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Abstract. We study linear stability of solutions to the Navier-Stokes equations with
stochastic viscosity. Specifically, we assume that the viscosity is given in the form of
a stochastic expansion. Stability analysis requires a solution of the steady-state Navier-
Stokes equation and then leads to a generalized eigenvalue problem, from which we wish
to characterize the real part of the rightmost eigenvalue. While this can be achieved by
Monte Carlo simulation, due to its computational cost we study three surrogates based on
generalized polynomial chaos, Gaussian process regression and a shallow neural network.
The results of linear stability analysis assessment obtained by the surrogates are compared
to that of Monte Carlo simulation using a set of numerical experiments.
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1. Introduction

Models of mathematical physics are typically based on partial differential equations

and they are often solved numerically using finite element methods. The models use

parameters as input data, although exact parameter values are often not known and
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they are modeled using random variables. This approach leads to so-called partial

differential equations with uncertain data: given stochastic parameters, we wish to

characterize their stochastic solutions. Probably the most popular method for solving

these problems is Monte Carlo simulation, which is based on sampling: samples of

input parameters give a set of independent deterministic problems, which are solved,

and then the statistical moments of solution are obtained from ensemble averaging.

This method is known to be slow (with errors for n samples behaving like n−1/2),

and since each sample requires solution of the full model, its computational costs will

be high. Significant effort has been devoted to designing computationally cheaper

alternatives to the full model called surrogates in order to decrease the overall com-

putational cost. Arguably the most popular surrogate types are based on generalized

polynomial chaos (gPC) in the engineering community [15], [37], and Gaussian pro-

cess (GP) regression in the statistics community [29], [34].

Our focus is on linear stability analysis of parameterized dynamical systems.

A steady solution u is stable if with a small perturbation of u, used as initial data in

a transient simulation, the simulation reverts to u; otherwise it is unstable. This is

of fundamental importance in studying dynamics, since unstable solutions may lead

to turbulent flows or other inexplicable dynamic behavior [6], [30]. Linear stability

analysis entails computing the rightmost eigenvalue of the Jacobian matrix at u; if

this eigenvalue has positive real part, then u is unstable. In this study, we explore

this issue using the parameterized Navier-Stokes equations. This is a challenging

task, because it entails solving a nonlinear PDE close to a bifurcation point followed

by solving of a nonsymmetric eigenvalue problem. Since it is also computationally

intensive, we wish to find a less expensive surrogate. The Navier-Stokes equations

with stochastic viscosity were studied, e.g., by [18], [28], [32], and techniques based

on gPC for parameterized eigenvalue problems were studied, e.g., by [2], [4], [19].

A stochastic collocation method for linear stability analysis was studied in [10]. Most

recently, an algorithm for solving nonsymmetric eigenvalue problems with uncertain

data using an embedded (intrusive) stochastic Galerkin method and the same appli-

cation as in the present study was proposed in [33].

Specifically, we design and compare several surrogates. There is only a handful of

studies comparing gPC approaches and GP regression, see, e.g., [25], [26], [38]. One of

our goals is to contribute to the discussion with this particularly challenging problem.

For the construction of the gPC surrogate we use the stochastic collocation method,

and in particular the variant based on the pseudospectral (nonintrusive) stochastic

Galerkin method, see [3], [36], and for the GP surrogate we use theMatlab function

fitrgp. We note that it seems quite common to use software packages for GP

regression, and very different results among the packages have been reported [12].

Therefore, in our numerical experiments we compare both gPC and GP surrogates
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with results obtained from Monte Carlo simulation. Finally, following recent trends

in using neural networks for solving PDE-based models, see, e.g., [27], [31], we study

a surrogate based on a shallow neural network. We compare the performance of

the surrogates using two benchmark problems, and we also compare the results with

those of Monte Carlo simulation.

The paper is organized as follows. In Section 2 we recall the Navier-Stokes equa-

tions and the finite element discretization, in Section 3 we discuss the linear stability

of the model, in Section 4 we formulate the Navier-Stokes equations with stochastic

viscosity and introduce the surrogates, in Section 5 we present results of numerical

experiments, and in Section 6 we summarize our work.

2. Steady-state Navier-Stokes equations

We begin by defining the model and notation for the deterministic steady-state

Navier-Stokes equations, following [11]. We wish to find velocity ~u and pressure p

such that

−ν∇2~u+ (~u · ∇)~u+∇p = ~f,(2.1)

∇ · ~u = 0,(2.2)

in a spatial domain D, satisfying boundary conditions

(2.3) ~u = ~g on ΓDir, ν∇~u · ~n− p~n = ~0 on ΓNeu,

where ∂D = ΓDir ∪ ΓNeu, ~n denotes the normal vector, ν denotes the kinematic

viscosity and ~f is a vector of external forces, and we assume sufficient regularity of

the data. Properties of the flow are usually characterized by the Reynolds number

(2.4) Re =
UL

ν
,

where U is a characteristic velocity and L a characteristic length.

In the mixed variational formulation of (2.1)–(2.2) we wish to find (~u, p) ∈
(VE, QD) such that

∫

D

ν∇~u : ∇~v +
∫

D

(~u · ∇~u) · ~v −
∫

D

p(∇ · ~v) =
∫

D

~f · ~v ∀~v ∈ VD,(2.5)

∫

D

q(∇ · ~u) = 0 ∀ q ∈ QD,(2.6)

where (VD, QD) is a pair of spaces satisfying an inf-sup condition and VE is an

extension of VD containing velocity vectors that satisfy the Dirichlet boundary

conditions [16].
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Let c(~z; ~u,~v) ≡
∫
D
(~z ·∇~u) ·~v. Because problem (2.5)–(2.6) is nonlinear, it is solved

using a linearization scheme in the form of Newton or Picard iteration, derived as

follows.1 Consider a solution (~u, p) of (2.5)–(2.6) to be given as ~u = ~un + δ~un

and p = pn + δpn. Substituting into (2.5)–(2.6) and neglecting the quadratic term

c(δ~un; δ~un, ~v) gives

∫

D

ν∇δ~un : ∇~v + c(δ~un; ~un, ~v) + c(~un; δ~un, ~v)−
∫

D

δpn(∇ · ~v) = Rn(~v),(2.7)

∫

D

q(∇ · δ~un) = rn(q),(2.8)

where

Rn(~v) =

∫

D

~f · ~v −
∫

D

ν∇~un : ∇~v − c(~un; ~un, ~v) +
∫

D

pn(∇ · ~v),(2.9)

rn(q) = −
∫

D

q(∇ · ~un).(2.10)

Step n of the Newton iteration obtains (δ~un, δpn) from (2.7)–(2.8) and updates the

solution as

(2.11) ~un+1 = ~un + δ~un, pn+1 = pn + δpn.

Step n of the Picard iteration omits the term c(δ~un; ~un, ~v) in (2.7), giving

∫

D

ν∇δ~un : ∇~v + c(~un; δ~un, ~v)−
∫

D

δpn(∇ · ~v) = Rn(~v),(2.12)

∫

D

q(∇ · δ~un) = rn(q).(2.13)

Next, let us consider the discretization of (2.1)–(2.2) by a div-stable mixed finite

element method, and let the bases for the velocity and pressure spaces be denoted

by {φi}nu

i=1 and {ϕi}np

i=1, respectively, nu > np, and let us denote by nx = nu + np

the number of velocity and pressure degrees of freedom. In matrix terminology, each

nonlinear iteration entails solving a linear system

(2.14)

[
Fn B⊤

B 0

] [
δun

δpn

]
=

[
Rn

rn

]
,

which corresponds to (2.7)–(2.8), followed by an update of the solution

(2.15) un+1 = un + δun, pn+1 = pn + δpn.

1 This gives direct computation of the steady solution. It is also possible to find such
solutions by integrating to steady state; see, for example [1], [21].
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For Newton’s method, Fn is the (nonsymmetric) Jacobian matrix, a sum of the

vector-LaplacianmatrixA, the vector-convectionmatrixNn, and the Newton deriva-

tive matrixWn,

(2.16) Fn = A+Nn +Wn,

where

A = [aab], aab =

∫

D

ν∇φb : ∇φa,

Nn = [nn
ab], nn

ab =

∫

D

(un · ∇φb) · φa,

Wn = [wn
ab], wn

ab =

∫

D

(φb · ∇un) · φa.

For Picard iteration, the Newton derivative matrixWn is dropped, and Fn=A+Nn.

The matrices are sparse and nx is typically large. The divergence matrix B is

defined as

(2.17) B = [bcd], bcd =

∫

D

φd(∇ · ϕc).

The residuals Rn and rn at step n of both nonlinear iterations are given by dis-

cretization of (2.9)–(2.10), and they are computed as

(2.18)

[
Rn

rn

]
=

[
f

g

]
−
[
Pn B⊤

B 0

] [
un

pn

]
,

where Pn = A+Nn and f is a discrete version of the forcing function of (2.1).2

3. Linear stability of the Navier-Stokes equations

Following [8] let us consider, in a general setup, the dynamical system

(3.1) Mut = f(u, ν),

where f : R
n × R 7→ R

n is a nonlinear mapping, u ∈ R
n is the state variable and

ut is its time derivative, M ∈ R
n×n is the mass matrix, and ν is a parameter. For

a fixed value of ν, linear stability of the steady-state solution is determined by the

spectrum of the eigenvalue problem

(3.2) Jv = λMv,

2We use the convention that the right-hand sides of discrete systems incorporate Dirichlet
boundary data for velocities.
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where J = ∂f
∂u (u(ν), ν) is the Jacobian matrix of f evaluated at ν. The eigenvalues

have a general form λ = α + iβ, where α = Reλ and β = Imλ, and there are two

cases: if α < 0, the perturbation decays with time, and if α > 0, the perturbation

grows. Therefore, a change of stability can be detected by monitoring the rightmost

eigenvalues of (3.2).

We consider a special case of (3.1), the time-dependent Navier-Stokes equa-

tions (2.1)–(2.2),

~ut = ν∇2~u− (~u · ∇)~u −∇p,(3.3)

0 = ∇ · ~u,

subject to appropriate boundary and initial conditions. Mixed finite element dis-

cretization of (3.3) gives the following Jacobian and the mass matrix, see [8] and [11],

Chapter 8 for more details:

(3.4) J =

[
F B⊤

B 0

]
∈ R

nx×nx , M =

[−G 0

0 0

]
∈ R

nx×nx ,

where F is defined as in (2.16) using the steady-state solution of (3.3), B is defined

by (2.17), and G is the velocity mass matrix defined as

G = [gab], gab =

∫

D

φbφa,

which is symmetric positive definite. Since the mass matrix M is singular, prob-

lem (3.2) has an infinite eigenvalue. As suggested in [5], we replace the mass ma-

trixM with the nonsingular, shifted mass matrix

(3.5) Mδ =

[−G δB⊤

δB 0

]
,

which maps the infinite eigenvalues of (3.2) to δ−1 and leaves the finite ones un-

changed. Then the generalized eigenvalue problem (3.2) can be replaced by

(3.6) Jv = λMδv.

Efficient methods for estimating the rightmost pair of complex eigenvalues of (3.2)

(or (3.6)) were studied in [8]. Here, our goal is different. We consider parametric

uncertainty in the sense that the parameter ν ≡ ν(ξ), where ξ is a set of random

variables.

732



4. The Navier-Stokes equations with stochastic viscosity

Let (Ω,F ,P) represent a complete probability space, where Ω is the sample space,
F is a σ-algebra on Ω and P is a probability measure. We will assume that the ran-
domness in the model is induced by a vector of independent, identically distributed

(i.i.d.) random variables ξ = (ξ1, . . . , ξmξ
)⊤ such that ξ : Ω → Γ ⊂ R

mξ . Let B(Γ)
denote the Borel σ-algebra on Γ induced by ξ, and let ̺ denote the induced probabil-

ity measure for ξ. The expected value of the product of measurable fuctions u and v

that depend on ξ determines a Hilbert space TΓ ≡ L2(Γ,B(Γ), ̺) with inner product

(4.1) 〈u, v〉 = E[uv] =

∫

Γ

u(ξ)v(ξ)̺ dξ,

where the symbol E denotes mathematical expectation.

In computations, we use a finite-dimensional subspace TP ⊂ TΓ spanned by a set

of polynomials {ψl(ξ)} that are orthogonal with respect to ̺, that is, 〈ψk, ψl〉 = δkl.

This is referred to as the gPC basis; see [15], [37] for details and discussion. For TP , we

will use the space spanned by multivariate polynomials in {ξj}mξ

j=1 of total degree p,

which has dimension nξ =

(
mξ + p

p

)
. We follow the setup from [32] and assume

that the viscosity ν is given by a stochastic expansion

(4.2) ν(ξ) =

nν∑

l=1

νl(x)ψl(ξ),

where {νl(x)} is a set of given deterministic spatial functions. We note that this is
tantamount to taking the Reynolds number (2.4) to be stochastic.

4.1. Stochastic linear stability and Monte Carlo simulation. We are inter-

ested in a stochastic counterpart of the generalized eigenvalue problem (3.6), that is,

(4.3) J(ξ)v(ξ) = λ(ξ)Mδv(ξ),

where J(ξ) is the nonsymmetric Jacobian matrix, which along with the eigenvalues

λ(ξ) ∈ C and eigenvectors v(ξ) ∈ C
nx depends on the vector ξ. The rightmost eigen-

value can be studied by Monte Carlo simulation, which entails the solution of a num-

ber of mutually independent deterministic problems at a set of sample points ξ(i),

i = 1, . . . , nMC. The sample points are generated randomly following the distribu-

tion of the random variables ξ, and they give realizations of the viscosity by evaluat-

ing (4.2). A realization of viscosity gives rise to deterministic functions ~u(·, ξ(i)) and
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p(·, ξ(i)) that satisfy the deterministic steady Navier-Stokes equations, and to finite-
element approximations u(i) and p(i). The vector u(i) is used to set up the Jacobian

J(ξ(i)) and solving (4.3) provides a realization of the rightmost eigenvalue λ(ξ(i)).

In Monte Carlo simulation this procedure is thus performed for every sample

i = 1, . . . , nMC, and the moments of the eigenvalue are obtained from ensemble

averaging. We will also use the term simulator and denote it by η for the computer

code computing the rightmost eigenvalue of (4.3) for given input parameters ξ. Since

using the simulator is in general computationally expensive, we are interested in

constructing an emulator, which is a computationally cheap surrogate of the full

model that can be easily evaluated for any value of the input parameters. We will

denote use of an emulator by λ⋆(ξ) = η⋆(ξ), where the symbol ⋆ stands for any of

the three approaches to emulation and surrogate construction discussed next.

4.2. Polynomial chaos surrogate. Both Monte Carlo and stochastic colloca-

tion methods are based on sampling. For stochastic collocation, the sample points

ξ(q), q = 1, . . . , nq, consist of a set of predetermined collocation points. This ap-

proach derives from a methodology for performing quadrature or interpolation in

multidimensional space using a small number of points, a so-called sparse grid [13],

[24]. There are two ways to implement stochastic collocation, either by constructing

a Lagrange interpolating polynomial, or, in the so-called pseudospectral approach,

by performing a discrete projection into TP [3], [36]. We use the second approach.

In particular, we will search for expansions of the eigenvalue λ(ξ) in the form

(4.4) λ(ξ) =

nξ∑

k=1

λkψk(ξ),

where λk ∈ C are coefficients corresponding to the basis {ψk} defined by a discrete
projection

(4.5) λk = 〈λ, ψk〉, k = 1, . . . , nξ.

The coefficients in (4.4) are determined by evaluating (4.5) (see (4.1)), using numer-

ical quadrature as

(4.6) λk =

nq∑

q=1

λ(ξ(q))ψk(ξ
(q))w(q),

where ξ(q) are the quadrature (collocation) points and w(q) are quadrature weights.

That is, the evaluations of coefficients in (4.5) entail solving a set of independent

deterministic eigenvalue problems at a set of sample points. Details of the rule we

use in our numerical experiments are discussed in Section 5, and we refer, e.g., to

monograph [20] for more details.
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Once the coefficients in (4.5) have been determined, the stochastic collocation

emulator ηSC is

(4.7) λSC(ξ) = ηSC(ξ) =

nξ∑

k=1

λkψk(ξ).

See [2] for analysis showing convergence of this approximation for self-adjoint prob-

lems.

4.3. Surrogate based on Gaussian process regression. In Gaussian process

regression we assume that if the process depends on n⋆ inputs in mξ dimensions,

then the output is an n⋆-dimensional vector. Specifically, the output is modeled as

(4.8) λGP(ξ) = ηGP(ξ) = µ+ z(ξ),

where we consider µ as a constant, which is also common in practice, and z is

a Gaussian process to be determined. The distribution of the output is multivariate

normal with mean µ. For the covariance function R we consider the so-called squared

exponential kernel function, and we note that it is proportional to a correlation (or

kernel) matrix C by a constant of proportionality σ2
f called the variance (σf is the

standard deviation) via R = σ2
fC. Specifically, the correlation function C has the

entries given by

C(ξ, ξ′) = exp
[
−1

2

(ξ − ξ′)⊤(ξ − ξ′)
σl

]
,

where σl is the correlation length. The prior for the simulator is

ηpriorGP (ξ) ∼ N (µ,R(ξ, ξ)),

where N denotes the multivariate normal distribution. The parameters µ, σf and σl
are estimated from the simulator runs at the experimental design points ξ(t), t =

1, . . . , nd, with results collected in a vector λ
d
GP . Let us define the correlation ma-

trix Cd with entries cij = C(ξi, ξj), where i, j = 1, . . . , nd, and let us denote by H

a vector of ones with length nd. Assuming a standard noninformative prior for

variance parameters following [26], we estimate

µ̂ = (H⊤C−1
d H)−1H⊤C−1

d λdGP, σ̂f = (λdGP − µ̂H)⊤C−1
d (λdGP − µ̂H).

The correlation length is estimated by maximizing the logarithm of the likeli-

hood L as

σ̂l = argmax
σl

[logL(σl|λdGP)],

where the likelihood for the correlation length is

L(σl|λdGP) ∝ (σ̂2
f )

−(nd−nµ)/2|Cd|−1/2|H⊤C−1
d H |−1/2,

where |·| is the determinant, and we use nµ = 1, since we consider constant µ in (4.8).
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After the parameters have been determined, the Gaussian process emulator ηGP is

specified by a posterior distribution, which is a Student’s t-distribution with nd−nµ

degrees of freedom

(4.9) ηGP(ξ) ∼ tnd−nµ
(M∗(ξ)|R∗(ξ, ξ)).

The posterior mean and covariance functions in (4.9) are defined, respectively, as

M∗(ξ) = µ̂+ R̂(ξ)C−1
d (λdGP − µ̂H),

R∗(ξ, ξ′) =
σ̂2
f

nd − nµ − 2
[C(ξ, ξ′)− R̂(ξ)C−1

d R̂(ξ′)⊤ +Q(ξ)(H⊤C−1
d H)−1Q(ξ′)⊤],

where R̂(ξ) is a (row) vector of correlations between ξ and the experimental design

points, and Q(ξ) = 1−R̂(ξ)C−1
d H . In implementation, we use theMatlab functions

fitrgp and predict with more details given in discussion of numerical experiments

in Section 5. We also note that even though the emulator ηGP readily provides

uncertainty information through the posterior distribution (4.9), we explore ηGP by

evaluating it directly so that it is treated in a manner consistent with the other

emulators ηSC and ηNN, the latter of which is discussed next.

4.4. Neural network surrogate. The final surrogate is based on a shallow (as

opposed to deep) neural network with a single hidden layer and hyperbolic tan-

gent sigmoid transfer function tansig, which is mathematically equivalent to tanh,

see [35]. The goal is to develop an emulator

λNN(ξ) = ηNN(ξ),

based on nonlinear regression and supervised learning. The network is trained as

follows. We are given a training set of inputs and targets in the form {ξ(t), λ(ξ(t))},
t = 1, . . . , nt, and the training data is split into groups used for training, testing and

validation. The neural network emulator ηNN is initialized randomly, and the task

of the training is to produce a network that produces small errors on the training

set but also responds well to additional inputs. In that case we say that the net-

work generalizes well. The process of training a neural network entails tuning the

values of the weights and biases of the network to optimize network performance by

minimizing the sum of squared errors

1

nt

nt∑

t=1

(λ(ξ(t))− λNN(ξ
(t)))2.

The specific algorithm we use for the training is the Bayesian regularization back-

propagation, in which the weight and bias values are updated according to Levenberg-

736



Marquardt optimization, see [7], [22] for details. In implementation, we useMatlab

functions fitnet, train and net with more details given in Section 5.

4.5. Validation and assessment of the surrogate models. After the surro-

gates are built, we would like to assess and compare their quality. Our strategy is

similar to that used by [26]. Specifically, for the validation of the surrogates con-

structed using the emulators we used Monte Carlo simulation, for which the input

parameters ξ(i), i = 1, . . . , nMC, are distinct from the input parameters used to

build the surrogates. The validation metric is then given by root mean square error

(RMSE) defined as

RMSE =

√√√√ 1

nMC

nMC∑

i=1

(λ⋆(ξ(i))− λ(ξ(i)))2,

where the symbol ⋆ denotes any of the SC, GP or NN emulators. We used the

Monte Carlo sample points ξ(i), i = 1, . . . , nMC. Since RMSE represents the distance

between a surrogate and the Monte Carlo simulator across the input parameters

space, low RMSE values are favorable.

Next, we compute the mean and variance of each surrogate, µ⋆ and σ⋆, respectively,

and we estimate those provided by the emulators using empirical formulas given as

µ⋆ =
1

nMC

nMC∑

i=1

λ⋆(ξ
(i)), σ⋆ =

√√√√ 1

nMC

nMC∑

i=1

(λ⋆(ξ(i))− µ⋆))2.

Although for stochastic collocation both quantities above could be calculated directly

from the gPC coefficients, here we used the above formulas also with ηSC. Since we

want to detect instability, we also use the surrogates to estimate the probability that

the rightmost eigenvalue is nonnegative as

Pr(λ⋆ > 0) ≈ 1

nMC

nMC∑

i=1

1(λ⋆(ξ
(i)) > 0),

where 1 denotes the indicator (1 or 0) function. Finally, we also test the ability of

the surrogate to reconstruct the probability density function of the simulator output,

which we do using a kernel density estimator with Gaussian kernel provided by the

Matlab function ksdensity.

R em a r k 4.1. We note that only one of these, the neural network emulator, ex-

actly fits within the paradigm of “machine learning” methods in the sense that it con-

structs a neural network. However, we view all of them as methods based on learning,

in the sense that the surrogate is built from data obtained from a training set, where
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for stochastic collocation the learning process is the construction of the solution at

the collocation points, and for Gaussian process regression, it is the construction of

the mean, variance and correlation length from the simulation at the design points.

5. Numerical experiments

We implemented the Navier-Stokes solver in Matlab version 9.7.0.1190202

(R2019b) using the IFISS 3.5 package [9], and we tested the simulator and the

emulators using two benchmark problems: flow around an obstacle and an expan-

sion flow around a symmetric step. These are representative examples that exhibit

important types of bifurcation, a Hopf bifurcation for the first (where the criti-

cal eigenvalues are a complex conjugate pair) and a pitchfork bifurcation for the

second (with a real critical eigenvalue) [6], [17]. For both examples, we consider

perturbations of mean viscosities that are near the values leading to bifurcations.

For the solution of the steady Navier-Stokes problem in the simulator we used

a hybrid strategy in which an initial approximation is obtained from the solution of

the stochastic Stokes problem, after which several steps of Picard iteration are used

to improve the solution, followed by Newton iteration. The convergence test was for

the Euclidean norm of the algebraic residual (2.18) to satisfy

∥∥∥∥
[
Rn

rn

]∥∥∥∥ 6 10−8

∥∥∥∥
[
f

g

]∥∥∥∥ .

Next, the eigenvalue problems (3.6), in whichMδ is defined by (3.5) with δ = −10−2

as in [8], were solved using the function eigs in Matlab. The 300 eigenvalues

with the largest real part of the deterministic eigenvalue problem with mean viscos-

ity ν1 for each of the two examples are displayed in Figure 3. The viscosity (4.2)

is parameterized using mξ = 2 random variables. For the Monte Carlo method we

used 103 sample points generated randomly following the distribution of the random

variables ξ. For stochastic collocation we used Smolyak sparse grid and grid level 4.

With these settings, there were nq = 29 points on the sparse grid, and this set of

quadrature points was used to design all three emulators ηSC, ηGP and ηNN, that is

nq = nd = nt. For the GP regression (and also for the training of the neural network)

we standardize the data before the regression. To this end let µd and σd denote the

mean and standard deviation of the rightmost eigenvalues λ(ξ(q)) calculated using

the simulator at the quadrature points ξ(q), q = 1, . . . , nq. The data points passed

to the GP regression function fitrgp in Matlab are scaled as

(5.1) λ(ξ(q))← λ(ξ(q))− µd

σd
, q = 1, . . . , nq,

738



and the results λGP(ξ) of the emulator function predict are descaled as

(5.2) λGP(ξ)← σdλGP(ξ) + µd.

For the neural network emulator we use function fitnet in Matlab to construct

a neural network with one hidden layer of 20 neurons, and we set the training al-

gorithm to use Bayesian regularization. The training parameters used in the actual

training function train are divided in the following way: 80% for training, 10% for

testing and 10% for validation. While we do not have a general strategy to find the

optimal size of the neural network, we empirically tried to find as small a network

as possible that would still match the Monte Carlo simulation reasonably well. We

used scaling (5.1) for the training, and descaling (5.2) for the emulator predictions

given by the function net in Matlab.

0 2 4 6 8

−1

0

1

Figure 1. Finite element mesh for the flow around an obstacle problem.

5.1. Flow around an obstacle. For the first example, we consider flow around

an obstacle in a similar setup as studied in [32]. The domain of the channel and the

discretization are shown in Figure 1. The spatial discretization uses a stretched grid

with 1008 Q2−Q1 (Taylor-Hood) finite elements. There are 8416 velocity and 1096

pressure degrees of freedom. The viscosity ν(x, ξ) was taken to be a truncated lognor-

mal process transformed from an underlying Gaussian process [14]. That is, ψl(ξ),

l = 1, . . . , nν , is a set of Hermite polynomials, which also specifies the expansion

of viscosity (4.2) used in the simulator. Denoting the coefficients of the Karhunen-

Loève expansion of the Gaussian process by gj(x) and ιj = ξj − gj , j = 1, . . . ,mξ,

the coefficients in expansion (4.2) are computed as

νl(x) =
E[ψl(ι)]

E[ψ2
l (ι)]

exp

[
g0 +

1

2

mξ∑

j=1

(gj(x))
2

]
.

The covariance function of the Gaussian process, for points X1 = (x1, y1) and X2 =

(x2, y2) in D, was chosen to be

(5.3) Crf(X1, X2) = σ2
g exp

(
−|x2 − x1|

Lx
− |y2 − y1|

Ly

)
,
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where Lx and Ly are the correlation lengths of the random variables ξi, i = 1, . . . ,mξ,

in the x and y directions, respectively, and σg is the standard deviation of the

Gaussian random field. The correlation lengths were set to be equal to 25% of the

width and height of the domain. The coefficient of variation CoV of the lognormal

field, defined as CoV = σν/ν1, where σν is the standard deviation and ν1 is the

mean viscosity, was 1% or 10%. According to [23], in order to guarantee a complete

representation of the lognormal process by (4.2) the degree of polynomial expansion

of ν(x, ξ) should be twice the degree of the expansion of the solution. We follow

the same strategy here. Therefore, the values of nξ and nν are, see, e.g., [15], p. 87

or [36], Section 5.2, nξ = (mξ + p!)/(mξp!), nν = (m+ 2p)!/(m!(2p)!). For the gPC

expansion of eigenvalues (4.4), the maximal degree of gPC expansion is p = 3, so

then nξ = 10 and nν = 28. We assumed that the random variables {ξl}mξ

l=1 follow

a normal distribution and used Smolyak sparse grid with Gauss-Hermite quadrature

points for collocation. For the solution of the Navier-Stokes problem we used the

hybrid strategy with 6 steps of Picard iteration followed by at most 15 steps of

Newton iteration. We used mean viscosity ν1 = 5.36193× 10−3, which corresponds

to Reynolds number Re = 373, and the rightmost eigenvalue pair is 0.0085±2.2551i,

see the left panel in Figure 3. Table 1 presents the results of validation and assessment

of the surrogates using the indicators from Section 4.5. It is evident that for both

CoV 1% and 10% the values of RMSE are small for all surrogates with the smallest

value for the stochastic collocation, where we note that we used the same values

of ξ(i) in the Monte Carlo simulation and also for sampling the gPC surrogate (4.7).

All values of µ and σ are in close agreement, and in particular, all values of RMSE

are smaller than the corresponding values of µ (and σ) by at least two orders of

magnitude. Also, all emulators indicate reliably the probability of the rightmost

eigenvalue being nonnegative. Finally, Figure 4 displays the probability density

function (pdf) estimates of the rightmost eigenvalue. The estimates were obtained

usingMatlab function ksdensity for sampled gPC expansions. In all cases, we see

an excellent agreement of the plots in the left panel corresponding to CoV = 1% and

in the right panel corresponding to CoV = 10%.

0 5 10 15 20 25 30

−1

0

1

Figure 2. Finite element mesh for the expansion flow around a symmetric step.

5.2. Expansion flow around a symmetric step. For the second example, we

consider an expansion flow around a symmetric step. The domain and its discretiza-

tion are shown in Figure 2. The spatial discretization uses a uniform grid with 976

Q2 − P−1 finite elements, which provide a stable discretization for the rectangular

740



−6 −5 −4 −3 −2 −1 0 1
−5

0

5

−1.5 −1.0 −0.5 0
−1.5

−1.0

−0.5

0

0.5

1.0

1.5

Figure 3. An image of the complex plane and 300 eigenvalues with the largest real part of
the deterministic eigenvalue problem with mean viscosity (i.e., ν = ν1 in (4.2))
for the two examples: flow around an obstacle (left) and expansion flow around
a symmetric step (right). The rightmost eigenvalues are indicated by a red cross.
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Figure 4. Plots of the pdf estimate of the real part of the rightmost eigenvalue obtained
using Monte Carlo (MC), stochastic collocation (SC), Gaussian process regression
(GP) and neural network (NN) for the flow around an obstacle with CoV = 1%
(left) and CoV = 10% (right).

grid [11], p. 139. There are 8338 velocity and 2928 pressure degrees of freedom. For

the viscosity we considered a random field with affine dependence on the random

variables ξ given as

(5.4) ν(x, ξ) = ν1 + σν

nν∑

l=2

νl(x)ξl−1,

where ν1 is the mean and σν = CoV · ν1 the standard deviation of the viscosity,
nν = mξ + 1, and νl+1 =

√
3λlvl(x) with {(λl, vl(x))}mξ

l=1 are the eigenpairs of the

eigenvalue problem associated with the covariance kernel of the random field. As in

the previous example, we used the values CoV = 1% and 10%. We considered the
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MC SC GP NN

CoV = 1%

RMSE - 4.1859× 10−8 2.1709× 10−6 5.0301× 10−7

µ 8.3579× 10−3 8.3579× 10−3 8.3571× 10−3 8.3579× 10−3

σ 6.5356× 10−3 6.5356× 10−3 6.5355× 10−3 6.5356× 10−3

Pr(λ > 0) 89.8%

CoV = 10%

RMSE - 9.4232× 10−5 3.9827× 10−4 2.9063× 10−5

µ 1.1279× 10−2 1.1277× 10−2 1.1235× 10−2 1.1277× 10−2

σ 6.5819× 10−2 6.5818× 10−2 6.5789× 10−2 6.5813× 10−2

Pr(λ > 0) 56.5% 56.4% 56.5%

Table 1. Flow around an obstacle: validation of the surrogate models by Monte Carlo (MC)
simulation using root mean square error (RMSE), their assessment using estimates
of the mean µ, standard deviation σ, and probability that the rightmost eigenvalue
is nonnegative. The surrogates are based on stochastic collocation (SC), Gaussian
process regression (GP) and neural network (NN), and the measures are defined
in Section 4.5.

covariance kernel (5.3), with correlation lengths set to 12.5% of the width and 25% of

the height of the domain. We assumed that the random variables {ξl}mξ

l=1 follow a uni-

form distribution over (−1, 1). Note that (5.4) can be viewed as a special case of (4.2),
which consists of only linear terms of ξ. For the parametrization of viscosity by (5.4),

which then specifies the simulator, we used the same stochastic dimensionmξ and de-

gree of polynomial expansion p as in the previous example: mξ = 2 and p = 3, so then

nξ = 10 and nν = mξ +1 = 3. We used a Smolyak sparse grid with Gauss-Legendre

quadrature points for collocation. For the solution of the Navier-Stokes problem we

used the hybrid strategy with 20 steps of Picard iteration followed by at most 20 steps

of Newton iteration. We used mean viscosity ν1 = 4.5455× 10−3, which corresponds

to Reynolds number Re = 220, and the rightmost eigenvalue is 5.7963× 10−4 (the

second largest eigenvalue is −8.2273×10−2), see the right panel in Figure 3. Table 2

presents the results of validation and assessment of the surrogates using the indica-

tors from Section 4.5. The trends are similar to those for the flow around an obstacle

problem. For both CoV 1% and 10% the corresponding values of µ and σ are in close

agreement. The values of RMSE are small for all surrogates and again, they are

smaller than the corresponding values of µ (and σ) by at least two orders of magni-

tude. Finally, Figure 5 displays the probability density function (pdf) estimates of the

rightmost eigenvalue. We note that both pdf estimates in this figure are “narrower”

comparing to the pdf estimates for flow around an obstacle in Figure 4. Nevertheless

there is an excellent agreement of all estimates in both left and right panels.
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MC SC GP NN

CoV = 1%

RMSE - 8.8129× 10−10 4.0545× 10−7 1.5824× 10−8

µ 5.7982× 10−4 5.7982× 10−4 5.7987× 10−4 5.7982× 10−4

σ 2.9150× 10−4 2.9150× 10−4 2.9151× 10−4 2.9149× 10−4

Pr(λ > 0) 98.4% 98.5% 98.4%

CoV = 10%

RMSE - 2.6183× 10−7 2.7106× 10−6 4.2076× 10−7

µ 4.9677× 10−4 4.9676× 10−4 4.9711× 10−4 4.9685× 10−4

σ 2.9048× 10−3 2.9048× 10−3 2.9050× 10−3 2.9048× 10−3

Pr(λ > 0) 57.5%

Table 2. Expansion flow around a symmetric step: validation of the surrogates by Monte
Carlo (MC) simulation using root mean square error (RMSE), their assessment
using estimates of the mean µ, standard deviation σ, and probability that the
rightmost eigenvalue is nonnegative. The surrogates are based on stochastic collo-
cation (SC), Gaussian process regression (GP) and neural network (NN), and the
measures are defined in Section 4.5.
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Figure 5. Plots of the pdf estimate of the real part of the rightmost eigenvalue obtained
using Monte Carlo (MC), stochastic collocation (SC), Gaussian process regression
(GP) and neural network (NN) for the expansion flow around a symmetric step
with CoV = 1% (left) and CoV = 10% (right).

Computational time. We briefly mention our experience with running theMat-

lab functions on a MacBook Pro laptop with a 3.5 GHz Intel Core i7 processor and

16 GB RAM. The computation of the rightmost eigenvalue for one sample of ξ us-

ing the simulator took at least 30s, depending on the value of ξ and settings of the

inner solvers for the nonlinear iteration and call of the eigenvalue solver. On the

other hand, a run of the emulators to evaluate the three surrogates took only be-
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tween 0.02s and 0.04s for all 103 sample points, which were used for validation and

assessment. The learning part (construction of an emulator) took 0.18s in the case

of ηGP using the function fitrgp, and 1.25s in the case of ηNN using the function

train. The construction of ηSC was implemented as a part of the simulator, however

it can be seen, comparing (4.6) to (4.7), that if nq ≈ nξ, the construction of ηSC is

inexpensive, and in particular the timings of the construction of ηSC and its use are

similar. Finally, we note that all three emulators were trained using only nq = 29

samples that require run of the simulator. Therefore, since the overhead associated

with the training and use of the emulators is very small, the computational savings

provided by the emulators are dramatic.

mξ 1 2 3 4 5

nξ 4 10 20 35 56

nq 4 29 69 137 241

Table 3. Sizes of the gPC bases nξ and numbers of the quadrature points nq for stochastic
dimensions mξ and gPC degree p = 3.

MC µ 8.8125× 10−3

σ 7.1136× 10−3

Pr(λ > 0) 89.7%

GP nd (≈ nd/nq) 6 (≈ 20%) 8 (≈ 30%) 29 (100%)

RMSE 5.7386× 10−6 3.8676× 10−6 2.4706× 10−6

µ 8.8134× 10−3 8.8103× 10−3 8.8117× 10−3

σ 7.1124× 10−3 7.1135× 10−3 7.1135× 10−3

Pr(λ > 0) 89.7%

NN nt (≈ nt/nq) 6 (≈ 20%) 8 (≈ 30%) 29 (100%)

RMSE 6.1469× 10−3 7.7102× 10−5 1.4824× 10−7

µ 13.6704× 10−3 8.8029× 10−3 8.8125× 10−3

σ 4.8058× 10−3 7.1469× 10−3 7.1135× 10−3

Pr(λ > 0) 100% 89.4% 89.7%

SC nq 29

RMSE 3.0072× 10−8

µ 8.8125× 10−3

σ 7.1136× 10−3

Pr(λ > 0) 89.7%

Table 4. Effect of reducing the number of training points on the GP and NN surrogates
for the flow around an obstacle problem with the channel of length 12 and with
mξ = 2. The same quantities are used as in Table 1, and they were defined in
Section 4.5.
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MC µ 8.7886× 10−3

σ 9.3753× 10−3

Pr(λ > 0) 82.4%

GP nd (≈ nd/nq) 13 (≈ 5%) 25 (≈ 10%) 241 (100%)

RMSE 1.7554× 10−3 1.2636× 10−5 1.2535× 10−5

µ 8.8913× 10−3 8.7898× 10−3 8.7914× 10−3

σ 9.1899× 10−3 9.3740× 10−3 9.3742× 10−3

Pr(λ > 0) 83.0% 82.4%

NN nt (≈ nt/nq) 13 (≈ 5%) 25 (≈ 10%) 241 (100%)

RMSE 7.6909× 10−3 9.3273× 10−5 5.1869× 10−6

µ 9.3639× 10−3 8.7848× 10−3 8.7886× 10−3

σ 1.7564× 10−3 9.3215× 10−3 9.3717× 10−3

Pr(λ > 0) 100% 82.3% 82.4%

SC nq 241

RMSE 1.7987× 10−7

µ 8.7886× 10−3

σ 9.3754× 10−3

Pr(λ > 0) 82.4%

Table 5. Effect of reducing the number of training points on the GP and NN surrogates
for the flow around an obstacle problem with the channel of length 12 and with
mξ = 5. The same quantities are used as in Table 1, and they were defined in
Section 4.5.

5.3. Effect of larger stochastic dimensions. We also studied the effect of re-

ducing the number of training (or design) points for the Gaussian process (GP)

regression and neural network (NN) surrogates using a problem with increasing

stochastic dimension. We do not drop any quadrature (collocation) points from

the stochastic collocation (SC) method, since it would yield an incorrect quadra-

ture rule. In particular, we considered the flow around an obstacle problem in a

similar setup as in Section 5.1 except with a channel of length 12 (instead of 8,

cf. Figure 1). There are then 12, 640 velocity and 1640 pressure degrees of free-

dom, and the rightmost eigenvalue corresponding to the problem with the mean

viscosity is a pair 0.0090 ± 2.2550i. We considered a sequence of stochastic di-

mensions mξ = 2, 3, 4, 5. Sizes of the gPC bases and numbers of the quadra-

ture points are given in Table 3. Other settings were the same as in Section 5.1.

We selected a fraction of the quadrature points to train the two surrogates for

each of the stochastic dimensions in order to test the robustness in training of

the Gaussian process regression and neural network surrogates. For example, we

selected every 10th quadrature point to be included in the training set, so that
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then the ratio nt/nq = 10%. Tables 4 and 5 summarize the results for mξ = 2

and mξ = 5, respectively. From Table 4 it can be seen that by using only 6

training points, i.e., reducing the ratio nt/nq to approximately 20%, the GP sur-

rogate already provides relatively a quite accurate estimate compared to the re-

sults of the Monte Carlo simulation, whereas the results of the NN surrogate are

not satisfactory. Increasing the number of the training points to 8 leads to a dra-

matic improvements of the NN surrogate. Nevertheless, by including all quadra-

ture points into the training set, the approximation provided by the NN appears to

be slightly more accurate then the one provided by the GP regression, but over-

all the most accurate is the result provided by the stochastic collocation. The

same trends can be observed also from Table 5 for the case with mξ = 5, except

that in this case only approximately 5% of the quadrature points are needed for

the GP regression to provide a reasonable surrogate, and approximately 10% are

needed for the NN. Therefore it appears that either of the GP or NN surrogates

may provide an attractive alternative to the stochastic collocation for the high-

dimensional problems.

6. Conclusion

We studied linear stability of Navier-Stokes equations with stochastic viscosity.

This leads to a generalized eigenvalue problem, and we are interested in charac-

terization of the rightmost eigenvalue. We designed three emulators for construct-

ing the rightmost eigenvalue surrogate. The first surrogate was based on general-

ized polynomial chaos, and it was constructed using stochastic collocation, or its

pseudospectral variant (sometimes called nonintrusive stochastic Galerkin method),

which uses integration on Smolyak sparse grid and numerical quadrature. For the

second and third surrogates we used functions available in Matlab. The second

surrogate was based on Gaussian process regression, and we used function fitrgp.

The third surrogate was based on shallow neural network, and we used function

fitnet with Bayesian Regularization backpropagation. We found that the set of

quadrature points used for the generalized polynomial chaos surrogate is also suit-

able for training the other two emulators (based on Gaussian processes and neural

network), and we also found that certain scaling of the learning data points, and

subsequent descaling of the predictions, proposed by these emulators, improves the

quality of the surrogates. Finally, for the benchmark problems, all three surrogates

were in excellent agreement with the Monte Carlo simulation, and we also found

that the number of training points used for the Gaussian process regression and

the neural network can be further reduced without compromising the quality of the

surrogates.
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