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Selectors of discrete coarse spaces

Icor PrOTASOV

Abstract. Given a coarse space (X, &) with the bornology B of bounded subsets,
we extend the coarse structure £ from X x X to the natural coarse structure
on (B\{0}) x (B\{0}) and say that a macro-uniform mapping f: (B\{0}) — X
(or f:[X]? = X) is a selector (or 2-selector) of (X, &) if f(A) € A for each
A € B\{0} (A € [X]?, respectively). We prove that a discrete coarse space (X, £)
admits a selector if and only if (X, £) admits a 2-selector if and only if there exists
a linear order “<” on X such that the family of intervals {[a,b]: a,b € X, a < b}
is a base for the bornology B.
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1. Introduction

The notion of selectors comes from topology. Let X be a topological space,
exp X be the set of all nonempty closed subsets of X endowed with some (initially,
the Vietoris) topology, F be a nonempty subset of exp X. A continuous mapping
f: F — X is called an F-selector of X if F(A) € A for each A € F. The
question on selectors of topological spaces was studied in a plenty of papers, we
mention only [1], [4], [7], [6]

Formally, coarse spaces, introduced independently and simultaneously in [8]
and [13], can be considered as asymptotic counterparts of uniform spaces. But
actually this notion is rooted in geometry and geometric group theory, see [13,
Chapter 1] and [5, Chapter 4]. At this point, we need some basic definitions.

Given a set X, a family £ of subsets of X x X is called a coarse structure on X

o each E € & contains the diagonal Ax := {(z,z): z € X} of X

oif B, E' € £ then EoE' € £ and E~! € &, where Eo E' = {(z,y):
3z ((5,2) € B, (5) € B}, B~ = {(3,2): (&) € B}

oif F€& and Ax CE CFE then ' € &.

Elements E € £ of the coarse structure are called entourages on X.
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For z € X and E € & the set Efz] := {y € X: (z,y) € £} is called the ball
of radius E centered at xz. Since E = {J, .y ({x} x Elz]), the entourage E is
uniquely determined by the family of balls {F[z]: x € X}. A subfamily & C &
is called a base of the coarse structure &£ if each set £ € £ is contained in some
E' &

The pair (X, &) is called a coarse space, see [13], or a ballean, see [8], [11].

In this paper, all coarse spaces under consideration are supposed to be con-
nected, that is, for any z,y € X, there is E € £ such y € E[z]. A subset Y C X
is called bounded if Y = E[z] for some E € £, and x € X. The family Bx of all
bounded subsets of X is a bornology on X. We recall that a family B of subsets
of a set X is a bornology if B contains the family [X]<% of all finite subsets of X
and B is closed under finite unions and taking subsets. A bornology B on a set X
is called unbounded if X ¢ B. A subfamily B’ of B is called a base for B if for
each B € B, there exists B’ € B’ such that B C B'.

Each subset Y C X defines a subspace (Y,E|y) of (X,E), where €|y = {EN
(Y xY): E € &}. A subspace (Y,&|y) is called large if there exists E € £ such
that X = E[Y], where E[Y] =,y E[y]-

Let (X,€&), (X',&") be coarse spaces. A mapping f: X — X' is called macro-
uniform if for every E € & there exists E' € &' such that f(E(z)) C E'(f(x))
for each x € X. If f is a bijection such that f and f~!' are macro-uniform,
then f is called an asymorphism. If (X,&) and (X', ') contain large asymorphic
subspaces, then they are called coarsely equivalent.

For a coarse space (X, &), we denote by X ® the set of all nonempty bounded
subsets of X, so (X” = B\{0}) and by £” the coarse structure on X” with the
base {E": E € £}, where

(A,B)e E> = ACE[B], BCEI[A],

and say that (X, £") is the hyperballean of (X,&). For hyperballeans see [2], [3],
9], [10].

We say that a macro-uniform mapping f: X* — X (or f: [X]? — X) is
a selector (or 2-selector) of (X,&) if f(A) € A for each A € X (A € [X]?,
respectively). We note that a selector is a macro-uniform retraction of X to [X]*
identified with X.

We recall that a coarse space (X, €) is discrete if, for each E € £, there exists
a bounded subset B of (X, &) such that F[r] = {z} for each x € X \ B. Every
bornology B on a set X defines the discrete coarse space Xp = (X, Ep), where
&g is a coarse structure with the base {Ep: B € B}, Ep[z] = B if x € B and
Ep[x] = {z} if x € X \ B. On the other hand, every discrete coarse space (X, )
coincides with X g, where B is the bornology of bounded subsets of (X, ).
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Our goal is to characterize discrete coarse spaces which admit selectors. After
exposition of results, we conclude with some comments and open problems.

2. Results

Let “<” be a linear order on a set X. We say that (X, <) is

o right (left) well-ordered if every subset Y of X has the minimal (maximal)
element;

o right (left) bounded if X has the maximal (minimal) element;

o bounded if X is left and right bounded.

Every linear order “<” on X defines the bornology B< on X such that the
family {[a,b]: a,b € X, a < b}, where [a,b] = {x € X: a < x < b}, is a base
for B<. Clearly, X € B< if and only if (X, <) is bounded.

We say that a bornology B on a set X has an interval base if there exists
a linear order “<” on X such that B = B<.

Theorem 1. For a bornology B on a set X and the discrete coarse space Xg,
the following statements are equivalent

(i) Xg admits a selector;
(ii) Xp admits a 2-selector;
(iii) B has an interval base.

ProOOF: If X € B then we have nothing to prove: every mapping f: B\{#} — X
(or f:[X]? — X) such that f(A) € A is a selector (2-selector, respectively) and
we take an arbitrary linear order “<” on X such that (X, <) is bounded. In what
follows, X ¢ B so Xp is unbounded. The implication (i) = (ii) is evident.

(i) = (iii) We take a 2-selector f of Xp and define a binary relation “<” on X
as follows: a < b if and only if either a = b or f({a,b}) = a.

We use the following key observation.

(¥) For every B € B, there exists C € B such that if z € X \ C then either
b < z for each b€ B or z <b for each b € B.

Indeed, we take C' € B such that B C C and if A, A’ € [X]? and (A, A") € E%
then (f(A4), f(A")) € Ec.

We take and fix distinct [, € X such that [ < r and use Zorn’s lemma to
choose a maximal by inclusion subset A of X such that A= LUR, LN R = 0,
R is right well-ordered by “<” with the minimal element r, L is left well-ordered
by “<” with the maximal element [ and z <y for all z € L, y € R.

By the maximality of A and (x), A is unbounded in Xp. For a,b € A, a < b,
we denote [a,bja = {x € A: a < = < b}. Applying (x) with B = [a, b]4, we see
that [a,b]4 is bounded in Xpz.
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We consider three cases.

Case 1: Assume that L and R are unbounded in Xg. We define some auxiliary
mapping h: X — A. For z € A, we put h(z) = . For x € X\ A, we use (x)
with B = {r,z} to find the minimal element ¢ € R such that z < y for each
y € A ¢c<y. If c#rthen we put h(z) = ¢. Otherwise, we use (x) to choose
the maximal element d € L such that y < « for each y € LU {r}, y < d. We put
h(z) = d.

We take arbitrary a,b € A such that a <1 <r <b. If h(z) € [a,b] then, by
the construction of h, we have a < x < b. Applying (%) with B = [a,b]a, we
conclude that h=*([a,b]4) is bounded in Xp. In particular, h=!(c) is bounded
in Xg for each ¢ € A.

Now we are ready to define the desired linear order “<” on X. If h(z) < h(y)
and h(x) # h(y) then we put < y. If ¢ € R then we endow h~!(c) with a right
well-order “<”. If ¢ € L then we endow h~!(c) with a left well-order “<”.

It remains to verify that the family {[a,b]: a,b € X, a < b} is a base for B.
Let a,b € A and a < b. We have shown that h=1([a,b]4) € B, hence [a,b] € B.
If a,b € X and a < b then we take a’ € A, b/ € A such that a’ < a, b < V.
Since [a, '] € B, we have [a,b] € B. On the other hand, if Y is a bounded subset
of Xp then we apply (%) with B = Y U{l,r} to find a € L, b € R such that
h(B) C [a,b] 4, hence B C [a,b].

Case 2: Assume that L is bounded and R is unbounded in Xp. Since L € B,
by (), the set C = {z € X: x < y for each y € R} is bounded in Xz. We use
arguments from Case 1 to define < on X \ C. Then we extend “<” to X so that
(C,<) is bounded and z < y forallz € C, y € X \ C.

Case 3: Assume that L is unbounded and R is bounded in Xp. Since R € B,
by (), the set D = {& € X: y < « for each y € L} is bounded in Xp. We use
arguments from Case 1 to define “<” on X \ D. Then we extend “<” to X so
that (D, <) is bounded and < y for all x € X \ D, y € D.

(iii) = (i) We take a linear order “<” on X witnessing that B has an interval
base. We define a 2-selector f: [X]? — X by f({z,y}) = @ if and only if z < y.
Then we take the linear order “<” on X defined in the proof (ii) = (iii). To define
a selector s of Xp, we denote X; = {z € X: z <!}, X, ={r € X: r <z}. By
the construction of “<”, X; is right well-ordered and X, is left well-ordered. We
take an arbitrary Y € B\ {0}. If Y N X; # @ then we take the maximal element
a € YNX; and put s(Y) = a. Otherwise, we choose the minimal element
beY NX, and put s(Y) =b.

To see that s is macro-uniform, we take an interval [a,b] in (X, <) and Y, Z €
B\ {0} such that Y\ [a,b] = Z\ [a,b], Y N[a,b] # 0, ZN]a,b] # 0. If s(Y) ¢ [a, )]
then s(Y) = s(Z). If s(Y) € [a,b] then s(Z) € [a, b]. O
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An ordinal o endowed with the reverse ordering is called the antiordinal of «.

Corollary 2. If Xp has a selector then B has an interval base with respect to
some linear order “<” on X such that (X, <) is the ordinal sum of an antiordinal
and an ordinal.

PRrROOF: We take the linear order from the proof of Theorem 1 and note that X;
is an antiordinal, X, is ordinal and (X, <) is the ordinal sum of X; and X,.. O

Corollary 3. If a bornology B on a set X has a base linearly ordered by inclusion
then the discrete coarse space X admits a selector.

PROOF: Since B has a linearly ordered base, we can choose a base {By: a < k}
well-ordered by inclusion. We show that B has an interval base and apply The-
orem 1.

For each o < k, let Dy, = Byt1 \ Ba- We endow each D, with an arbitrary
right well-order “<”. If x € D,, y € Dg and o < 3, we put x < y. Then
B = B<. O

Remark 4. Let (X, <) be the ordinal sum of the antiordinal of w and the ordi-
nal wy. Then the interval bornology B< does not have a linearly ordered base.
Indeed, let X = LUR, L = {l,: n < w}, I, < b, if and only if m < n,
R={rq: a<wi},rq <rgifandonly if a < f, and I, < ro for all n,a. Assum-
ing that B< has a linearly ordered base, we choose a base B’ of B< well-ordered
by inclusion and denote B, = {A € B’: min A = [,,}. By the choice of R, there
exists m € w such that B], is cofinal in B<, but l,,4+1 ¢ A for each A € B], and
we get a contradiction.

Theorem 5. Let (X,€) be a coarse space with the bornology B of bounded
subsets. If f is a 2-selector of (X,E) then f is a 2-selector of Xpg.

PrROOF: Let B € B, A, A’ € [X]? and (A, A") € E%. Since f is a 2-selector
of (X, &), there exists F € £, F = F~! such that (f(A), f(A")) € F.

If ANB =10 then A= A". If AC B then A’ € B, so (f(4), f(4")) € Ep.

Let A= {b,a}, A ={V,a},be B,V ¢ Banda € X\ B. If a € F[{b,V'}]
then f(A), f(A) € F[{b,b'}]. If a ¢ F[{b,b'}] then either f(A) = f(4") = a
or f(A), J(4) € {b,¥}.

In all considered cases, we have (f(A), f(A")) € Epp). Hence, f is a 2-selector
of Xg. 0

Remark 6. Every metric space (X, d) has the natural coarse structure £; with
the base {E,.: r > 0}, B, = {(x,y): d(z,y) <r}. Let B denote the bornology of
bounded subsets of (X, &y). By Corollary 3, the discrete coarse space Xg admits
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a 2-selector. We show that (X, ;) could not admit a 2-selector, so the conversion
of Theorem 5 does not hold.

Let X = Z% z = (21,22), y = (y1,42), d(z,y) = max{|z1 —y1|, |22 — 92}
We suppose that there exists a 2-selector f of (X, &;) and choose a natural num-
ber n such that if A, A’ € [X]? and (A4, A’) € E? then (f(A), f(A")) € E,, so
d(f(A), f(4") < n. We denote S, = {z € X:d(x,0) = n}. For z € S,, let
A, = {x,—z}. Then we can choose z,y € S, such that d(x,y) =1, f(4,) = «x,
f(Ay) = —y, but d(z, —y) > n.

3. Comments

1. Let (X,U) be a uniform space and let Fx denote the set of all nonempty
closed subsets of X endowed with the Hausdorff-Bourbaki uniformity. Given
a subset F of Fx, a uniformly continuous mapping f: F — X is called an
F-selector if f(A) € A for each A € F. If F =[X]? then f is called a 2-selector.

In contrast to the topological case, the problem of uniform selections is much
less studied. Almost all known results are concentrated around uniformizations
of Michael’s theorem, for references see [12].

Given a discrete uniform space, how can one detects whether X admits a 2-
selector? This question seems very difficult even in the case of a countable discrete
metric space X. To demonstrate the obstacles for a simple characterization, we
consider the following example.

We take a family {C),: n < w} of pairwise nonintersecting circles of radius 1 on
the Euclidean plane R2. Then we inscribe a regular n-gon M,, in C,, and denote
by X the set of all vertices of {M,: n < w}. It is easy to verify that X does not
admit a 2-selector.

2. Given a group G with the identity e, we denote by £z a coarse structure

on G with the base
H(z,y) eGx G:y€ Fx}: Fe|G]<¥, ec F}

and say that (G,E&q) is the finitary coarse space of G. It should be noticed
that finitary coarse spaces of groups (in the form of Cayley graphs) are used in
geometric group theory, see [5]. We note that the bornology of bounded subsets
of (G,&q) is the set [G]<“. Applying Theorem 1 and Theorem 5, we conclude
that if (G, Eg) admits a 2-selector then G must be countable.

Problem 1. Characterize countable groups G such that the finitary coarse space
(G, E¢) admits a 2-selector.

3. Every connected graph I'[V] with the set of vertices V can be considered as
the metric space (V,d),



Selectors of discrete coarse spaces

Problem 2. Characterize graphs I'[V] such that the coarse space of (V, d), wher-
ever d is the path metric on the set of vertices V, admits a 2-selector.
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