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Abstract. Computational modelling of contact problems is still one of the most diffi-
cult aspects of non-linear analysis in engineering mechanics. The article introduces an
original efficient explicit algorithm for evaluation of impacts of bodies, satisfying the con-
servation of both momentum and energy exactly. The algorithm is described in its lin-
earized 2-dimensional formulation in details, as open to numerous generalizations including
3-dimensional ones, and supplied by numerical examples obtained from its software imple-
mentation.
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1. Introduction

Modelling of contact is still one of the most difficult aspects of non-linear analy-

sis. From the mechanical point of view, contact is the interaction between bod-

ies that touch and exchange loads and energy. The global physical formulation

can rely on the classical principles of continuum thermodynamics, namely on

the (a) conservation of mass, (b) balance of linear and angular momentum and

(c) balance of energy, corresponding to the first principle by [5], Chapter 1; the

second principle is expected to be satisfied thanks to the careful choice of con-

stitutive equations, as those from [15], Chapter 1, for various visco-elastic and

visco-plastic cases.
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The non-linear character of contact/impact processes, even in such simple case

as for a physically and geometrically linearized Kelvin visco-elastic model of 2

deformable bodies, resides in the description of behaviour of all their potential

interfaces. As proposed by [41], the numerical treatment of contact problems in-

volves the formulation of the geometry, the statement of interface laws, the integral

formulation and the development of algorithms. Most computational approaches

come from a simplified integral formulation of (a), (b), (c), transforming an orig-

inal system of hyperbolic partial differential equations of evolutions, introduced

in a weak or variational form like [42] (in the sense of its later correction [43]),

supplied by the Cauchy initial conditions and the Dirichlet, Neumann, etc. bound-

ary ones. Consequently, they preform a difference scheme for time discretization

coupled with a finite element or similar technique to transform an original infinite-

dimensional problem to a repeated solution of a sparse systems of linear algebraic

equations.

The inequalities corresponding to interfaces, or non-linear functions covering

them, can be handled by the implementation of some penalty terms, or by the

addition of appropriate Lagrange multipliers, leading to the Karush-Kuhn-Tucker

optimization problems; for the comparison of these approaches see [16], Part 24

of [12] and also (in the chronological order) [40], [30], [31]. The penalty approach

requires the tricky choice of penalty weight and is not exact: it can be demonstrated

that constraint violation is typically proportional to 1/ε for a positive parameter

ε, whereas the violation of the energy conservation law increases, the algorithm of

evaluation of approximate solution becomes unstable with increasing ε. The imple-

mentation of the Lagrange multipliers can be exact, but its disadvantage consists

in the need to expand the original system of equations with the result which is

not positive definite, as noticed by [34]. In this article, such computational expe-

rience is understood as a challenge to the development of an alternative approach,

namely the energy motivated one, connected with the evaluation of the restitution

coefficient, i.e., the ratio of the final velocity to the initial one between two ob-

jects after their collision, as introduced by [32], [2]; for its automated experimental

identification cf. [18].

Another serious computational problem consists in continuation of finite element

(or similar) meshes on interfaces. In the classical multi-purpose node-to-node ap-

proach by [11], [3], [37] the non-penetrating condition is applied for the opposite

nodes; some one-to-one correspondence between the boundary nodes on the contact-

ing surfaces is required. Following [47], it is an algorithmically simple and stable

technique, whose advantage resides in correct treatment of contact surfaces. How-

ever, this can be guaranteed just for conforming meshes and small deformations; thus

corresponding formulations are not commonly used nowadays.
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The node-to-segment approach, originally derived by [13], enforces the non-

penetration conditions such that the nodes of the dependent (slave) surface are

prevented from penetrating the opposite independent (master) surface which re-

sults, in general, in imprecise treatment of contact surfaces, depending on the choice

of the slave and the master surface. However, namely in a modified form by [48], this

approach is widely used due to its simplicity, clear physical meaning and flexibility;

for much more details cf. [8], [46], [45], [40]. The contact is defined between a master

segment and a slave node, as illustrated for the 2-dimensional case by Fig. 1. The

slave node C lies on the normal n (of formal unit length) of the master segment AB

(of unit length, too) in the distance GN , the normal n is located in the distance ξ|AB|

from the node A, ξ can take values from the interval [0, 1], as presented by [36].

The geometric inaccuracy can be reduced by reversing the roles of the surfaces and

repeating the same process using the two-pass evaluation.

A B

C
slave

ξ (1− ξ)

master

GNn

·

Figure 1. Geometry of the node-to-segment contact, following [36].

The alternative segment-to-segment approach by [25] applies the constraint con-

ditions along the entire boundary in a certain weak integral sense. Consequently, the

unbiased treatment of contact surfaces is sensitive on the careful choice of a special

discretization scheme.

Moreover, in the case of a large number of multiple interfaces the most time

consuming step in classical sequential algorithms can be the searching for poten-

tial contacts/impacts in every particular time step. This can be overcome by using

selected results from the graph theory and implementation of a distributed com-

puting platform, as discussed by [26]. This prefers the choice of explicit solvers of

time-discretized problems, like the special (nearly) central difference scheme by [12],

Part 24, corresponding to [4], Chapter 9.2, implemented namely in the LS-DYNA

software package for multi-physics simulations, although their stability and conver-

gence properties, namely with non-linearities from various sources, can be even worse

than those induced by the classical Courant-Friedrichs-Lévy stability criterion by [7],

revisited by [29], [1]. However, this is a subject of a recent intensive discussion, as

evident e.g. from the substantial generalization of this scheme by [20], containing 2

additional real parameters, forcing unconditional stability for (at least) linear elastic

problems, at the cost of insertion of certain more expensive implicit steps.
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Unlike the extensive overview of contact/impact problems for structural dynamics

as [49], [19], covering a wide class of problems in both theory and applications, the

aim of this article, whose basic ideas refer to the brief conference paper [35], is much

more specialized: to demonstrate a new computational algorithm for impacts of

elastic bodies on a rather simple benchmark problem, open to useful generalizations,

motivated by practical problems of engineering structural dynamics. Thus, in Sec-

tion 2 we shall start with the physical conservation laws, directed to the formulation

of a model problem (Section 2.1), including the sketch of its formal verification (Sec-

tion 2.2), and continue with the discussion on stability of a computational scheme

compatible with [12], Part 24 (Appendix A). This will create a basis for the detailed

design and implementation of the announced original effective computational algo-

rithm in Section 3, correct in the sense of exact validity of conservation laws even in

their discrete forms, not only in some hypothetical limit case, unattached in practi-

cal calculations. The detailed description of the algorithm oriented to 2-dimensional

numerical examples in Section 4 will be presented for simplicity; fortunately, their

3-dimensional generalization is rather straightforward, being prepared for another

paper with the accent to more realistic engineering simulations.

2. Notations and preliminaries

Starting with the overview of classical principles of continuum thermodynamics,

restricted to adiabatic processes (no heat transfer occurs), necessary for the consid-

erations of Section 3, we come to their mathematical description in the Bochner-

Sobolev spaces of abstract functions, mapping certain time interval I = [0, τ ] of

a finite length τ to a space of admissible virtual displacements V , related to the ini-

tial geometrical configuration, to the weak formulation of a corresponding initial and

boundary problem for a system of partial differential equations of evolutions and to

its finite-dimensional discretization in a rather general context. This discretization

enables us to develop the needed computational algorithm and its software imple-

mentation, specified in more details in Section 3.

2.1. Physical background. For the beginning, let us consider a single de-

formable body Ω in the 2-dimensional Euclidean space R2, with its Lipschitz bound-

ary ∂Ω, supplied by certain fixed system of Cartesian coordinates x∗. Such configu-

ration refers to its initial state in the time t = 0; for every time t ∈ I we shall work,

due to the activity of various loads, with Ωt = X(Ω, t), where X(·, t) refers to a mo-

tion of Ω onto Ωt locally, admitting an inverseX
−1(·, t). This enables us to introduce

the 2-component displacement u(x, t) = X(x∗, t) − x∗, as well as the corresponding

velocity v(x, t) as its 1st time derivative in the form v(x, t) = dX(X−1(x, t), t)/dt
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and the acceleration as its 2nd time derivative similarly. To simplify such nota-

tions, the following formulae will contain upper dots instead of ∂/∂t and also (·),i
instead of ∂(·)/∂xi, where i and similarly also i, j, k, l will be indices from {1, 2}, uti-

lized in the sense of the Einstein summation rule; moreover, the Hamilton operator

∇ = (∂/∂x1, ∂/∂x2) will be needed. Let us also notice that most considerations in

this article could be generalized to the 3-dimensional Euclidean space R3 (instead

of R2) naturally, but this is not discussed here in details for simplicity.

In the following considerations we shall recall only selected knowledge from prin-

ciples of thermodynamics needed on the instant; for much more details see [5],

Chapter 1. Introducing the so-called material derivative with respect to time v′i =

v̇i + vi,jvj , the balance of linear momentum reads

(2.1) ̺v′i = σij,j + fi,

where σij(x, t) means the Cauchy stress tensor and f(x, t) refers to the prescribed

body forces; this is well-known in engineering mechanics as the Cauchy equilibrium

conditions. Thanks to the applied Boltzmann continuum description, the balance

of angular momentum gives just the stress symmetry σij = σji. Some constitutive

equation for the evaluation of σij is needed, using the matrices of gradients ∇vi,

∇ui, etc.; analogously to σij it is natural to introduce the symmetric strain, strain

rate, etc. tensors as εij(u) = (ui,j + uj,i)/2, εij(v) = (vi,j + vj,i)/2.

The practical evaluation of σij , respecting some available data from material mi-

crostructure, its proper mathematical description and reliable experimental identifi-

cation of a sufficiently small number of suggested material parameters, is a separate

serious problem: some researchers try to work with fractional derivatives, auxiliary

differential or integro-differential equations, etc. Here we shall accept the classical

parallel visco-elastic model, referenced as the Kelvin one, i.e.,

(2.2) σij = Cijkl(εkl(u) + αεkl(v)),

where Cijkl = Cjikl = Cijlk = Cklij are (in general) 6 independent components of the

4th order stiffness tensor and α is the structural damping factor. Additional assump-

tions reduce the number of these material parameters: namely for isotropic materials,

Cijkl = λ1δijδkl+λ2(δikδjl+δilδjk) uses only 2 so-called Lamé coefficients λ1 and λ2

or alternatively 2 parameters called the Young modulus E = λ1(3λ1+2λ2)/(λ1+λ2)

and the Poisson ratio λ = λ1/(2(λ1 +λ2)); δij here is the Kronecker symbol (return-

ing 1 just for i = j, 0 otherwise). For the hypothetical case α = 0 (no energy

dissipation is allowed), (2.2) degenerates to the classical Hooke law. Let us remark

that another case with the formal setting α = 1 and missing 1st additive term in (2.2)

is frequently used in computational dynamics of compressible fluids.
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The balance of momentum, as well as of mass or energy, is connected with the

first principle of thermodynamics. The second principle of thermodynamics can

be satisfied automatically using some reasonable setting of material characteristics,

namely the positive-valued α together with the positive definiteness Cijklaijakl >

C∗aijaij , where aij and akl form arbitrary symmetric real square matrices of order 3

and C∗ is a positive constant independent of them; moreover, ̺ should be positive-

valued, too. Nevertheless, this may be much less transparent in the case of physical

processes active on contacts between several deformable bodies, as we shall see soon.

2.2. Weak formulation. Let us consider the Cauchy initial conditions, i.e., the

zero-valued u(·, 0) and v(·, 0) = v0(·) for some a priori prescribed initial displacement

rates. All equations like (2.1) can be rewritten in their weak formulation, i.e., in the

integral ones, incorporating all needed boundary conditions, thanks to the integration

by parts using the Green-Ostrogradskǐı theorem, at least in the sense of distributional

derivatives. In the following formulations, µ refers to the Lebesgue measure in Ωt, ς

to the Hausdorff measure on ∂Ωt. By multiplying all additive terms of (2.1) by

time-independent virtual displacement rates ṽ from their admissible set satisfying

the homogeneous time-independent support conditions (referring to the boundary

conditions of Dirichlet type) on a subset of the boundary ∂Ωt, denoted as Θ, for ∂Ωt

transformed from its reference configuration ∂Ω, we obtain

(2.3)

∫

Ωt

ṽi̺v
′
i dµ(x) =

∫

Ωt

ṽi(σij,j + fi) dµ(x).

Thus, thanks to the integration by parts, (2.3) yields

(2.4)

∫

Ωt

̺ṽiv
′
i dµ(x) +

∫

Ωt

εij(ṽ)σij dµ(x) =

∫

Ωt

ṽifi dµ(x) +

∫

Γt

ṽigi dς(x),

where gi(x, t) means the components of the prescribed surface loads on the non-

supported rest of ∂Ωt (representing the boundary conditions of the Neumann type),

denoted as Γt. Inserting (2.2) into (2.4), we receive the final formula for the calcu-

lation of vi and ui.

The computational evaluation of vi and ui from (2.4) with (2.2) is not easy be-

cause of the unceasing change of coordinates. Consequently, most formulations in

engineering mechanics work with some kinds of simplifications of such equations. The

frequently used approach relies on the inaccurate small-strain transcription of (2.4)

onto Ω instead of Ωt (geometrical linearization), adopting also (2.2) in the corre-

sponding way (physical linearization). Thus, (2.4) degenerates to

(2.5) (ṽ, ̺a) + ((εij(ṽ), σ)) = (ṽ, f) + 〈ṽ, g〉.
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Using the standard notation of Lebesgue, Sobolev and Bochner-Sobolev spaces of

(abstract) functions, compatible with [28], Parts 1 and 7, we can understand (·, ·)

in (2.5), valid for any t ∈ I, as the scalar product in L2(Ω)2, ((·, ·)) as the scalar

product in L2(Ω)2×2
sym and 〈·, ·〉 as the scalar product in some L

2(Γ)2 for ∂Ω = Γ ∪Θ

and any ṽ ∈ V := {w ∈ W 1,2(Ω)2 : w = (0, 0) on Θ}. Assuming f ∈ L2(Ω × I)2,

g ∈ L2(Γ × I)2, C ∈ L∞(Ω)
(2×2)×(2×2)
sym and ̺, α ∈ L∞(Ω), the linear system of

evolution (2.5) with a = v̇ = ü can be analysed using the method of discretization in

time, as described by [27] completely, based on the convergence properties of 2 types

of the Rothe sequences of approximate solutions, mapping I to needed function

spaces, with the results u ∈ W 1,2(I, V ), v ∈ L2(I, V ), and a ∈ L2(Ω × I). The

undesirable effect of such simplification can be suppressed by applying some adaptive

restarting strategy, controlled by the (in)acceptability of small-strain assumptions,

i.e., the reset of the Cauchy initial conditions in some time steps, or even (in the

extreme case) in all considered time steps.

All above presented arguments can be repeated for a union of finite number of

deformable bodies, denoted by Ω again, with potential contacts. Nevertheless, in

addition to Θ and Γ, ∂Ω by (2.5) must contain an additional potential contact

part Λ, decomposed to a lot of separated subsets. Formally the analogue of (2.5)

(2.6) (ṽ, ̺a) + ((ε(ṽ), σ)) = (ṽ, f) + 〈ṽ, g〉+ 〈Dṽ, σ∗〉c

holds, where 〈·, ·〉c refers to the scalar product in L2(Λ)2 and all components Dṽi

of Dṽ = (Dṽ1,Dṽ2,Dṽ3) mean the interface differences in values of ṽi, evaluated as

their traces from adjacent parts of Ω; later we shall need also the scalar product

〈·, ·〉ν in L2(Λ) only. The contact stress σ∗ depends on Du and Dv. Various models

describing this dependence can be found in the literature, see, e.g., (in the chrono-

logical order) [21], [9], [17], [42], [10], [33], [14], [38], [39]. For the sake of simplicity,

we shall write σ∗ = γ(Du,Dv). The main aim of this article is to construct a discrete

counterpart of γ following from the space and time approximations of the problem,

which are described below. In the case of the Hertz-Signorini-Moreau or friction

contact conditions, the function γ is multi-valued and consequently (2.6) has to be

replaced with a variational inequality for the problem to be defined correctly. The

function γ can be single-valued, for example, if a penalization of the dynamic contact

is considered, see [17], [42]. The approach suggested in this article will be compared

just with the penalization method, see Section 4.

2.3. Semi-discretized and fully discretized computational schemes.

A computational scheme for (2.6), supplied with an evaluation procedure forP(·, ·, ·),

or another comparable approach, could be based on the decomposition of such hy-

perbolic evolutionary problem into a sequence of elliptic problems, still in certain
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infinite-dimensional (although separable) function spaces. Since their analytical solu-

tion is rarely available, consequently some additional discretization in R3 is required,

using the finite element method typically. Thus, most engineering applications work

with the reverse discretization procedure. The finite element technique is able to con-

vert (2.5) to a sparse system of linear ordinary differential equations in time, which

can be solved (at least theoretically) in the analytical form, at the expense of spectral

analysis of related differential operators. Such questionable advantage disappears in

case (2.6), with the occurrence of the first non-negligible non-linear term.

Searching for ui(x, t), vi(x, t) and ai(x, t) satisfying (2.6), let us introduce the

multiplicative Fourier decomposition

(2.7) ui(x, t) = ϕip(x)u
∗
ip(t), vi(x, t) = ϕip(x)v

∗
ip(t), ai(x, t) = ϕip(x)a

∗
ip(t)

with a∗ip(t) = v̇∗ip(t) = ü∗
ip(t) and a priori given functions ϕip(x); p here denotes

the Einstein summation index from {1, . . . , n} and (ϕi1, . . . , ϕin) form the basis of

a subspace Vδ of finite dimension N 6 2n approximating V from Section 2, ṽi = ϕiq

for particular q ∈ {1, . . . , n}, except the nodes where zero-valued ṽi’s are required by

the definition of Vδ. In the simplest case Vδ ⊂ V ; for more general settings (covering

the so-called variational crimes) see [6], Chapter 10. In all cases, Ω is approximated

by certain Ωδ, collected from particular elements, e.g. from tetrahedra (3-simplices),

where ϕip can be constructed as linear functions taking the value 1 just in 1 top

and the value 0 in 3 remaining ones, i.e., the linear Lagrange splines in Ωδ. The

support conditions need to be transferred from the definition of V to Vδ; δ here is

usually identified with the maximal distance of 2 points of the same element over their

whole collection: clearly δ → 0 with n→∞ under some geometric (semi-)regularity

conditions.

Inserting (2.7) into (2.6), setting ṽi as ϕip for particular p ∈ {1, . . . , n}, for any

t ∈ I formally creating vectors u(t), v(t) and a(t) from all parameters u∗
ip(t), v

∗
ip(t)

and a∗ip(t) involved in (2.7), we can rewrite (2.6) in its semi-discretized matrix form

(2.8) Ma(t) +Cv(t) +Ku(t) = F(t) +G(u(t),v(t)).

Here the positive definite square sparse matrices K, C and M of order 3n are well-

known as the stiffness, damping and mass matrices; the much-favoured trick with

lumped masses, as implemented by [42], Section 3 (taking simple functions instead of

linear Lagrange splines for the 1st left-hand side additive term of (2.6)), guarantees

very simple construction of M−1, too. The right-hand side of (2.8) contains F(t)

coming from both right-hand-side additive terms of (2.6) (performing numerical in-

tegration in Ω and on Γ) and G(u(t),v(t)) from its remaining right-hand-side terms

(performing numerical integration on Λ, covering all non-linear contact phenomena);
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we have a(t) = v̇(t) = ü(t) again. In particular, if no contact is active, G(·, ·) van-

ishes and (2.8) can be seen, at least for relevant time step(s), as a semi-discretized

version of a standard linear problem (2.5). Let us note that, thanks to integration

over Ω, Γ and Λ, all additive terms on both sides of (2.8) can be understood as certain

time-variable forces; the most delicate task is the evaluation of G(u(t),v(t)), corre-

sponding to all nodal contact forces generated by the last right-hand-side additive

term of (2.6), implementing decomposition (2.7). In Section 3 we shall demonstrate

that such evaluation can be performed using the detailed analysis of change of 3

kinds of energy on Λ, related to particular time steps, as induced by the following

considerations.

The full discretization of (2.6) needs an approximate evaluation of u(t), v(t) and

a(t) by (2.8) for t ∈ I. For the simplicity of notation, motivated by the limited

extent of this article, let us apply the equidistant decomposition of I into a finite

number m of subintervals of the length h = τ/m; clearly h → 0 with m → ∞, the

generalization to subintervals of different lengths would be straightforward. Unlike

implicit computational schemes, whose practical disadvantages come from the rather

complicated non-linear formulation of G(u(t),v(t)), the use of an explicit compu-

tational scheme forces usually some sufficiently short steps h, even in comparison

with δ, as discussed in [24]. In this article we shall apply just an explicit finite differ-

ence scheme, recommended by [12] and implemented a.o. in the LS-DYNA software

package, which reads

Mas = Fs +Gs(us,vs)−Cvs−1/2 −Kus,(2.9)

vs+1/2 = vs−1/2 + has, vs = (vs−1/2 + vs+1/2)/2, us+1 = us + hvs+1/2

for s ∈ {0, 1, . . . ,m}; all a priori known values are taken at t = sh. Clearly vs in the

1st equation (2.9) needs to be updated by a sufficient number of steps of an iterative

procedure, taking vs−1/2 as the first guess of vs and exploiting the 3rd equation;

fortunately Gs(us,vs) is zero-valued everywhere except the active contacts. The

still undefined v−1/2 in the 1st formula (2.9) for s = 0 can be replaced by v0 from

the 2nd Cauchy initial condition, thus v−1/2 = v0− ha0/2 formally, whereas the 1st

Cauchy initial condition forces the zero-valued u0 only. For s = m, just the first

three formulae (2.9) are relevant.

The pseudo-code of Algorithm 1 represents the calculation scheme of (2.9) in the

explicit evaluation of displacements, velocities and accelerations of particular points

of Ωt. This scheme refers from its line 11 to the Algorithm 2 that is used for Gs(·, ·)

calculation as sketched by Section 3, and is allowed to handle all impact phenomena.

Non-zero values of Gs(·, ·) in (2.9) will consequently appear in the fully discretized

model presented by Section 3 just thanks to the triple of nodal forces fA, fB, fC acting
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in the nodes A, B and C, for C colliding with the straight line AB (for illustration

see Fig. 2). The non-trivial determination of directions and magnitudes of all such

forces will be then needed.

y

x

A

B

Q

C

pA

pB
pC

pQ

vA

vQ

vC vB

(a)
y

x

A

B

Q≡C

pA(t)

pB(t)

pQ(t)≡pC(t)

︸

︷︷

︸
︸

︷︷

︸

︸

︷︷

︸

ξl

(1− ξ)l

l

(b)

Figure 2. (a) Moving point and moving structural element before the impact. (b) Definition
of the relative coordinate ξ.

Algorithm 1. Computational steps of the impact analysis.

1: m, τ prescribed, h = τ/m, s = 0, t0 = 0, ε = sufficiently small value;

2: setting initial values v0, v−1/2 and u0 for Ω0, as described in the discussion

under (2.9);

3: while ts 6 τ do
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

4: v∗
s = infinity, vs = vs−1/2;

5: while |v∗
s − vs| > ε|vs| do

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

6: solution of the sparse system of linear algebraic equations, represented

by the 1st formula of (2.9), to get as;

7: evaluation of vs+1/2 by the 2nd formula of (2.9);

8: v∗
s = vs, evaluation of vs by the 3th formula of (2.9);

9: searching for active contacts pairs;

10: for each contacts pair do
∣

∣

∣

∣

11: calculating nodal forces for current contact pair using Algorithm 2;

12: contributing calculated nodal forces to global vector Gs;

13: end

14: end

15: ts+1 = ts + h;

16: if ts+1 < τ then
∣

∣

∣

∣

17: evaluation of us+1 by the 4th formula of (2.9);

18: s← s+ 1, new configuration of Ωts ;

19: end

20: end
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The computational scheme (2.9) could be adopted for the construction of an al-

ternative proof of solvability of (2.6) and its possible quasi-linear generalizations,

together with the detailed convergence properties of the related algorithm for h→ 0

and δ → 0. Appendix A of this article sketches only some stability considerations,

crucial for the time stepping, unlike those less transparent by [12], relying on spectral

analysis.

3. Calculation of impacts of bodies

In Section 2 we have introduced the basic idea of a contact/impact simulation

of elastic bodies. However, there is still a rather long way from such formulation

for a benchmark problem to an effective algorithm for practical calculations. In the

following considerations we shall pay attention just to the details of evaluation of con-

tact behaviour, i.e., to details of evaluation of the last right-hand-side term of (2.6),

up to technical details for the 2-dimensional problem, with surfaces represented by

line segments, where particular bodies are arbitrarily moving (and rotating) in R
2.

The whole process consists of repeated solution of impacts of nodes onto plane sur-

faces of elements of another bodies; an impact which occurs earlier is analysed first.

The related principles can be extended to R3 naturally, at the expense of more com-

plicated notations and derivations of all needed formulae. In a still more general

context, this can serve as a demonstration of a thorny way from physical and math-

ematical non-linear benchmark problems to practical engineering calculations, up to

effective general purpose software development. Basic idea comes from conservation

of total energy in calculated time steps. Similar approach was proposed by [44] for

node-to-node contact with need of certain mesh modification strategy; this article

presents a more general node-to-surface contact, where no such compatible mesh is

required.

The aim of the following considerations is to come to the practical algorithm of

step-by-step calculation of vectors Gs(us,vs), needed in (2.9), stemming from the

evaluation of 〈Dṽ, σ∗〉c in (2.6) with σ⋆ = γ(Du,Dv). The proposed calculation

of each Gs(us,vs) is based on the total energy conservation principle, where total

energy Πs before, during and after the contact/impact, related to the time t = sh,

must coincide. Therefore, the change of energy∆Πs(= Πs−Πs−1), caused by contact

forces in its surrounding during one time step, consisting of changes in kinetic energy

∆Πks, potential elastic energy ∆Πσs and potential energy of position ∆Πps, must be

equal to zero, i.e., ∆Πs = 0. This can be applied to every contact separately, even up

to particular finite elements for a selected s ∈ {0, 1, . . . ,m}; namely 0 = ∆Πs(fC) =

∆Πks(fC)+∆Πσs(fC)+∆Πps(fC) is utilized for the required evaluation of a contact

force fC in a collision of bodies. All indices s in such context are omitted. Moreover,
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we shall work with t ∈ [−h, 0] instead of t − sh in the rest of Section 3 for brevity.

This section describes one contact pair (as sketched by Fig. 1) and its nodes A, B,

C with corresponding result contact forces fA, fB and fC , generating Gs in the sense

of Algorithm 1.

y

x

vC

vQ

vCQ

(a)

m m m m

m m 2m

v v

v

1

2
v

(b)

Figure 3. (a) Velocities of impacting points. (b) Impact of two idealized bodies with the
same mass m: purely elastic case (upper scheme) and purely plastic one (lower
scheme).

3.1. Finding the point and time of impact of moving point into moving

surface. Let us assume a line segment containing 2 points A, B and another point C.

Due to linearization of each time step in the explicit method, let us assume that all

these points are moving with constant velocities in a fixed time step, generally each

of them with different velocity. As sketched by Fig. 2 (a) and Fig. 3 (a), the initial

location of the point I ∈ {A,B,C} is denoted by pI(0) and the velocity of the point I

by vI . Thus, we have the general formula for positions of the points in time t:

(3.1) pI(t) = pI(0) + vI t with I ∈ {A,B,C} and t ∈ [−h; 0].

We want to detect whether the location of the point C will be on the line segment AB

in an instant of the current time step. For this purpose, at first, we shall find out the

time t in which the point C will be located on the line AB. In such configuration

both vectors pC(t) − pA(t) and pB(t) − pA(t) are parallel, as well as the vectors

perpendicular to pC(t) − pA(t) and pB(t) − pA(t). Let us define the mapping P

which assigns a perpendicular vector to a given vector in R
2. In particular, in this

way, to any vector (x, y) a vector (−y, x), or (y,−x), is assigned. Using central dots

for scalar products in R
2, we are able to write

(3.2) (pC(t)− pA(t)) · P(pB(t)− pA(t)) = 0.
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Substituting from (3.1) into (3.2) and applying the brief notation vAC = vC − vA,

pAC = pC(0) − pA(0), vAB = vB − vA, pAB = pB(0) − pA(0), we receive the

quadratic equation A2t
2 +A1t+A0 = 0 for a variable t, whose coefficients are

(3.3) A2 = vAC ·P(vAC), A1 = pAC ·P(vAB)+vAC ·P(pAB), A0 = pAC ·P(pAB).

We shall need (if possible) its real root tc1,2 =
(

±
√

A2
1 − 4A0A2 −A1

)

/(2A2).

Obtaining two complex conjugated roots from (3.3) means that the point C could

not possibly cross the line AB in a linearized time step in the current configuration

of position and velocities. We do not investigate this case anymore, as well as any

degenerated case with A2 = A1 = 0. To obtain the time of the contact and the

space coordinates of nodes, the roots tc1 and tc2 must be real; both roots must be

investigated because only one of them has a physical meaning. The roots represent

time of possible contact of the line AB and the point C. We investigate whether

the time of the contact belongs to the elapsed time step h. It follows that if tc > 0,

then the contact has yet to occur; otherwise the contact has already occurred. If

the contact occurred in the elapsed time step h, for the time tc, −h 6 tc 6 0 holds.

If both of the roots satisfy the condition, the lower one tc1 6 tc2 is valid, the later

contact could not occur.

If tc lies in the needed interval and the line segment AB is not degenerated, then

we must check whether the point C lies within this line segment. Let Q be (in the

general context) the result of projection of the point C to the line AB; Fig. 2 (b)

shows the case where both points C and Q coincide. Since the point Q lies always

on the line AB, we have

(3.4) pQ(t) = pA(t) + t̂(pB(t)− pA(t))

for a parameter t̂ (as a function of t, too). Seemingly the point Q (so also the

point C) is contained in the line segment AB if 0 6 t̂ 6 1; however, when deriving

the time of the collision, C ≡ Q is not supposed yet, but (in the opposite case) the

pair of lines CQ and AB must be perpendicular, i.e.,

(3.5) (pC(t)− pQ(t)) · (pB(t)− pA(t)) = 0.

Thus, (3.4) and (3.5) result in

(3.6) t̂ =
(pC(t)− pA(t)) · (pB(t)− pA(t))

(pB(t)− pA(t)) · (pB(t)− pA(t))
.

The location of all points A, B, C, Q (given by pA, pB, pC , pQ) in the time of the

impact tc can be obtained easily, substituting t = tc into (3.1) and (3.4) with t̂ taken

from (3.6).
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3.2. Determination of the direction of impact forces eC. At first, let us

assume the impact of two mass points in the one-dimensional case. It is needed

to determine the velocities of the mass points after the impact. The solution must

satisfy the laws of conservation of energy and momentum, as introduced (in much

more general context) in Section 2; 2 equations for 2 velocities enable us to solve the

problem, cf. Fig. 3 (b).

Let us notice that the formulation of such problem in R
3 requires to deter-

mine 6 unknown components of 2 velocity vectors, but only 4 equations from

the conservation laws are available: 3 of them obtained from conservation of

(translational) momentum and 1 from conservation of energy. In R
2 it is needed

to determine 4 unknown components of 2 velocity vectors while having only 3

equations at disposal. Thus, an infinite number of solutions satisfying these

conservation laws exists. To obtain the correct and unique solution, a suit-

able additional hypothesis must be adopted, concerning the determination of

the direction of the velocity of at least 1 of 2 colliding mass points. The im-

pact of 2 infinitesimal mass points is not practically important and can be re-

garded as an exceptional case of the general case of the impact of a mass point

on a surface.

Let us consider 2 limit cases. At first, let us assume that the friction is absolute

and no slip between the mass point and the surface during the impact occurs. Then

the mass points C and Q will bounce in the same relative direction vCQ = vQ − vC

as before the impact, but moving to the opposite sides. The impact force faQ acting

on the point Q will have the same direction as the relative velocity vCQ(t), whereas

the impact force faC acting on the point C has the opposite direction. Thus, it is

easy to define, applying the Euclidean norm |·| in R
2, also the unit vector eaQ =

faQ/|f
a
Q| = vCQ/|vCQ|. As the second limit case, let us suppose that there is zero

friction between the impacting bodies. In this case the force between the mass point

and the surface must be normal to the surface in the point of the impact; the angles

between the normal to the surface and the velocities of the mass point must be the

same and these 2 vectors must be oriented symmetrically to the normal of the surface.

Let us introduce the vector nAB normal to the line AB, which is the direction of

the contact force in the limit case of zero friction; thus (for an arbitrary t again)

nAB = P(pB(t)− pA(t)).

Between the impacting points C and Q an impact force must act in the sense of the

classical 3rd Newton law. The directions of the impact forces fzQ and f
z
C acting at the

points Q and C can be determined as ezQ = fzQ/|f
z
Q| = nQ/|nQ| using the simple rule

(3.7) nAB · vCQ(t) > 0⇒ nQ = nAB ,

nAB · vCQ(t) 6 0⇒ nQ = −nAB.
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In real engineering simulations, the friction between the surface, analysed by (3.7),

is rarely none or absolute; something between both limit cases occurs. There-

fore, it is reasonable for the angle of the relative velocity vectors to be taken

as a linear combination of both limit cases. For this purpose it can be useful

to introduce the dimensionless weight coefficient β with values between 0 and

1 and to express eQ = fQ/|fQ|, where fQ = βeaQ + (1 − β)ezQ. The unit im-

pact force, acting in the point C in the opposite direction, can be then taken

as −eQ. The value of β can be identified experimentally for specific materials

and surfaces. Such friction without energy dissipation, used in this paper exclu-

sively, can be seen as an alternative to other friction models, e.g. to the classical

Coulomb model, utilized in [10], its velocity-driven variant by [42], or the LuGre

and Dahl models, analyzed by [23]; for even more approaches to evaluation of

friction cf. [22].

3.3. Evaluation of impact of mass point into a finite element surface. In

most software applications a stiffness of impact in the defined direction of the force

between two impacted bodies is considered as a crucial step for the penalty method.

The disadvantage of this method is a certain randomness in calculation of the force

between the impacted bodies. To guarantee that the bouncing force satisfies the

conservation of energy well enough, it is necessary to ensure that the whole process

of braking and accelerating of the impacted bodies lasts at least 5 or 6 time steps

(by mostly empiric observations) in all explicit evaluations, as sketched by Section 2.

This can be seen as a motivation for the development of quite another approach.

Such approach can come from the careful evaluation of the contact force fCQ acting

at the impacting points. The force fCQ can be seen as an internal force in the case of

contact always pressure with zero resultant, representing 2 opposite forces fC and fQ
acting on the impacted bodies, in particular at the points of the impact C and Q,

respectively in the sense of the 3rd Newton law. Therefore, the force fQ acting at

the point Q is opposite to the force fC acting at the point C. In our configuration,

fQ = fCQ and fC = −fCQ. The direction of this force depends on the vector of the

velocity of the point C related to the element AB and on the magnitude of friction

between the impacting bodies; its determination has been described above. For

the determination of the magnitude of the force fCQ, a fictitious time step hC = h,

admitting only the loading by the unknown force fCQ, is introduced now. This special

time step hC is not real and serves only for calculation of such a magnitude of the

contact force acting within one time step to fulfil the energy conservation during the

collision exactly. Increments of time, positions, velocities and forces calculated in the

fictitious time step are not added to the present state. To the next real time step,

the nodal forces equivalent to the contact forces calculated in the fictitious time step
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are added to the present nodal forces. It is necessary to determine its magnitude so

that in one time step hC such acceleration of 3 points A, B and C occurs that their

velocities and positions at the end of this time step provide the same total energy,

possibly decreased by the energy dissipation during the impact.

3.3.1. Preparatory considerations. Let us consider discretized (lumped)

masses mI assigned to particular points I ∈ {A,B,C,Q}; they are just the ele-

ments of the diagonalized matrix M from (2.8), as well as the discretized nodal

masses in Section 4. The forces fC and fQ cause at the point C and Q the accel-

erations aC = fC/mC , aQ = fQ/mQ = −fC/mQ, respectively; the corresponding

increments of velocity at the end of the time step are ∆vC = aChC , ∆vQ = aQhC .

Regarding the fact that the point Q is not a regular node in the analysed system but

a common point on the line segment AB, it is necessary to substitute the force fQ

with 2 equivalent forces fA and fB, applied respectively at the points A and B in the

sense of equivalence of translational and rotational momentum. The equivalence of

the translational momentum is expressed by the relation

(3.8) ∆vQmQ = ∆vAmA +∆vBmB.

The equivalence of the rotational momentum, accounting for zero rotational momen-

tum of the mass mQ to the point Q is expressed by the relation

(3.9) ∆vAmAξ −∆vBmB(1− ξ) = 0,

as presented by Fig. 2 (b). Here ξ = xt/l and 1 − ξ = (l − xt)/l are the relative

distances of the point Q from the points A and B. While the point A lies at the

zero origin of the axis xt, the point B lies at the place xt = l and the point Q at the

place xt.

From (3.8) and (3.9), supplied by the obvious relationmQ = mA+mB, we come to

the evaluation formulae for the increment of velocities ∆vA and ∆vB , at the points

A and B, respectively, analogous to ∆vC presented above, in the form

(3.10) ∆vA = ∆vQ
mA +mB

mA
(1− ξ) = −

fC

mA
(1− ξ)hC ,

∆vB = ∆vQ
mA +mB

mB
ξ = −

fC

mB
hC , ∆vC =

fC

mC
hC .

Consequently, we are able to calculate also the resulting velocities of the points A, B

and C at the end of the fictitious time step v∗
I = vI +∆vI with I ∈ {A,B,C}, as

well as the change of positions of the same points ∆uI = vIhC and the resulting

positions u∗
I = uI + v∗IhC .
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No positions of the remaining nodes of the structure change in this fictitious time

step. In the case that some deformation parameters at the points A, B and C are

supported, it is necessary to ensure that their increments of velocities and positions

will be zero-valued. Calculation of all changes of energy caused by the force fCQ

in the fictitious time step hC consists of three steps: of those i) of the kinetic en-

ergy ∆Πk, ii) of the elastic potential energy of elements ∆Πσ, iii) of the potential

energy corresponding to particular positions ∆Πp. The corresponding notation ΠJ

and Π∗
J = ΠJ +∆ΠJ with the symbolic indices J ∈ {k, σ, p} for the energy of various

kinds before and after the impact will be applied, too.

During the fictitious time step, only the velocities of the nodes A, B and C will

change. In the following formulae, based on the change of 3 various kinds of energy,

we shall apply the Einstein summation index I ∈ {A,B,C}.

3.3.2. Change of kinetic energy ∆Πk. For the kinetic energy, whose change

is controlled by fC , thanks to (3.10) we have

(3.11) Πk =
1

2
mIvI · vI , Π∗

k =
1

2
mIv

∗
I · v

∗
I ,

∆Πk = Π∗
k −Πk =

1

2
mIv

∗
I · v

∗
I −

1

2
mIvI · vI =

1

2
mI(2vI ·∆vI +∆vI ·∆vI)

=
1

2
mA

(

−
2fC · vA

mA
(1− ξ) +

fC · fC
m2

A

(1− ξ)2hC
2
)

+
1

2
mB

(

−
2fC · vB

mB
ξ +

fC · fC
m2

B

ξ2hC
2
)

+
1

2
mC

(2fC · vC

mC
+

fC · fC
m2

C

hC
2
)

= − vA · fC(1− ξ)hC +
fC · fC
2mA

(1− ξ)2hC
2

− vB · fCξhC +
fC · fC
2mB

ξ2hC
2 + vC · fChC +

fC · fC
2mC

hC
2.

3.3.3. Change of potential elastic energy ∆Πσ. With regards to the fact

that only positions of the points A, B and C are allowed to change in the given

fictitious time step, only the elastic potential energy of the elements including those

nodes may change. In our case we limit ourselves to linear truss rods. Let η refer to

particular element indices, being considered as the Einstein summation index again,

with admissible integer values from 1 to the total number of such elements. For

any η let L0η be the original element length and Lη its length at the beginning of

the fictitious time step, i.e., in the time of contact of the points C and Q; moreover

∆Lη := Lη − L0η, being the total element length change at the end of the fictitious

time step. At the end of the time step, the length Lη from its beginning is modified

to L∗η; ∆L
∗
η := L∗η − L0η being the total element length change at the beginning

of the fictitious time step analogously. For example, let us assume that the line

791



segment AB is a representation of a truss element with the cross section area Aη

and its Young modulus E (the same everywhere). Thus, we are ready to express the

elastic potential energy as

(3.12) Πσ =
1

2
EAη

(Lη − L0η
L0η

)2

=
EAη

2L20η
∆L2η,

Π∗
σ =

1

2
EAη

(L∗η − L0η

L∗η

)2

=
EAη

2L20η
∆L∗η

2,

∆Πσ = Π∗
σ −Πσ =

EAη

2L20η
(2∆Lη +∆L∗η)∆L

∗
η.

3.3.4. Change of potential energy of position ∆Πp. To utilize the last equa-

tion of (3.12) as the computational formula, 2 occurrences of particular ∆L∗η on its

right-hand side need the proper evaluation. No exact effective method is available,

thus we apply the linearized equations for the change of element lengths, based on

the projections of member ends of displacement increments into the member axis, in

the form

(3.13) ∆L∗η = L0η(∆uN −∆uM) = L0η

(

vNhC +
fCϑN

2mN

hC
2−vMhC−

fCϑM

2mM

hC
2
)

for every η (without any summation here). The nodal positions increments are

expressed in terms of nodal velocities and accelerations in the given time step.

In (3.13), ϑM and ϑN represent the multiplicative weight coefficients applied to

the force fQ − fC being multiplied at pertinent element ends. Therefore, ϑfC can be

interpreted as the increment of the nodal force in the fictitious time step from the

contact force fC . Consequently, ϑA = −(1 − ξ), ϑB = −ξ, ϑC = 1 and ϑ = 0 in all

remaining nodes.

Finally, the change of the potential energy, thanks to the fact that only 3 points

A, B and C are loaded by some non-zero forces fQC , can be calculated as

∆uA = −
fC

mA
(1 − ξ)hC

2,(3.14)

∆uB = −
fC

mB
ξhC

2, ∆uC =
fC

mC
hC

2,

∆Πp = −∆uηf
ext
η =

fC · f
ext
A

mA
(1− ξ)hC

2 +
fC · f

ext
B

mB
ξhC

2 −
fC · f

ext
C

mC
hC

2,

where all upper indices in f extA , f
ext
B and f extC refer to pertinent external forces. Notice

that the velocities at the beginning of the fictitious time step are not taken into

account because in the fictitious time step we investigate only the influence of the

contact force to a change of the pertinent nodes positions ∆uη.
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3.3.5. Calculation of the magnitude of impact nodal force fC from total

energy change ∆Π = ∆Πk(fC)+∆Πσ(fC)+∆Πp(fC) = 0. The change of the total

energy Π to its new value Π∗ can be presented as Π∗ − Π = ∆Π = ∆Πk + ∆Πσ +

∆Πp + Eq, where Eq refers to the dissipatied energy during the impact, which for

an impact of elastic bodies is equal to zero. If any non-negligible plastic or damage

effects occur, their influence must be estimated by an independent calculation, and

for the presented algorithms they can be regarded as given.

All energy contributions are functions of the contact force

(3.15) fC = |fC |eC .

Thus, the energy change during the impact∆Π can be seen as a function of one scalar

variable, interpretable as the magnitude of the contact force |fC |, and of a duration

of the fictitious time step hC . Then the relation expressing the energy conservation

reads

(3.16) ∆Π(|fC |, hC) = ∆Πk(|fC |, hC) + ∆Πσ(|fC |, hC) + ∆Πp(|fC |, hC) = −Eq.

For all presented examples in this paper we assume Eq = 0. The magnitude of

the impulse of the contact force must satisfy (3.16). When the magnitude of the

fictitious time step (i.e., duration of acting of the contact force, hC = h) is chosen,

the magnitude of the contact force can be calculated.

The formulae for calculation of the kinetic energy and the potential energy of posi-

tion contain only linear and quadratic terms with unknown |fC |. Only the evaluation

of the elastic potential energy cannot avoid the square root of |fC | when calculating

the element lengths at the end of the fictitious time step.

Therefore, to obtain the quadratic equation for |fC | in its closed form, it is needed

to calculate the change of the line segment length in a linearized form. Then the cal-

culation would lead to a solution of a certain quadratic equation without an absolute

term, which vanishes when detracting the energy at the beginning of the time step

from the energy at the end of the time step. Only the positive root of such equation

has the physical sense.

The crucial step consists in the linearization of (3.13). The unknown variable must

be evaluated using an iterative process, e.g. based on the classical Newton method,

fortunately (not to debase effective computations) only as the one-dimensional

method of tangents. For the first iteration, the root of the quadratic equation

obtained from exact change of the kinetic and the potential energy of the position

can be used as a starting value of the increment of the energy. The linear and

the quadratic coefficients of the quadratic equation are obtained as a sum of all
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coefficients of linear and quadratic terms of the required force magnitude |fC |; in the

case of potential energy of the position, the corresponding term is even only linear.

After rather long calculations (whose details are left to the curious reader) we come

to the final result

(3.17) eC |fC | ·
[

eC |fC |
( (1− ξ)2hC

2

2mA
+

ξ2hC
2

2mB
+

hC
2

2mC

)

+ vC − vA(1− ξ)− vBξ +
f extA

mA
(1− ξ)hC +

f extB

mB
ξhC −

f extC

mC
hC

]

= 0.

Since the root |fC | = 0 gives no physically reasonable result, the 2nd part of (3.17)

provides always an explicit formula for the evaluation |fC |.

Thanks to (3.15), the 1st derivative (∆Π)′ of ∆Π = ∆Πk + ∆Πσ + ∆Πp with

respect to |fC | can be now determined by (3.11), (3.12), including (3.13), and (3.14)

analytically. Consequently, ∆Π = 0 can be achieved using its above derived estimate

of |fC |0 and the iterative procedure

(3.18) |fC |ζ+1 = |fC |ζ −∆Π(|fC |ζ)/(∆Π)′(|fC |ζ),

where ζ ∈ {0, 1, 2, . . .} is the iteration step number. Moreover, we can take

(3.19) ∆vA =
fA

mA
hC , ∆vB =

fB

mB
hC .

Substituting (3.19) into (3.10), we obtain

(3.20) fA = ∆vA
mA

hC
= −fC(1− ξ), fB = ∆vB

mB

hC
= −fCξ.

Lastly, (3.15) and (3.20) complete the evaluation of all required forces at the points

A, B and C. Several collisions indicated in the same time step can be treated

simultaneously if they do not influence the forces at the same node; otherwise only

the collision occurring first is considered in such time step. In the next time step, all

conditions are checked again and handled if necessary.

3.4. Satisfying conservation laws. An important characteristic of each compu-

tational algorithm in engineering mechanics is its respecting of conservation of mass,

momentum and energy just at the discretized level, not only in some hypothetical

limit sense, not reached in practical calculations. The following brief comments are

related to our new approach, whose basic semi-discrete and discrete formulae (2.8)

and (2.9) have been derived from conservation of momentum primarily.

(a) Conservation of mass: This can be expressed as dm = dm0, ̺dV = ̺0dV0

for certain initial mass m0, volume V0 and density ̺0 and their values m, V and ̺

for the current (deformed) configuration. Thus, when e.g. decreasing the element

volume, the density of the element must be increased proportionally.
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(b) Conservation of energy: This is satisfied explicitly in the calculation of the

impact of bodies using the presented algorithm because the magnitude of the opposite

impact forces fC and fQ, acting respectively on the points C and Q of the impacted

bodies, have been calculated on the base of just this law.

(c) Conservation of momentum, in general by (2.1): This is satisfied implicitly,

because the unknown contact force is introduced in the algorithm by the opposite

forces acting on the impacted points, so the global momentum will not be influenced.

3.5. Calculation details. To support the reader-friendliness, the pseudo-code of

Algorithm 2 represents the calculation scheme for contact pair as described above

and is used for composition of Gs(·, ·). Such scheme includes all impact phenomena

on internal interfaces, discussed in Section 3. Both physical and geometrical non-

linearities are handled by the reconfiguration of Ωt, including related finite element

mesh modifications, in equidistant discrete time steps t from 0 to τ .

Algorithm 2 Calculation of the nodal forces fA, fB and fC .

Input: h, β, E, Aη of the corresponding ηth structural element at segment AB,

pI(0), vI , mI with I ∈ {A,B,C}

Output: nodal forces fA, fB and fC as parts of the global vector Gs

1: finding the point and time of impact of moving point into moving surface by Sec-

tion 3.1 from its positions and velocities;

2: determination of the direction of impact forces eC by Section 3.2 from its positions

and velocities;

3: calculation of change of kinetic energy ∆Πk(fC) by Section 3.3.2 from its masses

and velocities (3.11);

4: calculation of change of potential elastic energy ∆Πσ(fC) by Section 3.3.3 from

its positions and material characteristics (3.12);

5: calculation of change of potential energy of position ∆Πp(fC) by Section 3.3.4

from its masses and forces acting on its nodes (3.14);

6: calculation of the magnitude of impact nodal forces fC from total energy change

∆Π = ∆Πk(fC) + ∆Πσ(fC) + ∆Πp(fC) = 0 by Section 3.3.5;

7: calculation of the nodal forces fA, fB from fC by (3.20).

4. Illustrative examples

The validation of the algorithms described above was performed on the example

of an elastic rod impacting a rigid segment, described in [32] generally. In our

case, the rigid barrier is represented by a horizontal rigid segment with both nodes

supported by Section 3. The input values were taken from [42], which will also serve

for comparison of results.
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Figure 4. (a) An elastic rod impacting a rigid segment. (b) Displacements of the nodes C
and D with h = 10−8 s. (c) Decomposition of total energy to its kinetic, potential
and elastic components corresponding to (b).

Fig. 4 (a) shows a model of a rod of total length L = 2m, cross section area

A = 10−5m2, Young modulus E = 2000Pa and mass density ̺ = 2000kg/m3,

divided into 100 elements with its mass discretized to the nodes, which is released

from the height H = 0.0002m under gravity g = 100m/s2 in the vertical direction

towards a rigid segment AB. The calculation time step h = 10−8 s is applied. The

friction parameter β = 0 is used. Fig. 4 (b) presents the time development of dis-

placements of nodes C and D. The displacement of the nodes C and D corresponds

to the analytical solution, presented in [42], as well. Fig. 4 (c) shows the changes of

energy components in time, thus it can be seen as an indicator whether the energy

conservation law is satisfied.

Let us now compare these results with the ones following from the penalty method

introduced in [42]. This method depends on the parameter P defined in [42]. Fig. 5

shows the dependence of the results on P . We see that the results are correct for

a sufficiently large value of P . However, its value is not a priori known. In addition,

for too large values of P , significant rounding errors are observed as it is usual for

penalty methods.

Fig. 5 shows the time development of displacements of nodes C and D and

the changes of energy components in time. Only at a particular P , the displace-

ment corresponds to the analytical solution and the energy is conserved during the

impact.

Fig. 6 demonstrates analogous results for a slightly more general case: square

truss structure with side length a = 0.25m, cross section area A = 1m2, Young

modulus E = 108Pa and mass density ̺ = 104 kg/m3, with its mass discretized to
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the nodes, falling on a supported truss rod under gravity g = 10m/s2. The calcula-

tion time step h = 10−6 s is applied. Significantly different results correspond to zero

(short contact point sliding along the rigid obstacle is observed) and absolute barrier

friction (no contact point sliding) while the energy conservation law is satisfied in

both cases.
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Figure 5. Left part of the figure shows displacements of the nodes C and D with h = 10−8 s
and right part decomposition of total energy, both calculated by the penalty
method.

Frictionless results obtained by the presented algorithm are compared with the

penalty method again with various values of the penalty stiffness P ; this is docu-

mented by Fig. 7. The energy conservation law during the impact is satisfied only

at certain P .
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Figure 6. (a) Square truss structure impacting a supported truss rod. Phases of the bounce
with (b) zero friction, (c) absolute friction; the decomposition of total energy
for (d) zero and (e) absolute friction.

5. Conclusions

The paper has introduced a physically correct and computationally efficient algo-

rithm for contact/impact of bodies. This algorithm was implemented by the authors

in a test computer program and its correctness and efficiency was proved by numer-

ous numerical examples, where all the energy components were monitored. It was

shown that during each impact, the conservation of energy is satisfied perfectly, in

addition to the implicit exact conservation of momentum.

The numerical tests have also shown the conditional stability of the presented

algorithm. The principal ideas of the algorithm, presented and implemented in R
2

for simplicity, can be extended to R
3, too, as the next phase of this research. The

advantages of the new algorithm can be seen at least in comparison with the penalty

method, widely used in other computer programs.
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The main advantage of the new algorithm is exact fulfilling of the energy con-

servation during collisions of bodies. In contrast to the penalty method, where the

energy conservation is not satisfied exactly but is dependent on the chosen contact

stiffness, the presented algorithm exactly fulfils the energy conservation law gen-

erally with no dependence on any selectable parameter. The algorithm can also

take into account the possible energy dissipation and friction between bodies during

impact easily.
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Figure 7. Decomposition of the total energy obtained by the penalty method.

The quantification of the time of calculation under comparable conditions shows

that the performance of the new algorithm is slightly higher than that of the penalty

method. The numerical solution of the non-linear equation (3.16) converges very

quickly, in most cases only two or three iterations are needed, independently of the
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problem size. The implementation of the presented algorithm for collision analysis

of bodies into the widely used commercial software package RFEM for finite element

structural analysis is under development.

Appendix A. Stability of an explicit computational scheme

Respecting all notations introduced by Section 2, let us notice that M and Fs

in (2.9) can be seen as proportional to δ2, unlike C and K, proportional to δ, thanks

to the derivatives ϕip,j and ϕkp,l by (2.7), as evident from (2.4), and unlike Gs(us),

too, proportional to δ because of the presence of surface integrals. The obvious rem-

edy is to introduceC = Cδ2,K = Kδ2 andGs(us,vs) = Gs(us,vs)δ. Consequently,

(2.9) implies

(

M−
h

δ2
C

)

(vs+1/2 − vs−1/2) +
h

δ2
(C− hK)vs+1/2 +

h

δ2
Kus+1(A.1)

= hFs +
h

δ
Gs(us,vs).

Multiplying (A.1) by vs+1/2 from the left and summing the result up with s ∈

{1, . . . , r}, where r ∈ {1, . . . ,m+ 1}, we obtain

1

2
v⊤
r+1/2

(

M−
h

δ2
C
)

vr+1/2 +
1

2

r
∑

s=0

(us+1 − us)
⊤K(us+1 − us)(A.2)

+
1

2

r
∑

s=0

(vs+1/2 − vs−1/2)
⊤
(

M−
h

δ2
C

)

(vs+1/2 − vs−1/2)

+
h

δ2

r
∑

s=0

v⊤
s+1/2

(

C−
h

2
K
)

vs+1/2 +
1

δ2
u⊤
r+1Kur+1

= h

r
∑

s=0

v⊤
s+1/2Fs +

h

δ

r
∑

s=1

v⊤
s+1/2Gs(us,vs)

+
1

2
v⊤
−1/2

(

M−
h

δ2
C
)

v−1/2.

Thanks to the positive definiteness ofM, C andK, all 4 left-hand-side additive terms

of (A.2) can be made always positive for sufficiently small h and certain h 6 Cδ2;

an easy evaluation of a positive constant C is not available in general. Moreover,

the 1st such term admits its lower bound (a) C0|vr+1/2|
2 for a positive constant C0,

as well as the 3rd such term its lower bound (b) C0

r
∑

s=1
|vs+1/2|

2 and the 4th one its

lower bound (c) (C0/δ
2
0)|ur+1|

2 assuming δ > δ0 for a positive constant δ0; |·| here
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denotes the Euclidean norm in R
N . The last right-hand-side additive term can be

bounded by another positive constant, thanks to the above introduced setting of

v−1/2. The 1st such term can be estimated, using the Cauchy-Schwarz inequality,

for an arbitrary positive ε as

(A.3) h

r
∑

s=0

v⊤
s+1/2Fs 6 h

r
∑

s=0

|vs+1/2| |Fs| 6
εh

2

r
∑

s=0

|vs+1/2|
2 +

h

2ε

r
∑

s=0

|Fs|
2,

the 2nd one then similarly as

h

δ

r
∑

s=0

v⊤
s+1/2Gs(us,vs) 6

hγ

δ

r
∑

s=0

|vs+1/2|(|us|+ |vs|)(A.4)

6
εh

2δ2

r
∑

s=1

|vs+1/2|
2 +

hγ

ε

r
∑

s=0

|us|
2 +

hγ

ε

r
∑

s=0

|vs|
2.

The upper boundedness of the 2nd right-hand-side additive terms of both (A.3)

and (A.4) is evident. The 1st such terms of (A.3) and (A.4) can vanish due to (a)

and (b), respectively, as well as the last such term of (A.4), because (2.9) implies

2|vs|
2 = 1

2 |vs−1/2 + vs+1/2|
2 6 |vs−1/2|

2 + |vs−1/2|
2; for the 3rd one of (A.4),

supported by c), corresponding to non-linear contact phenomena, such direct ap-

proach is not available. However, from all preceding estimates we can summarize

|vr+1/2|
2 6 C

(

1 +
r
∑

s=1

|vs+1/2|
2
)

with certain positive constant C, therefore the dis-

crete version of the Gronwall lemma gives the required boundedness of |vr+1/2|.
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