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On Beurling measure algebras

Ross Stokke

Abstract. We show how the measure theory of regular compacted-Borel measures
defined on the δ-ring of compacted-Borel subsets of a weighted locally compact
group (G, ω) provides a compatible framework for defining the corresponding
Beurling measure algebra M(G,ω), thus filling a gap in the literature.

Keywords: weighted locally compact group; group algebra; measure algebra;
Beurling algebra

Classification: 43A10, 22D15, 43A05, 43A20, 43A60, 28C10

Throughout this article, G denotes a locally compact group and ω : G→ (0,∞)

is a continuous weight function satisfying

ω(st) ≤ ω(s)ω(t), s, t ∈ G, and ω(eG) = 1;

the pair (G,ω) is called a weighted locally compact group. Let λ denote a fixed

Haar measure on G, with respect to which the group algebra L1(G) and L∞(G) =

L1(G)∗ are defined in the usual way. The Beurling group algebra, L1(G,ω), is

composed of all functions f such that ωf belongs to L1(G), with ‖f‖1,ω := ‖ωf‖1
and convolution product. If S(G) is a closed subspace of L∞(G), ψ ∈ S(G,ω−1)

exactly when ψ/ω ∈ S(G); putting ‖ψ‖∞,ω−1 = ‖ψ/ω‖∞, S(G,ω−1) is a Banach

space and S : S(G,ω−1) → S(G) : ψ 7→ ψ/ω is an isometric linear isomorphism.

The Beurling group algebra L1(G,ω) has become a classical object of study that

has received significant research attention over the years, see the monographs [3],

[11], [15] and the references therein; a sample of relevant articles include [6], [5],

[7], [8], [17], [18], [20]. When ω is the trivial weight ω ≡ 1 — the “non-weighted

case” — L1(G,ω) = L1(G), the study of which is intimately linked with the

measure algebra M(G) of complex, regular, Borel measures on G, which contains

L1(G) as a closed ideal.

The above definition of L1(G,ω) is valid for any weight ω. As in the non-

weighted case, it is desirable to have a Beurling measure algebra M(G,ω) that

shares the same relationship with L1(G,ω) that M(G) shares with L1(G). In
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the literature, M(G,ω) is usually defined as the collection of all complex reg-

ular measures ν defined on B(G), the σ-algebra of Borel subsets of G, such

that
∫
ω(t) d|ν|(t) < ∞, and the identification M(G,ω) = C0(G,ω

−1)∗ through

〈ν, ψ〉ω =
∫
ψ dν is required. This implies that the dual map, S∗, of the isometric

isomorphism S : C0(G,ω
−1) → C0(G) is itself a linear isometric isomorphism of

M(G) onto M(G,ω). Validity of this definition of M(G,ω) thus requires that

for each µ ∈ M(G), ν = S∗µ ∈ M(G,ω) is a complex Borel measure defined on

all of B(G) — the near-universal requirement of “Borel measures” in abstract

harmonic analysis — satisfying

(1)

∫
ψ dν = 〈ν, ψ〉ω =

〈
µ,
ψ

ω

〉
=

∫
ψ

ω
dµ, ψ ∈ C0(G,ω

−1).

However, when ω is not bounded away from zero, it can happen that no such

complex measure on B(G) exists.

To see this, consider (G,ω) where G = (Z,+) and ω(n) = 2−n, n ∈ Z, and

assume the above definition of M(G,ω) is sound. Since µ1, µ2 ∈ l1(Z)+ =M(Z)+

and µ = µ1 − µ2 ∈M(Z), where

µ1(n) =

{
2−n, n ∈ 2N,

0, otherwise,
and µ2(n) =

{
2−n, n ∈ N\2N,

0, otherwise,

ν1 = S∗(µ1), ν2 = S∗(µ2), and ν = S∗(µ) = ν1 − ν2 are then required to be

complex measures on B(G) = ℘(Z) satisfying (1). Hence, for each n ∈ Z,

ν1({n}) =

∫
χ{n} dν1 =

〈
µ1,

χ{n}

ω

〉
=

{
1, n ∈ 2N,

0, otherwise,
and

ν2({n}) =

{
1, n ∈ N\2N,

0, otherwise;

hence, ν1(2N) =
∑

k∈N
ν1({2k}) = ∞ and ν2(N\2N) =

∑
k∈N

ν2({2k − 1}) = ∞.

Thus, ν1, ν2 do not map into C. Moreover, (although ν1, ν2 can be viewed as

positive measures), if ν = ν1 − ν2 were a measure, additivity would give

ν(N) = ν(2N) + ν(N\2N) = ν1(2N)− ν2(N\2N) = ∞−∞.

We conclude that functionals in C0(G,ω
−1)∗ cannot necessarily be identified

with complex Borel measures in the standard sense. It is perhaps for this reason

that many authors assume the additional condition ω ≥ 1, since this guarantees

containment ofM(G,ω) inM(G) and, thus, the essential properties of M(G) also

hold for M(G,ω), e.g., see [3]. Letting S(G) denote the δ-ring of “compacted-

Borel sets” — i.e., the δ-ring of all Borel subsets of G with compact closure —

a compacted-Borel measure on G is a countably additive complex-valued function
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on S(G) in the sense of [4, Definitions II.1.2 and II.8.2]1. For non-compact G,

there are positive regular measures µ, ν on B(G) such that µ(G) = ν(G) = ∞

(e.g., Haar measures), and therefore µ−ν is not defined on B(G); however, these

same measures are real-valued on S(G), so µ − ν is well-defined on S(G). This

is one benefit to studying measure theory over S(G), rather than on all of B(G).

The purpose of this article is to show that the theory of complex regular

compacted-Borel measures, as developed in [4] (also see paragraph two of the

“Notes and Remarks” section of Chapter II of [4] for additional references), can

be used to provide a rigorous definition ofM(G,ω), thus providing a solid founda-

tion for all the papers in whichM(G,ω) is employed without the requirement that

ω ≥ 1; moreover, we hope this reduces the number of instances in which the ω ≥ 1

assumption is required going forward. To stress that we are using the theory of

complex regular compacted-Borel measures, we will use the notation M(G,ω) —

inspired by [4] — rather than M(G,ω). Beyond identifying the correct collec-

tion of measures to employ, work is required to establish the needed theory. As

measure theory can be quite finicky in general; because the study of compacted-

Borel measures introduces different technicalities than those encountered in the

Borel measure situation; and because a lot of research already depends on the

results found herein, we have included a careful treatment of our development of

M(G,ω). There are numerous detailed classical expositions of the basic theory

M(G), and we believe the same is required for M(G,ω).

We restrict ourselves to developing only the most standard properties of

M(G,ω): we provide a careful definition of its elements and show that with

convolution product it is a dual Banach algebra containing a copy of the Beurling

group algebra L1(G,ω) as a closed ideal. Beyond this, we only show thatM(G,ω)

embeds via a strict-to-weak∗ continuous isometric isomorphism as a subalgebra

of the universal enveloping dual Banach algebra of L1(G,ω), WAP (L∞(G,ω))∗,

a result needed in [12]. The inspiration for this paper was our need to work with

M(G,ω) in [12].

1. M(G,ω): definition and basic properties

Unless explicitly indicated otherwise, all references are to statements in Sec-

tions 1, 2, 5, 7–10 of Chapter II and Sections 10 of Chapter III of [4]. We

will mostly adhere to the notation found therein. In particular, M(G) is the

linear space composed of all regular complex compacted-Borel measures on G

(Sections II.8 and III.10) and Mr(G) is the Banach space of bounded measures

1In [4], for the sake of brevity, the authors refer to compacted-Borel measures simply as Borel
measures. To our knowledge, with the exception of [4], Borel measures in abstract harmonic

analysis are always defined on B(G).
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in M(G) (Sections II.1 and II.8). Let C(G) denote the directed set of compact

subsets of G, and denote the space of continuous functions on G with compact

support by C00(G), the space of continuous functions on G vanishing at infinity

by C0(G), and the space of continuous functions on G supported on K ∈ C(G)

by CK(G); unless the context requires otherwise, these spaces are taken with the

uniform norm ‖·‖∞.

Remark 1.1. (a) Let µ ∈ M(G). A Borel subset A of G belongs to Eµ if A is

contained in some open set U such that

sup{|µ|(A′) : A′ ∈ S(G) and A′ ⊆ U} <∞;

Eµ is a δ-ring containing S(G) and for A ∈ Eµ putting

(2) µe(A) := lim
C
µ(C), where C ∈ C(G), C ⊆ A,

we obtain a complex measure on Eµ extending µ, called the maximal regular

extension of µ (II.8.15). Observe that any Borel subset of a set in Eµ is also

in Eµ, from which it readily follows that hχE is locally µe-measurable whenever

E ∈ Eµ and h is a Borel-measurable function on G.

(b) When µ ∈ Mr(G), Eµ = B(G) and µe ∈ M(G), where M(G) denotes the

usual measure algebra of regular complex Borel measures µ : B(G) → C, e.g.,

see [2], [9], [14]. Thus, the measures in Mr(G) are in one-to-one correspondence

with measures in M(G) via µ 7→ µe; moreover, it is clear from the results in

Section III.10 (or Theorem 1.5, below, in the non-weighted case) that µ 7→ µe is

a weak∗-continuous isometric algebra isomorphism of Mr(G) onto M(G). Thus,

for the purposes of abstract harmonic analysis on (non-weighted) G, Mr(G) can

be used in place of the usual M(G), and, as shown in [4], provides some advan-

tages.

For µ ∈ M(G), let Iµ denote the linear functional Iµ(f) =
∫
f dµ defined on

L1(µ), or any subspace of L1(µ). Then

(3) µ 7→ Iµ : M(G) → I

is a linear bijection where I is the set of all linear functionals I on C00(G) such

that I ∈ CK(G)∗ for each K ∈ C(G); (3) maps M(G)+ onto I
+ and Mr(G) onto

C00(G)
∗ = C0(G)

∗ (II.8.12).

Remark 1.2. It should be noted that when µ is a complex measure on a δ-

ring S, f ∈ L1(µ) requires that f vanishes off a countable union of sets in S

(II.2.5, paragraph 2). Thus, when f ∈ L1(µ) for µ ∈ M(G), f must vanish

off a σ-compact set, a technical issue requiring careful attention throughout this
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note. Consider the case when µ ∈ Mr(G). Then any φ ∈ C0(G) vanishes off

a σ-compact set and since φ is continuous and bounded, it is easy to see that

φ ∈ L1(µ). Assuming further that µ ≥ 0 and φ ≥ 0 and taking an increasing

sequence (φn) in C00(G)
+ such that ‖φn − φ‖∞ → 0, lim Iµ(φn) = lim

∫
φn dµ =∫

φdµ = Iµ(φ) (e.g., by MCT II.7), so Iµ is the unique continuous extension

of Iµ on C00(G) to C0(G). Thus, C0(G)
∗ = {Iµ : µ ∈ Mr(G)}, so — in this

theory and as usual — we can identify Mr(G) and C0(G)
∗ through the pairing

〈µ, φ〉 =
∫
φ dµ.

Let ν ∈ M(G), h a continuous function on G. Then h is locally ν-measurable

(II.8.2) and for each A ∈ S(G), hχA ∈ L1(ν) since |h| is bounded on A; i.e., h is

locally ν-summable. Therefore,

hν(A) :=

∫
hχA dν, A ∈ S(G),

defines a complex measure on S(G) (see II.7.2, where the notation h dν rather

than hν is used); as hν ≪ ν (II.7.8), hν ∈ M(G) (II.8.3). If h > 0, then

(1/h)(hν) ∈ M(G) and a simple application of II.7.5 gives (1/h)(hν) = ν.

Hence, ων ∼ ν for each ν ∈ M(G), and

M(G) → M(G) : ν 7→ ων

defines a linear isomorphism with inverse ν 7→ (1/ω)ν. We can thus define

M(G,ω) := {ν ∈ M(G) : ων ∈ Mr(G)}; letting ‖ν‖ω = ‖ων‖, ν ∈ M(G,ω),

it follows that M(G,ω) is a Banach space and ν 7→ ων is an isometric linear iso-

morphism of M(G,ω) onto Mr(G) with inverse map µ 7→ (1/ω)µ. (As shown in

the introduction, this definition cannot, in general, be made with M(G) replacing

Mr(G).) Observe that by II.7.3, ν ∈ M(G,ω) exactly when |ν| ∈ M(G,ω), and

‖ν‖ω = ‖|ν|‖ω.

Proposition 1.3. For each ν ∈ M(G,ω), Iν ∈ C0(G,ω
−1)∗ and ‖Iν‖ = ‖ν‖ω;

moreover,

(4) C0(G,ω
−1)∗ = {Iν : ν ∈ M(G,ω)}.

We can thus make the identification M(G,ω) = C0(G,ω
−1)∗ through the pairing

〈ν, ψ〉ω =

∫
ψ dν, ν ∈ M(G,ω), ψ ∈ C0(G,ω

−1).

With respect to this identification, the inverse isometric isomorphisms

M(G,ω) → Mr(G) : ν 7→ ων and Mr(G) → M(G,ω) : µ 7→
1

ω
µ

are weak∗-homeomorphisms.
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Proof: As noted above, S : C0(G,ω
−1) → C0(G) : ψ 7→ (ψ/ω) is an isometric

isomorphism, so S∗ : Mr(G) = C0(G)
∗ → C0(G,ω

−1)∗ is also an isometric iso-

morphism. Let ν ∈ M(G,ω). Then ων ∈ Mr(G) and for ψ ∈ C0(G,ω
−1),

(ψ/ω) ∈ C0(G) ⊆ L1(ων), see Remark 1.2; therefore by II.7.5, ψ = (ψ/ω)ω ∈

L1(ν) and

〈Iν , ψ〉 =

∫
ψ dν =

∫
ψ

ω
d(ων) = 〈ων, S(ψ)〉 = 〈S∗(ων), ψ〉.

Hence, C0(G,ω
−1) ⊆ L1(ν), Iν = S∗(ων) ∈ C0(G,ω

−1)∗, and therefore ‖Iν‖ =

‖S∗(ων)‖ = ‖ων‖ = ‖ν‖ω; since S
∗(µ) = Iω−1µ and S∗ maps onto C0(G,ω

−1)∗,

we have (4). Making the identification of ν and Iν , µ 7→ (1/ω)µ = S∗(µ) is

weak∗-continuous, with (weak∗-continuous) inverse map ν 7→ ων. �

In Lemma 1.4, X is a locally compact Hausdorff space, h : X → (0,∞) is

a continuous function, and µ ∈ M(X)+ is such that hµ ∈ Mr(X). Observe that

Eµ ⊆ B(X) = Ehµ; see Remark 1.1.

Lemma 1.4. The function h is locally µe-summable and for any set A ∈ Eµ,

h(µe)(A) = (hµ)e(A).

Proof: Let A ∈ Eµ. Take (Cn)n to be an increasing sequence of compact sub-

sets of A such that µe(A) = limn µ(Cn) and let D =
⋃
n Cn. Observe that D,

A\D ∈ Eµ and µe(D) = limµe(Cn) = limµ(Cn) = µe(A); hence

(5) µe(A\D) = 0.

It follows that for any compact subset C of A\D, µ(C) = 0 and therefore, since

h is locally µ-summable and bounded on C, hµ(C) = 0. Hence,

(6) lim(hµ)e(A\D) = lim{(hµ)(C) : C ∈ C(X), C ⊆ A\D} = 0.

As noted in Remark 1.1, hχA\D is locally µe-measurable and it follows from (5)

and II.2.7 that

(7)

∫
hχA\D dµe = lim

n

∫
(h ∧ n)χA\D dµe = 0.

Also, since hµ is bounded, lim
∫
hχCn

dµe = lim
∫
hχCn

dµ = sup(hµ)(Cn) < ∞

(using II.8.15 Remark 3), and therefore by II.2.7,

(8)

∫
hχD dµe = lim

∫
hχCn

dµe = lim(hµ)(Cn) = lim(hµ)e(Cn) = (hµ)e(D).

From (7) and (8), hχA\D, hχD ∈ L1(µe), whence hχA ∈ L1(µe). Hence, h is

locally µe summable. Moreover, (8), (7) and (6) yield h(µe)(A) = (hµ)e(A). �
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Let p : G × G → G : (s, t) 7→ st. Following III.10.2, we say that µ, ν ∈ M(G)

are convolvable, or that µ ∗ ν exists, if p is µ × ν-proper in the sense of II.10.3,

i.e., if p−1(A) ∈ Eµ×ν whenever A ∈ S(G). In this case, µ ∗ ν ∈ M(G), where for

A ∈ S(G),

µ ∗ ν(A) = p∗((µ× ν)e)(A) = (µ× ν)e(p
−1(A))

= lim{(µ× ν)(C) : C ⊆ p−1(A), C ∈ C(G×G)};

see III.10.2, II.10.3, II.10.5, II.10.1. Equivalently, one can check that µ ∗ ν exists

if and only if

sup{(|µ| × |ν|)(C) : C ⊆ p−1(D), C ∈ C(G×G)} <∞

for every compact subset D of G. (In our context, the definition of µ × ν ∈

M(G×G) and its properties are found in Section II.9.)

Theorem 1.5. With respect to convolution product, M(G,ω) = C0(G,ω
−1)∗

is a Banach algebra, i.e., (µ, ν) 7→ µ ∗ ν is a well-defined associative operation

on M(G,ω) satisfying ‖µ ∗ ν‖ω ≤ ‖µ‖ω‖ν‖ω. Moreover, for µ, ν ∈ M(G,ω) and

ψ ∈ C0(G,ω
−1),

(9)

〈µ ∗ ν, ψ〉ω =

∫
ψ(st) d(µ × ν)e(s, t)

=

∫∫
ψ(st) dµ(s) dν(t) =

∫∫
ψ(st) dν(t) dµ(s).

Proof: Let µ, ν ∈ M(G,ω), with µ, ν ≥ 0. Let D be a compact subset

of G, C a compact subset of p−1(D). The functions 1C(x, y) and g(x, y) =(
1/(ω(x)ω(y))

)
1C(x, y) are Borel measurable functions, and are therefore locally

(σ × ̺)-measurable for any pair of measures σ, ̺ ∈ M(G); moreover, since they

are nonnegative, bounded and vanish off C, 1C , g ∈ L1(σ × ̺). Applying the

Fubini theorem (II.9.8) to these functions, and using II.7.5 twice — which also

applies by II.9.8 — we obtain

µ× ν(C) =

∫∫
1C(x, y) dµ(x) dν(y) =

∫∫
g(x, y)ω(x) dµ(x)ω(y) dν(y)

=

∫∫
g(x, y) dωµ(x) dων(y)

=

∫

G×G

1

ω(x)ω(y)
1C(x, y) d(ωµ× ων)(x, y)
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≤

∫

G×G

1

ω(xy)
1C(x, y) d(ωµ× ων)(x, y)

≤

∫

G×G

MD1C(x, y) d(ωµ× ων)e(x, y),

where MD = supz∈D ω(z)
−1, since C ⊆ p−1(D), and we have used II.8.15 Re-

mark 3. Observe that p−1(D) ∈ B(G×G) = Eωµ×ων , since ωµ×ων ∈ Mr(G×G)

— see II.9.14 — so

µ× ν(C) ≤

∫

G×G

MD1p−1(D) d(ωµ× ων)e ≤MD‖ωµ× ων‖

=MD‖ωµ‖‖ων‖ =MD‖µ‖ω‖ν‖ω.

Hence, µ ∗ ν exists. We now show µ ∗ ν ∈ M(G,ω) and ‖µ ∗ ν‖ω ≤ ‖µ‖ω‖ν‖ω.

Let A ∈ S(G). Since ω is continuous on G and µ ∗ ν ∈ M(G), ω is locally

µ ∗ ν-summable and ω(µ ∗ ν) ∈ M(G). Hence, ωχA ∈ L1(µ ∗ ν) = L1(p∗(µ× ν)e).

Therefore, II.10.2 gives (ωχA) ◦ p ∈ L1((µ× ν)e) and

ω(µ ∗ ν)(A) =

∫
ωχA d(p∗((µ× ν)e)) =

∫
(ωχA) ◦ p d(µ× ν)e

=

∫
ω ◦ p χp−1(A) d(µ× ν)e ≤

∫
(ω × ω)χp−1(A) d(µ× ν)e,

where (ω × ω)(s, t) = ω(s)ω(t). By II.9.9 and II.9.3, (ω × ω)(µ × ν) = ωµ× ων,

which belongs to Mr(G ×G) by II.9.14. Observe that ω × ω is locally (µ× ν)e-

summable, by Lemma 1.4, and p−1(A) ∈ Eµ×ν , since µ ∗ ν exists. Hence, the

above inequality and Lemma 1.4 yield

ω(µ ∗ ν)(A) ≤ (ω × ω)(µ× ν)e(p
−1(A)) = ((ω × ω)(µ× ν))e(p

−1(A))

= (ωµ× ων)e(p
−1(A)) ≤ ‖ωµ× ων‖ = ‖ωµ‖‖ων‖ = ‖µ‖ω‖ν‖ω.

Hence, ω(µ ∗ ν) is bounded, i.e., µ ∗ ν ∈ M(G,ω), and ‖µ ∗ ν‖ω = ‖ω(µ ∗ ν)‖ ≤

‖µ‖ω‖ν‖ω.

Assume now that µ, ν are any two measures in M(G,ω). As we have noted,

σ ∈ M(G,ω) exactly when |σ| ∈ M(G,ω) and ‖σ‖ω = ‖|σ|‖ω, so it follows from

III.10.3 and the positive case that µ ∗ ν exists and |µ ∗ ν| ≤ |µ| ∗ |ν|. Hence,

ω|µ ∗ ν| ≤ ω|µ| ∗ |ν|, so µ ∗ ν ∈ M(G,ω) and

‖µ ∗ ν‖ω = ‖ω|µ ∗ ν|‖ ≤ ‖ω|µ| ∗ |ν|‖ = ‖|µ| ∗ |ν|‖ω ≤ ‖|µ|‖ω‖|ν|‖ω = ‖µ‖ω‖ν‖ω.

Associativity of convolution in M(G,ω) is now an immediate consequence of

III.10.10. Since any ψ ∈ C0(G,ω
−1) vanishes off a σ-compact subset of G and

any µ, ν ∈ M(G,ω) are σ-bounded — since ωµ and ων are so, and ωµ ∼ µ,

ων ∼ ν — Remark III.10.8 applies to give (9). �
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Let λ = λG be a fixed left Haar measure on G, L1(G) = L1(λ). Then λ ∈

M(G) (Section III.7), so ωλ ∈ M(G) as well and, since ω > 0, ωλ ∼ λ, from

which it follows that g is locally ωλ-measurable and vanishes off a σ-compact set

if and only if gω is locally λ-measurable and vanishes off a σ-compact set. Hence,

if we define L1(G,ω) := L1(ωλ), g ∈ L1(G,ω) exactly when gω ∈ L1(G), and in

this case
∫
g d(ωλ) =

∫
gω dλ, by II.7.5. Thus,

L1(G,ω) = {g : gω ∈ L1(G)} and ‖g‖ω := ‖g‖L1(ωλ) = ‖gω‖1

defines a Banach space norm on L1(G,ω). Moreover, T : L1(G,ω) → L1(G) :

g 7→ gω is an isometric linear isomorphism, with inverse f 7→ (1/ω)f , so

T ∗ : L∞(G) = L1(G)∗ → L1(G,ω)∗ is a weak∗-continuous isometric isomorphism

given by 〈T ∗φ, g〉ω = 〈φ, ωg〉 =
∫
(φω)g dλ. Letting

L∞(G,ω−1) := {φω : φ ∈ L∞(G)} =
{
ψ :

ψ

ω
∈ L∞(G)

}
,

where ‖ψ‖∞,ω−1 :=
∥∥∥ψ
ω

∥∥∥
∞
,

we can hence identify L1(G,ω)∗ with L∞(G,ω−1) via the pairing 〈ψ, g〉ω =∫
ψg dλ. Observe that S = (T ∗)−1 : L∞(G,ω−1) → L∞(G) : ψ 7→ ψ/ω is a weak∗-

homeomorphic isometric isomorphism. We note that L∞(G,ω−1) is not usually

the same space as L∞(ωλ) (= L∞(λ) because ωλ ∼ λ), which can also be iden-

tified with L1(ωλ)∗ = L1(G,ω)∗ in the usual way by II.7.11. Note that because

T−1 maps C00(G) onto itself, C00(G) is dense in L1(G,ω).

Let g ∈ L1(G,ω) = L1(ωλ), A ∈ S(G). Then ωg ∈ L1(λ) and 1/ω is bounded

on A, so χAg = ((1/ω)χA)ωg ∈ L1(λ); hence, gλ ∈ M(G) is well-defined (II.7.2).

Also, ω(gλ) = (ωg)λ ∈ M(G) by II.7.5 and, by II.7.9/III.11.3, ‖f‖1 = ‖fλ‖ for

f ∈ L1(G) and

Ma(G) = {µ ∈ Mr(G) : µ≪ λ} = {fλ : f ∈ L1(G)} = {(ωg)λ : g ∈ L1(G,ω)}.

Since ων ∼ ν for any ν ∈ M(G), it readily follows that g 7→ gλ : L1(G,ω) →

Ma(G,ω) is a surjective linear isometry, where Ma(G,ω) := {ν ∈ M(G,ω) :

ν ≪ λ}. We can thus identify L1(G,ω) with Ma(G,ω) via g 7→ gλ.

Proposition 1.6. The Banach space L1(G,ω) = Ma(G,ω) is a closed ideal in

M(G,ω) and has a contractive approximate identity. Moreover, if g ∈ L1(G,ω)

and ν ∈ M(G,ω), then ν ∗ g, g ∗ ν ∈ L1(G,ω) are given by the formulas, which

hold for locally λ-almost all t ∈ G,

(10) ν ∗ g(t) =

∫
g(s−1t) dν(s) and g ∗ ν(t) =

∫
∆(s−1)g(ts−1) dν(s);
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thus, L1(G,ω) is a Banach algebra with respect to the convolution product

(11) f ∗ g(t) =

∫
f(s)g(s−1t) dλ(s).

Proof: We have already noted that g is locally λ-summable and vanishes off

a σ-compact set, and (gλ) ∗ ν, ν ∗ (gλ) exist in M(G,ω) by Theorem 1.5. Letting

h(t) and k(t) be defined by the respective integral formulas on the left and right

of (10), ν ∗ (gλ) = hλ and (gλ) ∗ ν = kλ by III.11.5. Thus, hλ, kλ ∈ Ma(G,ω) =

{fλ : f ∈ L1(G,ω)}, so the uniqueness part of the Radon–Nikodym theorem —

see Remark 1 of II.7.8 — implies that h, k ∈ L1(G,ω). The formula (11) now

follows quickly (or directly from III.11.6). Let I be the neighbourhood system

at eG and for each α ∈ I, let fα ∈ C00(G) be chosen with fα ≥ 0, ‖fα‖1 = 1 and

support contained in α. Then (fα)α is a bounded approximate identity for L1(G).

Letting eα = ω−1fα, ‖eα‖ω = 1 and ‖eα‖1 → 1, from which it easily follows that

(eα)α is also a bounded approximate identity for L1(G); the proof of Lemma 2.1

in [6] now shows that (eα)α is a contractive approximate identity for L1(G,ω). �

Remark 1.7. Every Borel measurable function is locally λ-measurable and every

f ∈ L1(G,ω) — where L1(G,ω) is defined in the usual sense (as in the introduc-

tion) — vanishes off a σ-compact set. It follows that the Banach algebra L1(G,ω),

as we have defined it, exactly coincides with the usual definition of the Beurling

group algebra L1(G,ω), which, as noted in the introduction, is always valid. Go-

ing forward, we can therefore use any known result about L1(G,ω) = L1(G,ω)

that was proved independently of M(G,ω).

2. The dual Banach algebra M(G,ω) and the embedding map

The support of µ in M(G) is the set s(µ) = G\
⋃
{U ∈ S(G) : U is open and

|µ|(U) = 0}, see II.8.9. Let Mcr(G) = {µ ∈ M(G) : s(µ) is compact}.

Remark 2.1. 1. Observe that s(µ) = s(µe) = G\
⋃
{V ∈ Eµ : V is open and

|µe|(V ) = 0}.

2. Since ω and 1/ω are bounded on any set A in S(G), s(µ) = s(ωµ) =

s((1/ω)µ) for any µ ∈ M(G).

3. By III.10.16, Mcr(G) is a dense subalgebra of Mr(G). From 2 above, the

inverse linear isometries ν 7→ ων and µ 7→ (1/ω)µ between M(G,ω) and Mr(G)

map Mcr(G) onto itself, so Mcr(G) is also a dense subalgebra of M(G,ω).

A measure σ on a δ-ring S is concentrated on a set F if for each A ∈ S,

A ∩ F,A\F ∈ S and σ(A) = σ(A ∩ F ) or, equivalently, σ(A\F ) = 0. For

µ ∈ M(G) and a Borel set F , A∩F,A\F ∈ S(G) (A∩F,A\F ∈ Eµ, respectively)
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is automatic for any A ∈ S(G) (A ∈ Eµ), and it is clear from (2) that µ is

concentrated on F if and only if µe is concentrated on F . A function ψ ∈

LUC(G,ω−1) may fail to vanish off a σ-compact set and therefore, as noted in

Remark 1.2, in this theory we cannot integrate ψ with respect to any µ in M(G).

Lemma 2.2 allows us to move past this issue.

Lemma 2.2. (a) Every µ in M(G) is concentrated on its support, s(µ).

(b) Let µ ∈ Mr(G). Then µ (and therefore µe) is concentrated on a σ-

compact subset F of G and, for any such F and any Borel measurable function

f ∈ L1(µe), fχF ∈ L1(µ) ∩ L1(µe) and

∫
f dµe =

∫
fχF dµe =

∫
fχF dµ.

(c) Any ν ∈ M(G,ω) is concentrated on a σ-compact set.

Proof: (a) Let A ∈ S(G). Any compact subset of A\s(µ) is covered by the

collection of open sets U ∈ S(G) with |µ|(U) = 0, and is therefore |µ|-null; by

regularity of µ (II.8.2(II)), |µ|(A\s(µ)) = 0.

(b) Take (Cn)n to be an increasing sequence of compact subsets of s(µ) such

that |µ|(Cn) > ‖µ‖ − 1/n and let F =
⋃
Cn, where we have used (b). Then µ is

concentrated on F because for A ∈ S(G),

|µ|(A\F ) = |µ|((A\F ) ∩ s(µ)) ≤ |µ|e(s(µ)\F ) = |µ|e(s(µ))− |µe|(F )

= ‖µ‖ − lim |µ|(Cn) = 0.

Suppose µ ≥ 0, F is any σ-compact set on which µ is concentrated, and f ∈

L1(µe) is a nonnegative Borel-measurable function. It is then clear (from II.2.2

and II.2.5) that fχF ∈ L1(µe) and
∫
f dµe =

∫
fχF dµe. Also, fχF is locally

µ-measurable (II.8.2), vanishes off the σ-compact set F and, taking any sequence

of nonnegative S(G)-simple functions such that hn ↑ fχF , II.2.2 gives

∫
fχf dµe = lim

∫
hn dµe = lim

∫
hn dµ =

∫
fχF dµ.

(c) Since ων ∈ Mr(G) and ν ∼ ων, this follows from (b). �

Since L1(G,ω) is a closed ideal in M(G,ω), through the operations

〈ψ · ν, g〉 = 〈ψ, ν ∗ g〉 and 〈ν · ψ, g〉 = 〈ψ, g ∗ ν〉

for ψ ∈ L∞(G,ω−1), ν ∈ M(G,ω), g ∈ L1(G,ω),
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L∞(G,ω−1) = L1(G,ω)∗ is a dual M(G,ω)-module. Observe that for ψ ∈

L∞(G,ω−1) and s ∈ G,

ψ · δs(t) = ψ · s(t) := ψ(st) and δs · ψ(t) = s · ψ(t) := ψ(ts), t ∈ G.

Recall that ψ belongs to LUC(G,ω−1) [RUC(G,ω−1)] when ψ/ω belongs to

LUC(G) [RUC(G)]. For LUC(G,ω−1), the following is [8, Proposition 1.3] and

[3, Propositions 7.15 and 7.17], (where no restrictions are needed on the weight ω);

symmetric arguments establish the RUC(G,ω−1) case.

Lemma 2.3. The following statements are equivalent:

(a) ψ ∈ LUC(G,ω−1) [RUC(G,ω−1)];

(b) ψ ∈ l∞(G,ω−1) and the map G→ (l∞(G,ω−1), ‖·‖∞,ω−1) : s 7→ ψ ·s [s·ψ]

is continuous;

(c) ψ ∈ L∞(G,ω−1) and the map G → (L∞(G,ω−1), ‖·‖∞,ω−1) : s 7→ ψ · s

[s · ψ] is continuous;

(d) ψ ∈ L∞(G,ω−1) · L1(G,ω) [ψ ∈ L1(G,ω) · L∞(G,ω−1)].

Remark 2.4. 1. Observe that condition (b) implies ψ is continuous onG, whence

ψ ∈ L∞(G,ω−1).

2. In the proof of [3, Proposition 7.15], the authors establish continuity of

a function ψ satisfying (c) via Ascoli’s theorem. An alternative approach is to

establish (i) and (ii) as follows:

(i) If φ ∈ L∞(G,ω−1) and g ∈ L1(G,ω), then φ · g can be identified with the

continuous function

(12) (φ · g)(t) = 〈φ, g ∗ δt〉 for every t ∈ G.

[Note that H ∈ l∞(G,ω−1) where H(t) := 〈φ, g ∗ δt〉 and, since t 7→ g ∗ δt : G →

(L1(G,ω), ‖·‖ω) is continuous — e.g., see [19, Lemma 3.1.5], which holds for any

weight ω — H is continuous on G (and satisfies Lemma 2.3 (c)); in a standard

way, one can check that for f ∈ L1(G,ω), 〈φ · g, f〉 = 〈H, f〉.]

(ii) If ψ satisfies (c) and (ei) is a bounded approximate identity for L1(G,ω),

then ‖ψ · ei − ψ‖∞,ω−1 → 0; since CB(G,ω−1) is closed in L∞(G,ω−1), ψ ∈

CB(G,ω−1).

Proposition 2.5. The spaces LUC(G,ω−1) and RUC(G,ω−1) are M(G,ω)-

submodules of L∞(G,ω−1). Moreover, for ν ∈ M(G,ω), ψ ∈ LUC(G,ω−1)
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[ψ ∈ RUC(G,ω−1)] and for every s ∈ G,

(ν · ψ)(s) =

∫
(ψ · s)χFs

dν =

∫
ψ · s

ω
χFs

d(ων) =

∫
ψ · s

ω
d(ων)e

[
(ψ · ν)(s) =

∫
(s · ψ)χFs

dν =

∫
s · ψ

ω
χFs

d(ων) =

∫
s · ψ

ω
d(ων)e

]
,

where Fs is any σ-compact set on which ν is concentrated; Fs can be chosen to

vary with s ∈ G.

Proof: Letting ν ∈ M(G,ω), ψ ∈ LUC(G,ω−1), it is clear from Lemma 2.3 (d)

that ψ · ν, ν · ψ ∈ LUC(G,ω−1). Since ψ · s/ω ∈ LUC(G) and ων ∈ Mr(G),

H(s) = Hν,ψ(s) :=

∫
ψ · s

ω
d(ων)e =

∫
ψ · s

ω
χFs

d(ων)

is well-defined, where we have used Lemma 2.2. The function (ψ · s)χFs
∈

l∞(G,ω−1) is Borel measurable — and therefore locally ν-measurable — and

vanishes off the σ-compact set Fs, so (ψ · s/ω)χFs
∈ L1(ων). Therefore, by II.7.5,

(ψ · s)χFs
∈ L1(ν) and

∫
(ψ · s)χFs

dν =

∫
ψ · s

ω
χFs

ω dν =

∫
ψ · s

ω
χFs

d(ων) = H(s).

Since |H(s)| ≤ ‖ψ · s/ω‖∞‖ων‖ ≤ ω(s)‖ψ‖∞,ω−1‖ν‖ω, H = Hν,ψ ∈ l∞(G,ω−1)

with ‖Hν,ψ‖∞,ω−1 ≤ ‖ψ‖∞,ω−1‖ν‖ω. Hence, if si → s in G,

‖(Hν,ψ)·si−(Hν,ψ)·s‖∞,ω−1 = ‖Hν,ψ·si−ψ·s‖∞,ω−1 ≤ ‖ψ·si−ψ·s‖∞,ω−1‖ν‖ω → 0;

by Lemma 2.3, Hν,ψ ∈ LUC(G,ω−1). To show that Hν,ψ = ν · ψ, we can

assume ν ≥ 0, ψ ≥ 0 and take F = Fs for each s ∈ G. Let g ≥ 0 be

a function in the dense subspace C00(G) of L1(G,ω). Since the maps (s, t) 7→

ψ(t)∆(s−1)g(ts−1)χF (s), ψ(ts)g(t)χF (s) are Borel measurable — hence locally

(ν×λ)-measurable — and vanish off a σ-compact subset of G×G, our applications

of the Fubini theorem (II.9.8) are valid in the following calculation. Using (10):

〈ν · ψ, g〉 = 〈ψ, g ∗ ν〉 =

∫
ψ(t)

∫
∆(s−1)g(ts−1) dν(s) dλ(t)

=

∫∫
ψ(t)∆(s−1)g(ts−1)χF (s) dν(s) dλ(t)

=

∫∫
ψ(t)∆(s−1)g(ts−1)χF (s) dλ(t) dν(s)
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=

∫∫
ψ(ts)g(t)χF (s) dλ(t) dν(s)

=

∫∫
ψ · t(s)χF (s) dν(s) g(t) dλ(t) = 〈Hν,λ, g〉;

since both functions are continuous, ν · λ = Hν,λ. �

Corollary 2.6. The space C0(G,ω
−1) is a M(G,ω)-submodule of L∞(G,ω−1),

and for ν ∈ M(G,ω), ψ ∈ C0(G,ω
−1) and s ∈ G,

(13) ν ·ψ(s) =

∫
ψ·s dν = 〈ν, ψ·s〉ω and ψ·ν(s) =

∫
s·ψ dν = 〈ν, s·ψ〉ω.

Proof: Let ψ ∈ C0(G,ω
−1) and let F be a σ-compact set on which ν is con-

centrated. Taking As to be a σ-compact set off which ψ · s and s · ψ vanish, and

putting Fs = F ∪ As, Proposition 2.5 gives ν · ψ, ψ · ν ∈ (LUC ∩ RUC)(G,ω−1)

and

ν ·ψ(s) =

∫
(ψ · s)χFs

dν =

∫
ψ · s dν and ψ ·ν(s) =

∫
(s ·ψ)χFs

dν =

∫
s ·ψ dν.

Observe that ν ·ψ is supported on s(ψ)s(ν)−1, which is compact when ν belongs

to the dense subspace Mcr(G) of M(G,ω) and ψ belongs to the dense subspace

C00(G) of C0(G,ω
−1). It follows that C0(G,ω

−1) is a left (and similarly, right)

M(G,ω)-submodule of L∞(G,ω−1). �

It follows thatM(G,ω) = C0(G,ω
−1)∗ is a dual M(G,ω)-module with respect

to the operations

〈µ ·r ν, ψ〉ω = 〈µ, ν · ψ〉ω and 〈µ ·l ν, ψ〉ω = 〈ν, ψ · µ〉ω, µ, ν ∈ M(G,ω),

ψ ∈ C0(G,ω
−1).

However, from (9) and (13),

(14) µ ·r ν = µ ∗ ν = µ ·l ν,

so (µ, ν) 7→ µ ∗ ν is separately weak∗-continuous on M(G,ω). Hence:

Corollary 2.7. The Beurling measure algebra M(G,ω) is a dual Banach algebra.

Let A be a Banach algebra. Recall that a closed submodule S(A∗) of the dual

A-bimodule A∗ is left [right] introverted if for each µ ∈ S(A∗)∗ and φ ∈ S(A∗),

µ �φ ∈ S(A∗) [φ ⋄ µ ∈ S(A∗)] where µ �φ, φ ⋄ µ ∈ A∗ are defined by

〈µ �φ, a〉A∗−A = 〈µ, φ · a〉S∗−S and 〈φ ⋄ µ, a〉A∗−A = 〈µ, a · φ〉S∗−S ;
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in this case, S(A∗)∗ is a Banach algebra with respect to its left [right] Arens

product

〈µ � ν, φ〉 = 〈µ, ν �φ〉 [〈µ ⋄ ν, φ〉 = 〈ν, φ ⋄ µ〉], µ, ν ∈ S(A∗)∗, φ ∈ S(A∗).

The map ηS : A → S(A∗)∗ defined by 〈ηS(a), φ〉 = 〈φ, a〉 is a bounded homo-

morphism with weak∗-dense range and, when A is left introverted, ηS maps

into the topological centre of (S(A∗)∗, �), Zt(S(A
∗)∗) = {µ ∈ S(A∗)∗ : ν 7→

µ � ν is wk∗ − wk∗ continuous on S(A∗)∗}. For this see, e.g., [3].

Proposition 2.8. The subspace C0(G,ω
−1) of L∞(G,ω−1) = L1(G,ω)∗ is left

and right introverted and µ∗ν = µ � ν = µ ⋄ ν for µ, ν ∈ M(G,ω) = C0(G,ω
−1)∗.

Proof: By Corollary 2.6, C0(G,ω
−1) is a L1(G,ω)-submodule of L∞(G,ω−1).

Let µ, ν ∈ M(G,ω), ψ ∈ C0(G,ω
−1). For g ∈ L1(G,ω), equation (14) gives

〈ν �ψ, g〉L∞−L1 = 〈ν, ψ · g〉ω = 〈g ∗ ν, ψ〉ω = 〈g, ν · ψ〉ω = 〈ν · ψ, g〉L∞−L1 .

Hence, C0(G,ω) is left introverted and 〈µ � ν, ψ〉 = 〈µ, ν �ψ〉 = 〈µ, ν · ψ〉 =

〈µ∗ν, ψ〉, where we have again used (14). Similarly, C0(G,ω
−1) is right introverted

and µ ∗ ν = µ ⋄ ν. �

Let S(ω−1) be a left introverted subspace of L∞(G,ω−1) such that

C0(G,ω
−1) � S(ω−1) � LUC(G,ω−1)

and define

(15) Θ: M(G,ω) → S(ω−1)∗ by 〈Θ(ν), ψ〉S∗−S = (ν ·ψ)(eG) =

∫
ψ χFν

dν,

where ν ∈ M(G,ω), ψ ∈ S(ω−1) and Fν is any σ-compact set on which ν is con-

centrated. By Proposition 2.5, Θ is well-defined and |〈Θ(ν), ψ〉| ≤ ‖ν ·ψ‖∞,ω−1 ≤

‖ν‖ω‖ψ‖∞,ω−1, so ‖Θ(ν)‖ ≤ ‖ν‖ω; by equation (13), Θ(ν)|C0(G,ω−1) = ν, so

‖Θ(ν)‖ = ‖ν‖ω. Thus, Θ is a linear isometry.

Let sol and sor denote the left and right strict topologies on M(G,ω) taken

with respect to the ideal L1(G,ω), i.e., the locally convex topologies respec-

tively generated by the semi-norms pg(ν) = ‖g ∗ ν‖ and qg(ν) = ‖ν ∗ g‖ for

g ∈ L1(G,ω), ν ∈ M(G,ω). Since L1(G,ω) has a contractive approximate iden-

tity, (the unit ball of) L1(G,ω) is sol/sor-dense in (the unit ball of) M(G,ω). Ob-

serve that when S(ω−1) � LUC(G,ω−1) is a L1(G,ω)-submodule of L∞(G,ω−1),

by Lemma 2.3 (d) and the Cohen factorization theorem [1, Theorem 11.10],

S(ω−1) = S(ω−1) · L1(G,ω). Also note that LUC(G,ω−1) is always left intro-

verted in L∞(G,ω−1) by Lemma 2.3 and [3, Proposition 5.9]. In the non-weighted

case and when ω ≥ 1, the final statement in Proposition 2.9, which simplifies Arens

product calculations, is [13, Lemma 3] and [3, Proposition 7.21], respectively.
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Proposition 2.9. Suppose that S(ω−1) is a left [right] introverted subspace of

L∞(G,ω−1) = L1(G,ω)∗ and

C0(G,ω
−1) � S(ω−1) � LUC(G,ω−1) [RUC(G,ω−1)].

Then Θ: M(G,ω) →֒ S(ω−1)∗ is a sol-weak
∗ [sor-weak

∗] continuous isometric ho-

momorphic embedding into Zt(S(ω
−1)∗) that extends ηS : L

1(G,ω) → S(ω−1)∗.

Moreover, (n �ψ)(s) = 〈n, ψ · s〉 for any n ∈ S(ω−1)∗, ψ ∈ S(ω−1) and s ∈ G;

hence, S(ω−1) is introverted as a subspace of l∞(G,ω−1) = l1(G,ω)∗, the Arens

product on S(ω−1)∗ agrees under either interpretation, and Θ also extends ηS :

l1(G,ω) →֒ S(ω−1)∗.

Proof: If g ∈ L1(G,ω) = L1(ωλ), g vanishes off a σ-compact set Fg, and

therefore g = gλ ∈ M(G,ω) is concentrated on Fg; hence, for ψ ∈ S(ω−1),

〈Θ(g), ψ〉S∗−S =

∫
ψ χFg

d(gλ) =

∫
ψg dλ = 〈ψ, g〉L∞−L1 = 〈ηS(g), ψ〉S∗−S .

For f ∈ L1(G,ω), ν ∈ M(G,ω) and ψ ∈ S(ω−1),

〈Θ(f) �Θ(ν), ψ〉S∗−S = 〈ηS(f),Θ(ν) �ψ〉S∗−S = 〈Θ(ν) �ψ, f〉L∞−L1

= 〈Θ(ν), ψ · f〉S∗−S = ν · (ψ · f)(eG) = (ν · ψ) · f(eG)

= 〈ν · ψ, f ∗ δeG〉L∞−L1 = 〈ψ, f ∗ ν〉L∞−L1

= 〈ηS(f ∗ ν), ψ〉S∗−S = 〈Θ(f ∗ ν), ψ〉S∗−S ,

where we have used (12). Suppose that νi → ν with respect to sol. Writing

ψ ∈ S(ω−1) as ψ = φ · g for some φ ∈ S(ω−1) and g ∈ L1(G,ω),

〈Θ(νi)−Θ(ν), ψ〉S∗−S = 〈Θ(g) �Θ(νi−ν), φ〉S∗−S = 〈Θ(g∗(νi−ν)), φ〉S∗−S → 0.

Hence, Θ is sol-weak
∗ continuous. Let µ, ν ∈ M(G,ω) and let (hi) be a net in

L1(G,ω) such that sol − limhi = µ. Then sol − limhi ∗ ν = µ ∗ ν, so

Θ(µ) �Θ(ν) = wk∗ − limΘ(hi) �Θ(ν) = wk∗ − limΘ(hi ∗ ν) = Θ(µ ∗ ν).

Identify the Banach algebraM(G,ω) with its copy Θ(M(G,ω)) in S(ω−1)∗. Since

S(ω−1) = S(ω−1) · L1(G,ω) is a right M(G,ω)-module, S(ω−1)∗ is a left dual

M(G,ω)-module, and the proof of [7, Lemma 1.4] shows that µ �n = µ ·n for µ ∈

M(G,ω) and n ∈ S(ω−1)∗; hence, Θ maps into Zt(S(ω
−1)∗). For n ∈ S(ω−1)∗,

ψ ∈ S(ω−1) and s ∈ G, (n �ψ)(s) = 〈δs, n �ψ〉 = 〈δs �n, ψ〉 = 〈δs · n, ψ〉 =

〈n, ψ · δs〉 = 〈n, ψ · s〉. The final line is now easily verified. �

For a Banach algebra A, the space WAP (A∗) of weakly almost periodic func-

tionals on A is a left and right introverted subspace of A∗ such that for every
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m,n ∈ WAP (A∗)∗, m �n = m ⋄ n [3, Proposition 3.11]. Thus, WAP (A∗)∗ is

a dual Banach algebra. Moreover, WAP (A∗)∗ satisfies the following universal

property [16, Theorem 4.10].

Theorem 2.10 (Runde). If B is a dual Banach algebra and ϕ : A→ B is a con-

tinuous algebra homomorphism, then there is a unique weak∗-weak∗ continuous

algebra homomorphism ϕWAP : WAP (A∗)∗ → B such that ϕWAP ◦ ηWAP = ϕ.

Taking Aω = L1(G,ω), it follows that the embedding id: L1(G,ω) →֒ M(G,ω)

determines a unique weak∗-weak∗ continuous homomorphism P : WAP (A∗
ω)

∗ →

M(G,ω) such that P ◦ ηWAP = id. Letting P∗ : C0(G,ω
−1) → WAP (A∗

ω) �

L∞(G,ω−1) be the predual mapping of P , 〈P∗ψ, g〉L∞−L1 = 〈P ◦ ηWAP (g), ψ〉 =

〈ψ, g〉L∞−L1 for ψ ∈ C0(G,ω
−1), g ∈ L1(G,ω). Hence, C0(G,ω

−1) �WAP (A∗
ω).

Moreover, by [3, Proposition 3.12] and Lemma 2.3,

WAP (A∗
ω) � (LUC ∩RUC)× (G,ω−1).

Hence, we have the following immediate corollary to Proposition 2.9.

Corollary 2.11. The map Θ: M(G,ω) →֒ WAP (A∗
ω)

∗, as defined in (15), is

a sol-weak
∗ and sor-weak

∗ continuous isometric homomorphic embedding that

extends ηWAP : L1(G,ω) →֒ WAP (A∗
ω)

∗.

As shown in [3], WAP (A∗
ω) may fail to equal WAP (G,ω−1) = {f : f/ω ∈

WAP (G)}. Our final two results are needed in [12]. Corollary 2.12 improves [10,

Theorem 5.6] in the case of L1(G,ω):

Corollary 2.12. Let B be a dual Banach algebra, ϕ : L1(G,ω) → B a bounded

homomorphism. Then there is a unique sol-weak
∗ and sor-weak

∗ continuous

homomorphic extension ϕ̃ : M(G,ω) → B of ϕ.

Proof: Letting ϕWAP : WAP (A∗
ω)

∗ → B be the weak∗-weak∗ continuous ex-

tension of ϕ from Theorem 2.10 and Θ: M(G,ω) →֒ WAP (A∗
ω)

∗ the sol/sor-

weak∗ continuous embedding from Corollary 2.11, ϕ̃ := ϕWAP ◦ Θ is the desired

extension; uniqueness follows from the sol-density of L1(G,ω) in M(G,ω). �

Corollary 2.13. Let B be a dual Banach algebra, ϕ : M(G,ω) → B a bounded

homomorphism that is sol-weak
∗ continuous on the unit ball of M(G,ω). Then

ϕ is sol-weak
∗ and sor-weak

∗ continuous on all of M(G,ω).

Proof: By Corollary 2.12, the restriction, ϕ1, of ϕ to L1(G,ω) has a sol/sor-

weak∗ continuous extension ϕ̃1 : M(G,ω) → B. As noted before, L1(G,ω)‖·‖≤1

is sol-dense in M(G,ω)‖·‖≤1, so ϕ = ϕ̃1 on M(G,ω)‖·‖≤1 and therefore on

M(G,ω). �



186 R. Stokke

Remark 2.14. Suppose that (H,ωH) is another weighted locally compact group

and ϕ : M(G,ω) → M(H,ωH) is a bounded algebra isomorphism. By [7, Lem-

ma 3.3] — which applies, as written, to M(G,ω) — ϕ is sol-weak
∗ continuous on

bounded subsets of M(G,ω). By Corollary 2.13, ϕ is sol/sor-weak
∗ continuous

on all of M(G,ω).
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