√
q−p2 l
π can not be an integer number. Consequently, by

Theorem 3.2, the solution of the Example exists and it is unique.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−4

−3

−2

−1

0

1

2

3

4

t

Y

Fig. 1. The solution of Example 3.3, obtained by the proposed

approach. The solution bunch forms a band in the coordinate plane.

The dashed line depicts the central solution.

Now, we use the proposed algorithm to find an approximation of the solution. In
calculations, we use a grid of n = 11 points for each of the intervals P and Q. Then,
we have 121 pairs as (p, q). For each of them, we solve BVP (14) as follows. The
characteristic equation of the differential equation y′′ + 2p y′ + q y = 0 is r2 + 2pr +
q = 0. Since p ∈ [0.1, 0.3] and q ∈ [10.75, 11.25], the discriminant ∆ = 4(p2 − q)
is negative. Hence, the functions w1(t) and w2(t) are given by (12), and ypqab(t) =
aw1(t) + bw2(t). We determine ypq(t), by using formula (17). The maximum of all
121 values of ypq(t) gives y(t), according to (18). We determine y(t) in similar way,
and finish the computations. The resulting solution is shown in Figure 1. The dashed
line depicts the ”central” solution (the solution of the BVP, obtained by replacing each
interval with its center, i. e., using the values p = 0.2, q = 11, a = −2, and b = 0.5 in
(14)).

We wrote our code in MATLAB R2021a and implemented our numerical experiments
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on a PC with 64-bit MacOS operating system, MacBook Pro M1 CPU and 8 GB RAM.
The actual computational time for Example 3.3 was 1.64 seconds.

We provide the MATLAB-code of our proposed algorithm for solving interval BVPs
below.

function IntervalBVP
% We solve BVP with interval inputs:
% Y'' + 2 P Y' + Q Y = 0, t in (0, l)
% Y(0) = A
% Y(l) = B
% where l = 5, P = [0.1, 0.3], Q = [10.75, 11.25],
% A = [-2.5, -1.5], B = [0.25, 0.75]

% Input parameters
l=5;
p min= 0.1; p max= 0.3; q min=10.75; q max= 11.25;
a min=-2.5; a max=-1.5; b min=0.25; b max=0.75;

T=0:.05:l; % Mesh on t

% Dividing the intervals P and Q into 10 parts
np=10; hp=(p max-p min)/np;
nq=10; hq=(q max-q min)/nq;

% Computing solutions of BVP for different p and q
for i=0:np
for j=0:nq

p=p min+i*hp;
q=q min+j*hq;

[W1 W2] = w12(p,q,l,T);
Y1=W1*a min+W2*b min; Y2=W1*a max+W2*b max;
Y3=W1*a min+W2*b max; Y4=W1*a max+W2*b min;

% Computing the lower and upper boundaries of solution
if (i==0 && j==0)

Ymin=min(min(min(Y1,Y2),Y3),Y4);
Ymax=max(max(max(Y1,Y2),Y3),Y4);

else
Ymin=min(min(min(min(Y1,Y2),Y3),Y4),Ymin);
Ymax=max(max(max(max(Y1,Y2),Y3),Y4),Ymax);

end

end
end

% Filling the area between the lower and upper boundaries
for k=0:200
alfa=k*0.005;
Yw=Ymin+alfa*(Ymax-Ymin);
h = plot(T, Yw);
set(h, 'color', [0 1 0],'LineWidth', 2.25)
grid off
hold on

end
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% Plotting the lower and upper boundaries of solution
h = plot(T, Ymin);
set(h, 'color', 'red', 'LineWidth', 2.25)
hold on
h = plot(T, Ymax);
set(h, 'color', 'red', 'LineWidth', 2.25)
hold on

% Plotting the central solution
p=(p min+p max)/2; q=(q min+q max)/2;
a=(a min+a max)/2; b=(b min+b max)/2;
[W1 W2] = w12(p,q,l,T);
Ycentr=W1*a+W2*b;
h = plot(T, Ycentr, '--');
set(h, 'color', 'black', 'LineWidth', 2.00)

set(gca,'FontSize',20);
xlabel('t','fontsize',20);
ylabel('Y','fontsize',20);
% -----------------------------------------------------------
% Computing the auxiliary solutions W1 and W2
function [W1 W2] = w12(p,q,l,T)
D=4*(pˆ2-q);
if D>0

r1=-p-sqrt(D)/2; r2=-p+sqrt(D)/2;
W1=(exp(r2*l+r1*T)-exp(r1*l+r2*T))/(exp(r2*l)-exp(r1*l));
W2=(exp(r2*T)-exp(r1*T))/(exp(r2*l)-exp(r1*l));

else
if D==0

r1=-p;
W1=(1-T/l).*exp(r1*T);
W2=(T/l).*exp(r1*(T-l));

else
u=-p; v=sqrt(-D)/2;
W1=exp(u*T).*sin(v*(l-T))/sin(v*l);
W2=exp(u*(T-l)).*sin(v*T)/sin(v*l);

end
end
% -----------------------------------------------------------

3.3. Sufficient conditions for analytical solution

In this subsection, we provide some sufficient conditions, under that, the solution is
given by an explicit formula (A similar study, but for IVP (Initial Value Problem), was
performed in [10]). For this, we will investigate how to determine the optimal values p∗,
q∗, a∗ and b∗ such that

y(t) = yp∗q∗a∗b∗(t).

Note that, in general, the optimal values of the parameters depend on t.

Let the following condition be satisfied:

Condition 1: p2 − q > 0, for all p ∈
[
p, p
]

and q ∈
[
q, q
]
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Then, for each BVP (14), the discriminant of the characteristic equation is positive
(∆ > 0), and its roots are distinct real numbers. Consequently, the functions w1(t) and
w2(t) are computed by formula (10):

w1 =
eut sinh v(l − t)

sinh vl
, w2 =

eu(t−l) sinh vt

sinh vl
.

The solution is given by (5):

ypqab(t) = a w1(t) + b w2(t).

Therefore, for each BVP (14) the solution is

ypqab(t) = a
eut sinh v(l − t)

sinh vl
+ b

eu(t−l) sinh vt

sinh vl
, (19)

where u = −p and v =
√
p2 − q.

Since t > 0, l > 0, l− t > 0 and v > 0, we see that w1 and w2 are positive functions:
w1(t) > 0 and w2(t) > 0. Then, by (5), ypqab(t) attains its maximum for a∗ = a and
b∗ = b:

ypq(t) = a w1(t) + b w2(t).

Then we have to determine the optimal values of p and q, i. e., p∗ and q∗. First, we
will deal with q∗. For this, we need the partial derivatives of functions w1 and w2 on q:

∂w1

∂q
=
eut

2v

sinh v(l − t)
sinh vl

(l coth vl − (l − t) coth v(l − t))

∂w2

∂q
=
eu(t−l)

2v

sinh vt

sinh vl
(l coth vl − t coth vt) .

Since x coth kx, (k > 0), is an increasing function of x, we have: ∂w1

∂q > 0 and ∂w2

∂q > 0.
From this, if

Condition 2: a ≥ 0 and b ≥ 0

is satisfied, then we have:

∂ypq
∂q

= a
∂w1

∂q
+ b

∂w2

∂q
≥ 0.

Therefore, ypq is a non-decreasing function of q. Consequently, the maximum is attained
at q∗ = q.

Now let us investigate how to choose the value p∗, which maximizes ypqab(t). We can
see that

∂

∂p

(
sinh vt

sinh vl

)
= −p

v

sinh vt

sinh vl
(l coth vl − t coth vt) .

From this, if

Condition 3: p < 0
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is satisfied, then ∂
∂p

(
sinh vt
sinh vl

)
> 0. On the other hand,

∂

∂p

(
eu(t−l)

)
=

∂

∂p

(
e−p(t−l)

)
=

∂

∂p

(
ep(l−t)

)
= (l − t)ep(l−t) > 0.

Since sinh vt
sinh vl and eu(t−l) are positive and increase with p, we can conclude that their

product w2 = eu(t−l) sinh vtsinh vl also is positive and increases with p. Therefore,

∂w2

∂p
> 0.

To establish the conditions for w1 be increasing with respect to p, we start with the
derivative:

∂w1

∂p
= − p√

p2 − q
eut sinh v(l − t)

sinh vl
t

(
l coth vl − (l − t) coth v(l − t)

t
+

√
p2 − q
p

)
.

The factor in front of the parentheses is positive, when p < 0. Let us investigate that

under what conditions the expression in the parentheses, l coth vl−(l−t) coth v(l−t)t +

√
p2−q
p ,

is also positive. At the beginning, we evaluate the first term. Since

d2

dx2
(x coth vx) = 2v (vx coth vx− 1)

(
coth2 vx− 1

)
=

2v (vx coth vx− 1)

sinh2 vx
> 0,

y = x coth vx is a concave-up function. Then, the slope of secant line,
l coth vl−(l−t) coth v(l−t)

t , which passes through points (l − t, (l − t) coth v(l − t)) and (l, l coth vl)
decreases with t. Consequently, at t→ l the slope is minimum:

l coth vl − (l − t) coth v(l − t)
t

≥ lim
t→l

l coth vl − (l − t) coth v(l − t)
t

=
l coth vl − 1/v

l

= coth vl − 1

vl
.

One can see that ∂
∂p

(
coth vl − 1

vl

)
= d

dv

(
coth vl − 1

vl

)
· ∂v∂p = l

(
1

(vl)2 −
1

sinh2 vl

)
· p√

p2−q
<

0, because of p < 0. Therefore, coth vl − 1
vl decreases with p. Then, we have:

l coth vl − (l − t) coth v(l − t)
t

≥ coth vl − 1

vl
≥ coth

√
p2 − q l − 1√

p2 − q l
. (20)

On the other hand, if
Condition 4: q > 0

is satisfied, then ∂
∂p

(√
p2−q
p

)
= q

p2
√
p2−q

> 0. Therefore,

√
p2 − q
p

≥

√
p2 − q

p
. (21)
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From (20) and (21) we have:
l coth vl−(l−t) coth v(l−t)

t +

√
p2−q
p ≥ coth

√
p2 − q l − 1√

p2−q l
+

√
p2−q
p .

Then, under

Condition 5 a: coth

√
p2 − q l − 1√

p2 − q l
+

√
p2 − q

p
≥ 0

we get ∂w1

∂p ≥ 0. Summing up,

∂ypqab
∂p

= a
∂w1

∂p
+ b

∂w2

∂p
≥ 0.

Therefore, p∗ = p.
We can summarize the above derivations in the form of below statement.

Proposition 3.4. Suppose that the following conditions are met:
1) p2 − q > 0, for all p ∈

[
p, p

]
and q ∈

[
q, q
]
;

2a) a ≥ 0 and b ≥ 0.
Then q∗ = q.
In addition, if
3) p < 0;
4a) q > 0;

5a) coth
√
p2 − q l − 1√

p2−q l
+

√
p2−q
p ≥ 0,

then p∗ = p, and, consequently, y(t) = ypqab(t) (where ypqab(t) is determined by (19)).

Remark 3.5. If we substitute item 2a with the condition
2c) a ≤ 0 and b ≤ 0;
then we have y(t) = ypqab(t).

For the lower boundary y(t) we can obtain an analogical result:

Proposition 3.6. Suppose that the following conditions are met:
1) p2 − q > 0, for all p ∈

[
p, p

]
and q ∈

[
q, q
]
;

2b) a ≥ 0 and b ≥ 0.
Then q∗ = q.
In addition, if
3) p < 0;
4b) q > 0;

5b) coth
√
p2 − q l − 1√

p2−q l
+

√
p2−q
p ≥ 0,

then p∗ = p, and, consequently, y(t) = ypqab(t) (where ypqab(t) is determined by (19)).

Remark 3.7. If we substitute item 2b with the condition
2d) a ≤ 0 and b ≤ 0;
then we have y(t) = ypqab(t).
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We can combine Propositions 3.4 and 3.6 to obtain a more general result. In this,
we combine the items 5a and 5b based on the following evaluations. It can be seen that
∂
∂q

(
coth vl − 1

vl

)
= ∂

∂v

(
coth vl − 1

vl

)
· ∂v∂q = l

(
1

(vl)2 −
1

sinh2 vl

)
· −1
2
√
p2−q

< 0. Therefore,

coth vl − 1
vl decreases with q. Then, we have:

coth
√
p2 − q l − 1√

p2−q l
≥ coth

√
p2 − q l − 1√

p2−q l
.

On the other hand,
√
p2 − q decreases with q. Therefore,

√
p2−q
p increases with q,

because of p < 0. Then,

√
p2−q
p ≥

√
p2−q
p .

By using the above evaluations, and by combining Propositions 3.4 and 3.6, we obtain
sufficient conditions for the exact solution to be given by an explicit formula:

Lemma 3.8. Let the following conditions be satisfied:
1) p2 − q > 0, for all p ∈

[
p, p

]
and q ∈

[
q, q
]
;

2b) a ≥ 0 and b ≥ 0;
3) p < 0;
4) q > 0;

5) coth
√
p2 − q l − 1√

p2−q l
+

√
p2−q
p ≥ 0,

then Y (t) =
[
ypqab(t), ypqab(t)

]
, where ypqab(t) is determined by (19).

Remark 3.9. If we substitute item 2b with the condition
2c) a ≤ 0 and b ≤ 0;

then we have Y (t) =
[
ypqab(t), ypqab(t)

]
.

Remark 3.10. If Conditions 3 and 4 are taken into account, then Condition 1 can be
reformulated as p2 > q.

Remark 3.11. If Conditions 1 and 2b are satisfied, then q∗ = q and q∗ = q. (In the
case, when Conditions 1 and 2c are satisfied, we have q∗ = q and q∗ = q). Thus, we only

need to compute p∗ (that maximizes (19), where a = a∗ = a, b = b∗ = b, q = q∗ = q) and
p∗. Therefore, if Conditions 1 and 2b are satisfied, then the computational complexity
of the introduced algorithm reduces to O(n).

Below we give an example to justify Lemma 3.8.

Example 3.12. Consider interval BVP Y ′′ + 2PY ′ +QY = 0
Y (0) = A
Y (l) = B

(22)

with l = 5, P = [−5.75,−5.25], Q = [3.0, 4.0], A = [1.5, 2.5] and B = [9.0, 11.0].
All conditions of Lemma 3.8 are satisfied:

1) p2 − q ≥ p2 − q = (−5.25)
2 − 4 = 23.563 > 0 X;
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Fig. 2. The solution of Example 3.12 by the proposed method. The

dashed line depicts the central solution.

2b) a = 1.5 ≥ 0 and b = 4.0 ≥ 0 X;
3) p = −5.25 < 0 X;
4) q = 3.0 > 0 X;

5) coth
√
p2 − q l − 1√

p2−q l
+

√
p2−q
p =

coth
(√

(−5.25)2 − 4 · 5
)
− 1√

(−5.25)2−4·5
+

√
(−5.75)2−3
−5.75 = 5.2452× 10−3 ≥ 0 X.

Then, a∗ = a, b∗ = b, p∗ = p, q∗ = q; a∗ = a, b∗ = b, p∗ = p, q∗ = q, and Y (t) =[
y(t), y(t)

]
=
[
ypqab(t), ypqab(t)

]
, where ypqab(t) is determined by (19). The numerical

solution, which is depicted in Figure 2, justifies this derivation.

At the end of the section, we underline once again that Lemma 3.8 provides only
some necessary conditions. Therefore, it covers only a restricted class of interval BVPs.
We saw above that the BVP in Example 3.12 belongs to this class. At the same time,
we see that BVP from Example 3.3 does not satisfy the conditions of Lemma 3.8 (for
example, the first condition), and its solution is not represented by the explicit formula
given in the lemma.

4. COMPARISON WITH THE GENERALIZED DIFFERENTIABILITY
APPROACH

In this section, we demonstrate the advantages of the proposed approach. We compare
it with the strongly generalized (Hukuhara) differentiability approach that is commonly
used in solving differential equations with uncertainties. First, we briefly give the main



Exact solutions of interval boundary value problems 391

definitions and theorems. More detailed information can be found, for example, in
[12, 28].

Definition 4.1. Let F be an interval-valued function defined on (a, b) and let t0 ∈
(a, b). We say that F is strongly generalized (Hukuhara) differentiable at t0 if there
exists an interval F ′ (t0), such that, for all h > 0 sufficiently small, there exist the
involved Hukuhara differences and either

(i) lim
h↘0+

1

h
(F (t0 + h)	 F (t0)) = lim

h↘0+

1

h
(F (t0)	 F (t0 − h)) = F ′ (t0) ,

or

(ii) lim
h↘0+

1

−h
(F (t0)	 F (t0 + h)) = lim

h↘0+

1

−h
(F (t0 − h)	 F (t0)) = F ′ (t0) .

We call a function to be differentiable in the first form ((i)-differentiable, or 1-
differentiable) if it is strongly generalized differentiable as in the case (i) of the definition
above, etc.

We say that F is strongly generalized differentiable on the interval (a, b) if F is
strongly generalized differentiable at each point t0 ∈ (a, b).

It is difficult to find the derivative of a function based on the above definition. The
following theorem allows us to compute the derivative more practically [12, 28].

Theorem 4.2. Let F be an interval-valued function defined on (a, b) such that F (t) =
[f (t) , g (t)]. Also, let F be strongly generalized differentiable at t0 ∈ (a, b). Then
(a) if F is differentiable in the first form then f and g are differentiable at t0 and

F ′ (t0) = [f ′ (t0) , g′ (t0)],
(b) if F is differentiable in the second form then f and g are differentiable at t0 and

F ′ (t0) = [g′ (t0) , f ′ (t0)].

We define second-order strongly generalized differentiability as follows. We say that
F is (i, j)-differentiable if F is differentiable in the ith form and F ′ is differentiable in
the jth form. For example, if F is 2-differentiable, but F ′ is 1-differentiable, then F
is (2, 1)-differentiable. There are 4 types of generalized second-order differentiability:
(1, 1) or (1, 2) or (2, 1) or (2, 2)-differentiability.

One can establish an analogue of Theorem 4.2 for the second-order derivative [12, 28].

Theorem 4.3. Let F be an interval-valued function defined on (a, b) such that F (t) =
[f (t) , g (t)]. Also, let F be second-order strongly generalized differentiable at t0 ∈
(a, b). Then
(a) if F is (1, 1)-differentiable then F ′ (t0) = [f ′ (t0) , g′ (t0)]

and F ′′ (t0) = [f ′′ (t0) , g′′ (t0)],
(b) if F is (1, 2)-differentiable then F ′ (t0) = [f ′ (t0) , g′ (t0)]

and F ′′ (t0) = [g′′ (t0) , f ′′ (t0)],
(c) if F is (2, 1)-differentiable then F ′ (t0) = [g′ (t0) , f ′ (t0)]

and F ′′ (t0) = [g′′ (t0) , f ′′ (t0)],
(d) if F is (2, 2)-differentiable then F ′ (t0) = [g′ (t0) , f ′ (t0)]

and F ′′ (t0) = [f ′′ (t0) , g′′ (t0)].
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As it was stated in the Introduction, the purpose of this article is to overcome the
known shortcomings of the generalized differentiability approach. To justify that this
goal has been achieved we use Example 3.12. In the beginning, we show some circum-
stances that openly reveal the shortcomings of the generalized differentiability approach.

1) Under generalized differentiability, BVP (22) has not a solution. This statement
can be explained as follows. Since the boundary values are proper intervals (that is,
intervals with non-zero widths), the solution is proper too. Then, in (22), the left-hand
side (which is a sum of intervals) is not identically zero, while the right-hand side is.
Therefore, (22) cannot have any solution under the generalized differentiability approach.

2) If we move, for example, the second term of the equation from the left-hand side
to the right-hand side, that is, if we reformulate the problem as Y ′′ +QY = KY ′

Y (0) = A
Y (l) = B

(23)

(where l = 5, Q = [3.0, 4.0], K = −2P = [10.5, 11.5], A = [1.5, 2.5] and B = [9.0, 11.0]),
then it can potentially have solutions.

3) Let us find a solution to the problem (23) under generalized differentiability. Since
the differential equation under consideration is of the second order, the solution function
Y (t) =

[
y(t), y(t)

]
can have one of the four derivatives: (1, 1), (1, 2), (2, 1), or (2, 2)-

derivative. For each of these 4 cases, to find a solution, first, (a) we should constitute
the corresponding classical problem (for y(t) and y(t)) and solve it, then, (b) we should
check whether the obtained solution is valid (i. e., whether y(t) ≤ y(t) and whether the
derivative of Y (t) is of the type under consideration).

Geometrically, the width of a (1, 1)-differentiable function increases (as time goes) at
a rate that increases in time. (1, 2)-differentiable function also expands, but the rate
of the expansion decreases. (2, 1) and (2, 2)-differentiable functions narrow with time,
respectively, with increasing and decreasing rates.

Since, in our problem, the interval B (the value at the right boundary) is wider than
the interval A, the solution can be either (1, 1) or (1, 2)-differentiable. For simplicity of
further derivations we rename x(t) : = y(t) and z(t) : = y(t). Then, Y (t) = [x(t), z(t)].

First, let us look for (1, 1)-solution of (23). In this case, Y ′(t) = [x′(t), z′(t)] and
Y ′′(t) = [x′′(t), z′′(t)]. All coefficients of the differential equation (23) are positive.
Then, we obtain the following (1, 1)-problem:

z′′ + 4z = 11.5z′

x′′ + 3x = 10.5x′

z(0) = 2.5
z(5) = 11
x(0) = 1.5
x(5) = 9.

Since the equations and boundary values for z(t) and x(t) are independent, we determine
them separately:

z (t) = 2.5e0.35904t − 2.6020 · 10−24e11.141t

x (t) = 1.5e0.29394t + 1.7058 · 10−22e10.206t.



Exact solutions of interval boundary value problems 393

We depict the result in Figure 3 (Note that although it is close to the solution in Figure
2, it is not the same). We see that the condition y(t) ≤ y(t) is satisfied everywhere. Now,
we have to check whether the obtained function is (1, 1)-differentiable or not? But, it
can be seen from Figure 3 that the width of function does not increase on the entire
time domain [0, 5]. More precisely, the solution is valid only on the interval [0, 4.39];
on the reminder interval [4.39, 5] it is not valid. Therefore, BVP (23) has not a global
(1, 1)-differentiable solution.
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Fig. 3. The solution of (1, 1)-problem for (23).

Second, let us consider for (1, 2)-solution to (23). In this case, Y ′(t) = [x′(t), z′(t)]
and Y ′′(t) = [z′′(t), x′′(t)]. We have the following (1, 2)-problem:

x′′ + 4z = 11.5z′

z′′ + 3x = 10.5x′

z(0) = 2.5
z(5) = 11
x(0) = 1.5
x(5) = 9.

The solution of this system is (see Figure 4)

z (t) = 2.1145e0.34976t − 0.19297e0.28485t − 2.4753 · 10−24e10.662t + 0.57850e−11.297t

x (t) = 0.38464e0.34976t + 1.7224e0.28485t − 2.5827 · 10−24e10.662t − 0.60705e−11.297t.

Since the lower boundary exceeds the upper one on some interval, the function Y (t) =
[x(t), z(t)] is not a proper solution. Therefore, an (1, 2)-differentiable solution also does
not exist.
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Fig. 4. The solution of (1, 2)-problem for (23).

Summing up, BVP (23) has not a global (1, 1), or (1, 2), or (2, 1), or (2, 2) generalized
differentiable solution.

4) Above, we were looking for a solution to (23) that has one of the 4 generalized
derivatives globally (over the entire time domain). We were convinced that there is no
such solution. To defeat such deficiencies, some researchers suggest to consider switching
between types of generalized differentiability as time goes. For example, up to the first
switching point, the solution can be a (1, 1)-differentiable function, then it switches to
(2, 1)-differentiability, and so on. This suggestion leads to some questions such as how
to choose the switching points, how to determine the type of differentiability at the
beginning, and what type of differentiability to switch to next time. These questions
still remain unanswered.

Above, based on Example 3.12, we indicated four shortcomings of the generalized
derivative approach: 1) A class of problems has not a solution under generalized differ-
entiability even when the corresponding real (classical) problems have unique solutions;
2) If we transfer a term from one side of the equation to another, the solution can change;
3) The generalized differentiability approach does not guarantee existence and unique-
ness of the solution: a problem can have several number of solutions, or no solution;
4) To include a broader class of solutions, one have to alternate the types of the gener-
alized derivative. However, a general strategy on how to accomplish this process does
not exist at present.

Our proposed approach is exempt from the above shortcomings. In particular, in its
frame, BVP (22) from Example 3.12 has a unique solution (Figure 2). The solution of
BVP (23) is the same. In general, the proposed approach has the same properties as the
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classical approaches in the theory of differential equations. Namely, under the proposed
approach, 1) An interval BVP has a solution, whenever the corresponding real (classical)
problems have solutions; 2) The solution does not depend on the representation of the
problem (The solution is not changed, if any term is moved from one side of the equation
to the other side); 3) The solution exists and is unique (under the usual conditions);
4) The solution is obtained in a natural way by using methods of real calculus, therefore,
no special strategy is required for choice of switching points.

5. APPLICABILITY OF THE METHOD TO THE NON-LINEAR CASE

Above, we have considered the case when the problem is linear. In this case, the solution
can be found using well-known methods, and the analysis of the problem is rather easy.
Therefore, the non-linear case is of particular interest. Below, we demonstrate the
applicability of the proposed method to non-linear problems and discuss the difficulties
that arise.

Example 5.1. Consider the following non-linear interval BVP: Y ′′ + 2Pt (Y ′ +Q)
2

= 0
Y (0) = A
Y (1) = B

(24)

with P =
[
11
4 ,

13
4

]
, Q =

[
− 1

3 ,
1
3

]
, A =

[
− 5

2 , −
3
2

]
and B =

[
2
5 ,

3
5

]
.

We interpret this interval BVP as the set of real BVPs y′′ + 2pt (y′ + q)
2

= 0
y(0) = a
y(1) = b,

(25)

where p ∈ P , q ∈ Q, a ∈ A and b ∈ B.
The differential equation does not contain y implicitly. The substitution z = y′ brings

it to a first-order equation [26]:

z′ + 2pt (z + q)
2

= 0.

The general solution of this separable equation is

z =
1

p

1

t2 + C
− q, C ∈ R.

It can be divided into two subsets depending on the sign of the arbitrary constant C:
z = 1

p
1

t2+s2 − q and z = 1
p

1
t2−s2 − q, where s ∈ R+.

In the end, it can be established that the first subset occurs when p (b− a+ q) > 0;
the second set corresponds to the case of p (b− a+ q) < 0. The first condition holds for
our input parameters. Therefore, z = 1

p
1

t2+s2 − q. Since y =
∫
z(t)dt, we have:

y =
1

ps
arctan

t

s
− qt+ c, s ∈ R+, c ∈ R.
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If to put k = 1
s , we obtain:

y =
k

p
arctan kt− qt+ c, k ∈ R+, c ∈ R.

The first boundary condition implies that c = a. By the second condition, k must satisfy
the algebraic equation

k arctan k = p (b− a+ q) . (26)

Since k arctan k is an increasing function of k on (0, ∞), there is a unique positive root
k.

Summing up, the solution of real BVP (25) is

y =
k

p
arctan kt− qt+ a,

where k is the root of (26).

Above, we have interpreted the given interval BVP (24) as the set of all real BVPs
(25). Therefore, its solution is the following bunch of functions:
Y = {y(·) |
y(t) = k

p arctan kt− qt+ a; p ∈ P, q ∈ Q, a ∈ A, b ∈ B; k arctan k = p (b− a+ q)
}

We plot the solution in Figure 5. The dashed line represents the solution of the associated
real BVP.
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Fig. 5. The solution of non-linear interval BVP (24), obtained by the

proposed approach.
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We can make the following observations from the above example. The given non-
linear interval BVP has 4 interval parameters: P, Q, A and B. If each of them is
approximated by n points, we have n4 number of different combinations of parameters,
such as (p, q, a, b). Therefore, to build the solution bunch, we need to solve n4 real
BVPs. Consequently, the computational complexity of the proposed method is n4 for a
non-linear problem with 4 interval inputs. The complexity in the linear case is n2 under
the same conditions. Thus, our first observation is that the complexity in the non-linear
case is 2 orders of magnitude higher than in the linear case.

Another observation concerns solving related real BVPs. In the linear case, we can use
known explicit formulas. But, in the non-linear case, we have to treat special techniques
or numerical methods [26].

6. CONCLUSION

In this article, for a linear differential equation with interval coefficients and interval
boundary values, we introduced a new approach that differs significantly from the ones
described in the literature. This approach considers the solution as a set of real functions.
The superiority of the introduced approach over the others is that the existence and
uniqueness issues are analogical to the classical (real) case. Another advantage is that the
approach does not use an interval-valued derivative. Consequently, there is no need for
a strategy to choose the switching points, as required in the generalized differentiability
approach. As a result, the solution is found naturally by using only the means of real
calculus. We proposed a numerical algorithm to compute this solution. The algorithm
requires solving n2 classical BVPs, i. e. its complexity is O(n2). To find the ways to
improve the algorithm, and deeply understand the problem, we provided a theoretical
investigation. In particular, we derived a sufficient condition under which the solution
is given analytically.

In future studies, the results obtained can be generalized to non-homogeneous interval
differential equations, as well as to differential equations, whose coefficients are interval
functions (rather than constant intervals). The approach can be useful also for solving
fuzzy differential equations, formulated in terms of α-cuts.
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[10] N. A. Gasilov and Ş. E. Amrahov: On differential equations with interval coefficients.
Math. Methods Appl. Sci. 43 (2020), 4, 1825–1837. DOI:10.1002/mma.6006

[11] N. A. Gasilov and M. Kaya: A method for the numerical solution of a boundary value prob-
lem for a linear differential equation with interval parameters. Int. J. Comput. Methods
16 (2019), 7, Article 1850115. DOI:10.1142/S0219876218501153

[12] N. V. Hoa: The initial value problem for interval-valued second-order differential
equations under generalized H-differentiability. Inform. Sci. 311 (2015), 119–148.
DOI:10.1016/j.ins.2015.03.029
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[14] E. Hüllermeier: An approach to modeling and simulation of uncertain dynamical sys-
tems. Int. J. Uncertainty, Fuzziness and Knowledge-Based Systems 5 (1997), 2, 117–137.
DOI:10.1142/S0218488597000117

[15] R. B. Kearfott and V. Kreinovich: Applications of Interval Computations. Kluwer Aca-
demic Publishers, 1996. DOI:10.1007/978-1-4613-3440-8

[16] A. Khastan, R. Rodriguez-Lopez, and M. Shahidi: New differentiability concepts for set-
valued functions and applications to set differential equations. Inform. Sci. 575 (2021),
355–378. DOI:10.1016/j.ins.2021.06.014

[17] V. Lakshmikantham, T. G. Bhaskar, and J. V. Devi: Theory of Set Differential Equations
in Metric Spaces. Cambridge Scientific Publ., Cambridge 2006.

[18] M. T. Malinowski: Interval Cauchy problem with a second type Hukuhara derivative.
Inform. Sci. 213 (2012), 94–105. DOI:10.1016/j.ins.2012.05.022

[19] M. T. Malinowski: On existence theorems to symmetric functional set-valued differential
equations. Symmetry 13 (2021), 7, 1219. DOI:10.3390/sym13071219

[20] S. Markov: Calculus for interval functions of a real variable. Computing 22 (1979), 325–
337. DOI:10.1007/BF02265313

https://doi.org/10.1016/j.fss.2004.08.001
https://doi.org/10.2140/pjm.1970.33.43
https://doi.org/10.1016/j.fss.2012.12.004
https://doi.org/10.1016/j.fss.2017.10.008
https://doi.org/10.1007/s00500-017-2818-x
https://doi.org/10.1007/s00500-017-2818-x
https://doi.org/10.1016/j.ins.2015.05.002
https://doi.org/10.1002/mma.6006
https://doi.org/10.1142/S0219876218501153
https://doi.org/10.1016/j.ins.2015.03.029
https://doi.org/10.1142/S0218488597000117
https://doi.org/10.1007/978-1-4613-3440-8
https://doi.org/10.1016/j.ins.2021.06.014
https://doi.org/10.1016/j.ins.2012.05.022
https://doi.org/10.3390/sym13071219
https://doi.org/10.1007/BF02265313


Exact solutions of interval boundary value problems 399

[21] M. T. Mizukoshi and W. A. Lodwick: The interval eigenvalue problem using constraint
interval analysis with an application to linear differential equations. Fuzzy Sets Systems
419 (2021), 141–157. DOI:10.1016/j.fss.2020.10.013

[22] R. E. Moore: Methods and Applications of Interval Analysis. SIAM (Society for Industrial
and Applied Mathematics), Philadelphia 1979.

[23] R. E. Moore, R. B. Kearfott, and M. J. Cloud: Introduction to Interval Analysis. SIAM
(Society for Industrial and Applied Mathematics), Philadelphia 2009.
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