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SAFE CONSENSUS CONTROL OF
COOPERATIVE-COMPETITIVE MULTI-AGENT SYSTEMS
VIA DIFFERENTIAL PRIVACY

Jiayue Ma and Jiangping Hu

This paper investigates a safe consensus problem for cooperative-competitive multi-agent
systems using a differential privacy (DP) approach. Considering that the agents simultaneously
interact cooperatively and competitively, we propose a novel DP bipartite consensus algorithm,
which guarantees that the DP strategy only works on competitive pairs of agents. We then
prove that the proposed algorithm can achieve the mean square bipartite consensus and (p, r)-
accuracy. Furthermore, a differential privacy analysis is conducted, which shows that the
performance of privacy protection is positively correlated with the number of neighbors. Thus,
a practical method is established for the agents to select their own privacy levels. Finally, the
simulation results are presented to demonstrate the validity of the proposed safe consensus
algorithm.

Keywords: differential privacy, safe consensus, cooperative-competitive multi-agent sys-
tems, Laplace distribution, (p, r)-accuracy

Classification: 93A14, 93C10

1. INTRODUCTION

In the past two decades, distributed control of multi-agent systems (MASs) has attracted
significant attention due to its wide range of applications in various fields including
robotic coordination [3], sensor networks [27], and power-water network [14]. One of the
fundamental research objectives of distributed controls is to guarantee consensus. Until
now, some consensus problems of MASs, such as average consensus [20, 19], optimal
consensus [21, 22], robust consensus [9], and bipartite consensus [11, 10], have been
extensively studied from various perspectives.

It is well known that cooperative and competitive interactions exist simultaneously in
many complex network systems [4]. For convenience of modeling cooperative-competitive
networks, a signed graph theory was introduced in [1] and a bipartite consensus was then
formulated. “Bipartite consensus” means that the agents achieve agreement with identi-
cal values but opposite signs. To deal with the effect of nonlinear unknown disturbances,
Wu et al. [26] designed distributed adaptive laws to investigate a bipartite consensus for
a high-order MAS by using a linearly parameterized approach. Ma et al. [16] proposed
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stochastic approximation-type protocols to achieve leader-following bipartite consensus
for single-integrator MASs. Subsequently, Hu et al. [11] addressed a bipartite con-
sensus control problem for high-order MASs with communication noise and designed a
new stochastic-approximation-based control strategy to attenuate noise by using only
the relative state information from neighbors. Furthermore, the distributed bipartite
consensus problem of MASs subjected to both additive and multiplicative noises over
time-varying random networks was handled in [5]. Recently, Peng et al. [18] proposed a
model-free reinforcement-learning-based controller design method to tackle the optimal
bipartite consensus problems. As discussed above, some solution strategies have been
developed for bipartite consensus of MASs with communication noises, disturbances and
unknown dynamics. To our knowledge, it is still scarce to study the privacy issue in
multi-agent communication with competitive interactions.

In order to preserve the privacy of agents when they communication over networks,
the concept of differential privacy (DP) was proposed in [6]. Then DP method has drawn
considerable interest due to its remarkable advantages such as accurate formulation and
verifiable privacy, which guarantees an immunity to post-processing and the irrelevance
of the adversary’s model. Huang et al. [12] adopted the notion of DP to an average
consensus problem and proposed a distributed algorithm with decaying Laplace noises
to ensure the private consensus. Thereafter, Nozari et al. [17] proposed a DP consensus
algorithm with almost sure convergence. Gao et al. investigated a quantized DP consen-
sus problem for MASs in [7] by utilizing a dynamic encoding/decoding process. In order
to preserve the privacy of maximum states of individuals, Wang et al. [25] proposed a
privacy-preserving mechanism that guaranteed maximum consensus by perturbing each
agent’s initial state drawn from the Laplace distribution. A modified push-sum DP al-
gorithm for MASs under generally directed topology was proposed in [24] to achieve the
average consensus problem. More recently, Zuo et al. [28] addressed the DP consensus
problem with a signed graph, but they did not consider the relationship between privacy
and the antagonistic neighbors. Furthermore, Wang el al. [23] proposed a multi-gossip
Privacy-Preserving/Summation-Consistent(PPSC) mechanism for distributed computa-
tion tasks. From the literature review mentioned above, it is noted that most of the
existing works related to DP control or optimization mainly focused on MASs with
cooperative interactions, which forms the motivation of this paper.

Inspired by the above observations, this paper aims to develop a DP controller for a
bipartite consensus problem. The main contributions of this paper are stated as follows:
First, a mean square bipartite consensus problem is formulated for a MAS under the
privacy protection framework. Second, a novel DP consensus algorithm is proposed to
preserve the privacy of the agents’ initial states. In contrast to the existing DP consensus
algorithms, the privacy protection mechanism only works for competitive agents. Third,
the mean square bipartite consensus is analyzed under the proposed safe controller.
Furthermore, by examining the (p, r)-accuracy, a feasible strategy is established for each
agent to choose his/her own privacy level based on the number of neighbors.

The remainder of this paper is organized as follows. Section 2 presents the necessary
concepts and lemmas with problem formulation. Section 3 establishes the main results
of this study. Section 4 provides a numerical simulation to illustrate the main results.
Finally, section 5 concludes this paper.
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2. PRELIMINARIES AND PROBLEM FORMULATION

2.1. Notations

The sets of reals, non-negative reals, positive integers, and non-negative integers are
denoted by R,R≥0,N, and Z≥0, respectively. (Rn)N denotes the space of the vector-
valued sequences in Rn. In ∈ Rn×n and 1n ∈ Rn denotes the identity matrix and
vector of ones, respectively. The transposes of vector v and matrix M are denoted by
vT and MT , respectively. λ{·} denotes the eigenvalues. || · || is the Euclidean norm for a
matrix. sign(·) denotes a sign function. diag{·} denotes a diagonal matrix. P{·} denotes
the probability of an event. E[X] and Var(X) are the mathematical expectation and
variance of random variable X ∈ R, respectively.

2.2. Graph theory

Let G = (V, E , A) be a signed digraph, where V = {v1, v2, . . . , vn} is the set of vertices
representing agents and n is the number of nodes. E ⊆ V × V denotes the set of edges,
and A = [aij ] ∈ Rn×n is the adjacency matrix of G, where aij 6= 0 ⇔ (vi, vj) ∈ E
and aij = 0 ⇔ (vi, vj) /∈ E . Specifically, the interactions between agent i and j is
cooperative if aij > 0 and competitive if aij < 0. It is assumed that the digraph with
no self-loops, i. e., aii = 0, i ∈ {1 . . . , n} and satisfies the digon sign-symmetry property
aijaji ≥ 0. Let Ni denote the neighbor set of the node i, that is, Ni = {j|(vj , vi ∈ E)}.
The cardinality of Ni is |Ni|. A directed path from agent i to agent j is a sequence
of ordered edges {(vi, vi1), (vi1 , vi2), . . . , (vil , vj)}. A signed directed graph is said to
contain a directed spanning tree if there at least exists one agent, which has a directed
path to every other agent. The in-degree and out-degree of agent i can be separately
defined as ∆i

in =
∑
j∈Ni |aij | and ∆i

out =
∑
j∈Ni |aji|. A signed digraph G is balanced

if ∆i
in = ∆i

out = ∆i for i ∈ {1 . . . , n}. For a balanced digraph, we denote the greateat
degree as ∆max = max{∆i, i ∈ V}. A signed Laplacian matrix L = [lij ] ∈ Rn×n is
defined as L = D − A, where D = diag(∆1

in, . . . ,∆
n
in). Let GS = {V, E , AS} be the

corresponding unsigned graph of signed graph G and LS = D − AS = [lS,ij ] ∈ Rn×n be
the Laplician matrix of directed graph GS .

Lemma 2.1. (Hu [9]) The Laplacian matrix LS of the unsigned digraph GS has at
least one zero eigenvalue and all non-zero eigenvalues have positive real parts. Moreover,
LS has only one zero eigenvalue with the associated eigenvector 1n if and only if the
unsigned digraph GS has a spanning tree.

Lemma 2.2. (Hu [9]) Matrix L̂S =
LS+L

T
S

2 can be viewed as a Laplacian matrix if GS
is balanced.

Definition 2.3. (Hu and Wu [10]) A signed graph G is said to be structurally balanced
if a bipartition V1 and V2 of vertices exists, where V1∪V2 = V and V1∩V2 = ∅ such that
aij ≥ 0 for ∀vi, vj ∈ Vh(h ∈ {1, 2}) and aij ≤ 0 for ∀vi ∈ Vh, vj ∈ Vl, h 6= l(h, l ∈ {1, 2}).

Lemma 2.4. (Hu and Wu [10]) The signed graph G is structurally balanced if and
only if there exists a gauge matrix S such that SAS = AS and SLS = LS with S =
diag{s1, . . . , sn} and si ∈ {±1}.



Safe control of multi-agent systems 429

Lemma 2.5. (Altafini [1]) Assume G is structurally balanced, undirected and con-

nected. For the Laplacian matrix L, the property minx 6=0
xTLx
xT x

= λ2(L) holds, where
λ2(L) is the smallest nonzero eigenvalue of L.

Assumption 2.6. The signed graph G is structurally balanced and has a spanning tree.

2.3. Problem formulation

For an MAS consisting of n agents over a cooperative-competitive network, the agent
dynamics are as follows:

xi(k + 1) = xi(k) + ui(k), k ∈ Z≥0 (1)

where xi(k) ∈ R is the state and ui(k) is the controller.
The distributed controller has the following form:

ui(k) = g({xi(k), x̃j(k), j ∈ Ni}), k ∈ Z≥0 (2)

where x̃j(k) = h({xj(k), ηj(k)}) is the noisy state of a competitive neighbor. ηj(k) obeys
the Laplace distribution ηj(k) ∼ Lap(bj(k)), where bj(k) = cjq

k
j , cj > 0, qj ∈ (0, 1) and

g, h : Rn ×Rn → Rn are continuous functions. According to [8], the DP controller with
a Laplace noise is the optimal one; thus, we use it in this paper.

One objective of this study is to design a distributed controller ui for agent i expressed
as

lim
k→∞

E[xi(k)− six∗]2 = 0, si ∈ {1,−1}. (3)

The MAS (1) achieves mean square bipartite consensus when equation (3) holds. The
other objectives of this study are to guarantee (p, r)-accuracy and εi-differential privacy.

The concept of adjacency between agents and DP definitions are presented.

Definition 2.7. (Adjacency) (Nozari et al. [17]) For any given δ ∈ R≥0, the initial
state vectors x(1)(0), x(2)(0) ∈ Rn are δ-adjacent if one i0 ∈ V exists, expressed as:

|x(2)i (0)− x(1)i (0)| ≤

{
δ, i = i0

0, i 6= i0
(4)

where δ is the adjacency distance.

Definition 2.8. (Differential privacy) (Nozari et al. [17]) Given δ, ε ∈ R≥0, the
mechanism M is ε-differentially private for any pair of δ-adjacent initial states if
x(1)(0), x(2)(0) ∈ Rn and W ∈ (Rn)N in any set, expressed as:

P{M(x(1)(0)) ∈ W} ≤ eεP{M(x(2)(0)) ∈ W} (5)

where ε is the privacy level.

Definition 2.9. (Accuracy) For p ∈ [0, 1] and r ∈ R≥0, the mechanism achieves (p, r)-
accuracy, if for any initial condition x(0), the state of each agent converges to a random

variable x∗ as k → ∞ with E[x∗] = 1
N

∑N
i=1 sixi(0) and P{|x∗ − E[x∗]| ≤ r} ≥ 1− p,

where si ∈ {1,−1}.
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3. MAIN RESULTS

3.1. Controller design

A controller is designed for agent i as follows:

ui(k) = γ
∑
j∈Ni

aij(x̃j(k)− sign(aij)xi(k)) (6)

where γ is the consensus gain,

x̃j(k) = xj(k) +
1− sign(aij)

2
ηj(k), ηj(k) ∼ Lap(bj(k)). (7)

Applying controller (6) to the MAS (1) leads to

xi(k + 1) = xi(k) + γ
∑
j∈Ni

aij(xj(k) +
1− sign(aij)

2
ηj(k)− sign(aij)xi(k)). (8)

Equation (8) can be rewritten in a compact form as follows:

x(k + 1) = (In − γL)x(k) +
γ

2
(A−AS)η(k) (9)

where x = (x1, . . . , xn)T and η = (η1, . . . , ηn)T .

Remark 3.1. In the proposed DP controllers (6) and (7), the sign function is used to
describe competitive and cooperative relationships between agents. Since the graph is
fixed, if aij > 0, sign(aij) = 1 and if aij < 0, sign(aij) = −1. Therefore, the Laplace
noise is added to the communication link between the agents only when there is a
competitive relationship between the agent i and its neighbor. This confirmed that the
need for DP depends on the relationship between the agent i and its neighbors.

3.2. Bipartite consensus analysis

We now analyze the mean square bipartite consensus of the MAS under the controller
(6) with (7).

Theorem 3.2. Under Assumption 2.6, the mean square bipartite consensus can be
achieved for all the agents under the DP controllers (6) with (7).

P r o o f . Define z(k) = Sx(k); then,

z(k + 1) = (I − γLS)z(k) +
γ

2
S(A−AS)η(k). (10)

Let ξ(k) = (In − J)z(k) and J = (1/n)1n1Tn ; it takes from (10) that

ξ(k + 1) = (In − J)z(k + 1)

= (In − γLS)ξ(k) +
γ

2
(In − J)S(A−AS)η(k).

(11)
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Let V (k) = ξT (k)ξ(k); then

V (k + 1) = ξT (k + 1)ξ(k + 1)

= ξT (k)(In − γ(LS + LTS ) + γ2LTSLS)ξ(k)

+ 2ξT (k)(In − γLS)T (In − J)S(A−AS)η(k)

γ2

4
ηT (k)(A−AS)TST (In − J)T (In − J)S(A−AS)η(k).

(12)

It is noted that ξ(k) and η(k) are independent of each other and η(k) has zero mean.
Taking the mathematical expectation of both sides of (12) yields

E[V (k + 1)] ≤ (1− 2γλ2(L̂S) + γ2||LS ||2)E[V (k)]

+
γ2

4
||A−AS ||2||In − J ||2E[ηT (k)η(k)].

(13)

Under the assumption that 0 < γ < 2λ2(L̂S)
||LS ||2 , 0 < 1 − 2γλ2(L̂S) + γ2||LS ||2 < 1 holds;

thus, the first term of (13) converges to 0 as k → ∞. Additionally, since the elements
of η(k) are independently identically distributed (i.i.d.), for i 6= j, E[ηi(k)ηj(k)] =
E[ηi(k)]E[ηj(k)] = 0 and for any i, E[ηi(k)2] = V ar(ηi(k)) = 2c2i q

2k, which also converges
to 0; thus, E[ηT (k)η(k)]→ 0. We conclude that E[V (k)]→ 0 as k →∞.

Under Assumption 2.6, we have 1TnLS = 0. For (10),

1

n
1Tnz(k + 1) =

1

n
1Tnz(k) +

γ

2n
1TnS(A−AS)η(k)

=
1

n
1Tnz(0) +

γ

2n

k∑
l=0

n∑
i,j=1

siãijηi(l)
(14)

where ãij = aij − |aij |. Then,

1

n
1Tnz(k) =

1

n
1Tnz(0) +

γ

2n

k−1∑
l=0

n∑
i,j=1

siãijηi(l) (15)

and hence,

1

n
1TnSx(k) =

1

n
1TnSx(0) +

γ

2n

k−1∑
l=0

n∑
i,j=1

siãijηi(l). (16)

We know that 1
n1TnSx(k) converges to x∗ as time k tends to infinity in mean square,

where

x∗ =
1

n
1TnSx(0) +

γ

2n

∞∑
l=0

n∑
i,j=1

siãijηi(l). (17)

Noting that E[V (k)] → 0 as k → 0, we have xi(k) → six
∗ as k → ∞ in mean

square, which means that the mean square bipartite consensus is achieved. The proof is
completed. �
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3.3. Accuracy analysis

In this section, we present the computation of (p, r)-accuracy of the proposed DP control
strategy.

Theorem 3.3. Considering the MAS (8) for any given initial state, the DP control
strategy can achieve (p, r)-accuracy.

P r o o f . By the fact that ηi(k) and i ∈ V are i.i.d.,

E[x∗] = E[
1

n
1TnSx(0) +

γ

2n

∞∑
l=0

n∑
i,j=1

siãijηi(l)] =
1

n
1TnSx(0) (18)

and

Var(x∗) = lim
k→∞

E[
γ

2n

k∑
l=0

n∑
i,j=1

siãijηi(l)]
2

≤ γ2(ãmax∆max)2

4n2
E[

∞∑
l=0

n∑
i=1

ηi(l)]

≤ γ2(ãmax∆max)2

2n2

∞∑
l=0

n∑
i=1

c2i q
2l
i

≤ γ2d2

2n2

n∑
i=1

c2i
1− q2i

.

(19)

By applying Chebyshev inequality, one has

P{|x∗ − E[x∗]| ≤ r} ≥ 1− var(x∗)

r2
. (20)

Furthermore, we choose r =

√
γ2d2

2n2

n∑
i=1

c2
i

1−q2
i√

p ; then, P{x∗−E[x∗] ≤ r} ≥ 1−p is obtained,

which implies that the proposed DP controllers can achieve (p, r)-accuracy. The proof
is thus completed. �

Remark 3.4. Note that the DP control strategy can achieve (p,

√
γ2d2

2n2

n∑
i=1

c2i
1−q2

i
/
√
p)-

accuracy, where d = ãmax∆max, ãmax = max
i,j

ãij and ãij = aij − |aij |.

3.4. Privacy analysis

In this section, we refer to the initial state of an individual agent xi(0) as the private data
and denote the private dataset of this system as P = {xi(0), i ∈ V}. Then, we denote the
sequence of transmitted states W = {x̃i(k), i ∈ V, k = 0, 1, 2, . . . } as the observation of
the system and the sequence of the trajectory as q(P,W ) = {xi(k), i ∈ V, k = 0, 1, 2, . . . }.
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Theorem 3.5. The proposed DP control strategy preserves εi-differential privacy for
agent i ∈ V with

εi =

0, aij > 0
δ(1− γ∆i)

ci(qi − 1 + γ∆i)
, qi ∈ (1− γ∆i, 1), aij < 0.

(21)

P r o o f . Suppose there are two private datasets, P (1) = {x(1)i (0), i ∈ V} and P (2) =

{x(2)i (0), i ∈ V}, and a set of observation W. Given the controller (6), assume R(1) =
{q(P (1),W ) : W ∈ W} and R(2) = {q(P (2),W ) : W ∈ W} to be the set of pos-
sible trajectories in the observation set W. Meanwhile, let f(P (1), q(P (1),W )) and
f(P (2), q(P (2),W )) be the probability density function of the trajectories. Due to the
fact that the observations W = {x̃j(k), j ∈ V} for P (1) and P (2) are the same, based on
equation (8), we have

x
(1)
i (k + 1) = (1− γ∆i)x

(1)
i (k) + γ

∑
j∈Ni

aij x̃j(k) (22)

and

x
(2)
i (k + 1) = (1− γ∆i)x

(2)
i (k) + γ

∑
j∈Ni

aij x̃j(k). (23)

Therefore,

x
(2)
i (k + 1)− x(1)i (k + 1) = (1− γ∆i)(x

(2)
i (k)− x(1)i (k)) (24)

which obtains

x
(2)
i (k)− x(1)i (k) = (1− γ∆i)

k(x
(2)
i (0)− x(1)i (0)). (25)

Based on (1)-(2), for a dataset P , given an initial state xi(0), the observation W =
{x̃i(0), x̃i(1), · · · , i ∈ V} is uniquely defined by the noise sequence {ηi(k), i ∈ V, k =
0, 1, 2, . . . }. According to (7), the probability density function is

f(D, q(P,W )) =

n∏
i=1

k∏
l=0

f(P, q(P,W )i(l))

=

n∏
i=1

k∏
l=0

L(x̃i(l)− q(P,W )i(l); bi(l)).

(26)

For a pair of private datasets, since they have the same observation, there exists a
bijection u(·) : R(1) → R(2) such that for q(P (1),W ) ∈ R(1), q(P (2),W ) ∈ R(2), it has
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u(q(P (1),W )) = q(P (2),W ). Using the bijection u(·), we have

f(P (1), q(P (1),W ))

f(P (2), q(P (2),W ))
=

n∏
i=1

k∏
l=0

L(x̃i(l)− q(P (1),W )i(l); bi(l))

n∏
i=1

k∏
l=0

L(x̃i(l)− u(q(P (1),W ))i(l); bi(l))

≤
n∏
i=1

k∏
l=0

e
|(x̃i(l)−q(P

(1),W )i(l))−(x̃i(l)−u(q(P (1)W ))i(l))|
bi(l)

≤e
k∑
l=0

|x(2)
i0

(l)−x(1)
i0

(l)|

ci0
ql
i0 ≤ e

k∑
l=0

δ(1−γ∆i0
)l

ci0
ql
i0 .

(27)

Integrating both sides over R(1) and letting k →∞, we have

P[M(x(1)(0)) ∈ W] ≤ e
δ(1−γ∆i0

)

ci0(qi0
−1+γ∆i0

) P[M(x(2)(0)) ∈ W] (28)

which establishes εi0-differential privacy for agent i0. It is worth noting that the agent
i0 can be any agent in the entire network. The proof is thus completed. �

Remark 3.6. Theorem 3.5 guarantees that each agent can determine its own privacy
level based on the number of neighbors it has. From (21), it can be seen that the privacy
level εi is related to ∆i, which means that εi can be small when the agent i has a large
number of neighbors. It is well known that a smaller εi provides a stronger privacy
guarantee, then the proposed DP control strategy can provide better privacy protection.

4. SIMULATION RESULTS

In this section, a numerical example is given to demonstrate the theoretical results. We
consider a structurally balanced network, which is illustrated in Figure 1, where the
red dash lines and blue solid lines denote the competitive and cooperative relationships,

respectively. The distribution of the Laplace noise ηi(k) is L(µ, bi(k)) = 1
2bi(k)

e
− |x−µ|
bi(k) ,

1 2 3

4 5 6

Fig. 1. Structurally balanced signed graph G containing a spanning

tree.

where µ = 0 and bi(k) = ciq
k
i , qi ∈ (1 − γ∆i, 1). By setting ci = 0.2, qi = 0.95,

and x(0) = [−3, 3,−4, 3, 0.5, 2] and calculating the corresponding parameter to obtain
0 < γ < 0.2969, we choose γ = 0.18. The evolution of the states of the six agents is
shown in Figure 2. It is clear that the agents 1, 2, and 3 converge to one group and
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0 50 100 150
-4

-3

-2

-1

0

1

2

3

Fig. 2. Evolution of the states of the agents.

the agents 4, 5, and 6 tend to another, which implies that the six agents can reach
a mean square bipartite consensus. Furthermore, the evolution of the mathematical
expectations of the consensus errors of all the agents is given in Figure 3. Figure 4 shows
the histogram of convergence points for 104 times under the proposed DP controllers
and the red lines indicate the theoretical x∗, which shows that the existence of the noise
results in inaccurate bipartite consensus and the consensus values are near the average
initial value of the agents in most cases. The relationship between the privacy level εi
and the parameter set (∆i, γ) is shown in Figure 5. It is observed that εi decreases as
∆i or γ increases.

0 50 100 150
-15

-10

-5

0

5

10

Fig. 3. Evolution of the mathematical expectations of the consensus

errors xi(k)− six∗.
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Fig. 4. Histogram of convergence point x∗.

1 1.5 2 2.5 3 3.5 4 4.5 5

i

-5

0

5

10

15

20

25

30
=0.15
=0.25

Fig. 5. Privacy level εi with respect to the parameter set (∆i, γ).

5. CONCLUSIONS

This study investigated a DP consensus problem for cooperative-competitive MASs. We
first developed a novel DP bipartite consensus algorithm by adding Laplace noise, which
was based on the relationship of the agents with its neighbors. Then, we proved that
the agents reached a mean square bipartite consensus using our algorithm. We also
characterized the accuracy and DP properties, where the choice of privacy level was
more practical and relevant to the number of neighbor agents. Finally, a simulation was
presented to illustrate the results. Many attractive subjects, such as the extension of
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the results to switching topologies and distributed DP filtering for MASs, still need to
be investigated further.

ACKNOWLEDGEMENT

This work was supported partially by National Natural Science Foundation of China under
Grants 61473061, 71503206, 61104104, and partially by the Sichuan Science and Technology
Program under Grant 2020YFSY0012.

(Received June 8, 2022)

R E F E R E N C E S

[1] C. Altafini: Consensus problems on networks with antagonistic interactions. IEEE Trans.
Automat. Control 58 (2013), 935–946. DOI:10.1109/TAC.2012.2224251

[2] O. Cihan: Topology design for group consensus in directed multi-agent systems. Kyber-
netika 56 (2020),578–597. DOI:10.14736/kyb-2020-3-0578

[3] B. Chen, J. Hu, Y. Zhao, and B. K. Ghosh: Finite-time velocity-free rendezvous control
of multiple AUV systems with intermittent communication. IEEE Trans. Syst. Man
Cybernet. Syst. XX (2022), 1–12. DOI:10.1109/TSMC.2022.3148295

[4] Z. Chen, J. Qin, B .Li, H. Qi, P. Buchhorn, and G. Shi: Dynamics of opinions with social
biases. Automatica 106 (2019), 374–383. DOI:10.1016/j.automatica.2019.04.035

[5] Y. Du, Y. Wang, and Z. Zuo: Mean square bipartite consensus for multiagent systems
with antagonistic information and time-varying topologies. IEEE Trans. Syst. Man Cy-
bernet. Syst. 52 (2020), 1744–1754. DOI:10.1109/tsmc.2020.3035160

[6] C. Dwork: Differential privacy: A survey of results. In: Proc. 5th International Confer-
ence on Theory and Applications of Models of Computation (2008), pp. 1–19.

[7] L. Gao, S. Deng, W. Ren, and C. Hu: Differentially private consensus
with quantized communication. IEEE Trans. Cybernet. 51 (2021), 4075–4088.
DOI:10.1109/TCYB.2018.2890645

[8] J. He, L. Cai, and X. Guan: Differential private noise adding mechanism and its ap-
plication on consensus algorithm. IEEE Trans. Signal Process. 68 (2020), 4069–4082.
DOI:10.1109/TSP.2020.3006760

[9] J. Hu: On robust consensus of multi-agent systems with communication delays. Kyber-
netika 45 (2009), 768–784. DOI:10.1109/TMAG.2008.2011420

[10] J. Hu and Y. Wu: Interventional bipartite consensus on coopetition net-
works with unknown dynamics. J. Franklin. Inst. 354 (2017), 4438–4456.
DOI:10.1016/j.jfranklin.2017.04.010

[11] J. Hu, Y. Wu, T. Li, and B. K. Ghosh: Consensus control of general linear multiagent
systems with antagonistic interactions and communication noises. IEEE Trans. Automat.
Control 64 (2019), 2122–2127. DOI:10.1109/TAC.2018.2872197

[12] Z. Huang, S. Mitra, G. Dullerud: Differentially private iterative synchronous consensus.
In: Proc. 2012 ACM Workshop on Privacy in the Electronic Society (2012) pp. 81–89.

[13] H. Li and X. Li: Distributed consensus of heterogeneous linear time-varying systems
on UAVs-USVs coordination. IEEE Trans. Circuits Syst. II Express Briefs 67 (2020),
1264–1268. DOI:10.1109/TCSII.2019.2928870

https://doi.org/10.1109/TAC.2012.2224251
https://doi.org/10.14736/kyb-2020-3-0578
https://doi.org/10.1109/TSMC.2022.3148295
https://doi.org/10.1016/j.automatica.2019.04.035
https://doi.org/10.1109/tsmc.2020.3035160
https://doi.org/10.1109/TCYB.2018.2890645
https://doi.org/10.1109/TSP.2020.3006760
https://doi.org/10.1109/TMAG.2008.2011420
https://doi.org/10.1016/j.jfranklin.2017.04.010
https://doi.org/10.1109/TAC.2018.2872197
https://doi.org/10.1109/TCSII.2019.2928870


438 J. MA AND J. HU

[14] P. Li, J. Hu, L. Qiu, Y. Zhao, and B. K. Ghosh: Distributed economic dispatch strat-
egy for power-water networks. IEEE Trans. Control Netw. Syst. 9 (2022), 356–366.
DOI:10.1109/TCNS.2021.3104103

[15] X. Liu, J. Zhang, and J. Wang: Differentially private consensus algorithm for
continuous-time heterogeneous multi-agent systems. Automatica 122 (2020), 109283.
DOI:10.1016/j.automatica.2020.109283

[16] C. Ma and L. Xie: Necessary and sufficient conditions for leader-following bipartite
consensus with measurement noise. IEEE Trans. Syst. Man Cybernet. Syst. 50 (2020),
1976–1981. DOI:10.1109/TSMC.2018.2819703

[17] E. Nozari, P. Tallapragada, and J. Cortes: Differentially private average consensus:
Obstructions, trade-offs, and optimal algorithm design. Automatica 81 (2017), 221–231.
DOI:10.1016/j.automatica.2017.03.016

[18] Z. Peng, Y. Zhao, J. Hu, R. Luo, B. K. Ghosh, and S. K. Nguang: Input-
output data-based output antisynchronization control of multi-agent systems using re-
inforcement learning approach. IEEE Trans. Industr. Inform. 17 (2021), 7359–7367.
DOI:10.1109/TII.2021.3050768

[19] B. Rehák and V. Lynnyk: Consensus of a multi-agent systems with heterogeneous delays.
Kybernetika 56 (2020), 363–381. DOI:10.14736/kyb-2020-2-0363

[20] Y. Tang: Output average consensus over heterogeneous multi-agent systems via two-level
approach. Kybernetika 53 (2017), 282–295. DOI:10.14736/kyb-2017-2-0282

[21] Y. Tang: Multi-agent optimal consensus with unknown control directions. IEEE Control
Systems Lett. 5 (2021), 1201–1206. DOI:10.1109/LCSYS.2020.3021635

[22] Y. Tang and X. Wang: Optimal output consensus for nonlinear multiagent systems
with both static and dynamic uncertainties. IEEE Trans. Automat. Control 66 (2021),
1733–1740. DOI:10.1109/TAC.2020.2996978

[23] L. Wang, Y. Liu, I. Manchester, and G. Shi: Differentially private distributed com-
putation via public-private communication networks. arXiv preprint arXiv:2101.01376,
2021

[24] Y. Wang, J. Lam, and H. Lin: Differentially private average consensus with general
directed graphs. Neurocomputing 458 (2021), 87–98. DOI:10.1016/j.neucom.2021.06.016

[25] X. Wang, J. He, P. Cheng, and J. Chen: Differentially private maximum consensus:
Design, analysis and impossibility result. IEEE Trans. Netw. Sci. Engrg. 6 (2019), 928–
939. DOI:10.1109/TNSE.2018.2879795

[26] Y. Wu, Y. Zhao, and J. Hu: Bipartite consensus control of high-order multiagent systems
with unknown disturbances. IEEE Trans. Syst. Man Cybernet. Syst. 49 (2019), 2189–
2199. DOI:10.1109/TSMC.2017.2761362

[27] Y. Zhang, Y. Lou Y. Hong, and L. Xie: Distributed projection-based algorithms for
source localization in wireless sensor networks. IEEE Trans. Wirel. Commun. 14 (2015),
3131–3142. DOI:10.1109/TWC.2015.2402672

[28] Z. Zuo, R. Tian, Q. Han, Y. Wang, and W. Zhang: Differential privacy
for bipartite consensus over signed digraph. Neurocomputing 468 (2022), 11–21.
DOI:10.1016/j.neucom.2021.10.019

https://doi.org/10.1109/TCNS.2021.3104103
https://doi.org/10.1016/j.automatica.2020.109283
https://doi.org/10.1109/TSMC.2018.2819703
https://doi.org/10.1016/j.automatica.2017.03.016
https://doi.org/10.1109/TII.2021.3050768
https://doi.org/10.14736/kyb-2020-2-0363
https://doi.org/10.14736/kyb-2017-2-0282
https://doi.org/10.1109/LCSYS.2020.3021635
https://doi.org/10.1109/TAC.2020.2996978
https://doi.org/10.1016/j.neucom.2021.06.016
https://doi.org/10.1109/TNSE.2018.2879795
https://doi.org/10.1109/TSMC.2017.2761362
https://doi.org/10.1109/TWC.2015.2402672
https://doi.org/10.1016/j.neucom.2021.10.019


Safe control of multi-agent systems 439

Jiayue Ma, School of Automation Engineering, University of Electronic Science and
Technology of China, Chengdu 611731, P.R. China.

e-mail: jiayuem@std.uestc.edu.cn

Jiangping Hu, School of Automation Engineering, University of Electronic Science and
Technology of China, Chengdu 611731, P.R. China; Yangtze Delta Region Institute
(Huzhou), University of Electronic Science and Technology of China, Huzhou 313001,
P.R. China.

e-mail: hujp@uestc.edu.cn


