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Abstract. In connection to a conjecture of W.Lü, Q. Li and C.Yang (2014), we prove a
result on small function sharing by a power of a meromorphic function with few poles with
a derivative of the power. Our results improve a number of known results.
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1. Introduction definitions and results

In this paper a meromorphic function means a function that is meromorphic in

the open complex plane C. We use the standard notations of Nevanlinna theory;

e.g., N(r, f), m(r, f), T (r, f), N(r, a; f), N(r, a; f), m(r, a; f) etc., see [7]. We denote

by S(r, f) a quantity, not necessarily the same at each of its occurrences, that satisfies

the condition S(r, f) = o{T (r, f)} as r → ∞ except possibly a set of finite linear

measure.

A meromorphic function a = a(z) is called a small function of a meromorphic

function f if T (r, a) = S(r, f). Let us denote by S(f) the class of all small functions

of f . Clearly C ⊂ S(f) and if f is a transcendental function then every polynomial

is a member of S(f).

Let f and g be two non-constant meromorphic functions and a ∈ S(f) ∩ S(g).

If f − a and g − a have the same zeros with the same multiplicities, then we say

that f and g share the small function a CM (counting multiplicities) and if we do

not consider the multiplicities, then we say that f and g share the small function

a IM (ignoring multiplicities).
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Let k be a positive integer and a ∈ S(f). We useNk)(r, a; f) to denote the counting

function of zeros of f−a with multiplicity not greater than k, N(k+1(r, a; f) to denote

the counting function of zeros of f −a with multiplicity greater than k. Similarly we

use Nk)(r, a; f) and N (k+1(r, a; f) to denote their respective reduced functions.

In 1996, Brück studied the relation between f and f ′ if an entire function f

shares only one finite value CM with its derivative f ′ (see [1]). In this direction an

interesting conjecture was proposed by Brück (see [1]), which is still open in its full

generality.

Conjecture A. Let f be a non-constant entire function. Suppose

̺1(f) := lim sup
r→∞

log log T (r, f)

log r
,

the hyper-order of f , is not a positive integer or infinity. If f and f ′ share a finite

value a CM, then

(1.1)
f ′ − a

f − a
= c

for some nonzero constant c.

The conjecture for the special cases

(1) a = 0,

(2) N(r, 0; f ′) = S(r, f)

had been established by Brück, see [1]. From the differential equations

(1.2)
f ′ − a

f − a
= ez

n

,
f ′ − a

f − a
= ee

z

,

we see that when ̺1(f) is a positive integer or infinity the conjecture does not hold.

The conjecture for the case where f is of finite order had been proved by Gundersen

and Yang (see [6]), and the case where f is of infinite order with ̺1(f) <
1
2 had been

proved by Chen and Shon (see [3]). Recently Cao in [2] proved that the Brück

conjecture is also true when f is of infinite order with ̺1(f) = 1
2 . But the case

̺1(f) >
1
2 is still open. However, the corresponding conjecture for meromorphic

functions fails in general (see [6]). For example, if

f(z) =
2ez + z + 1

ez + 1
,

then f and f ′ share 1 CM, but (1.1) does not hold.

It is interesting to ask what happens if f is replaced by a power of itself, say, fn

in Brück’s conjecture. From (1.2) we see that the conjecture does not hold without

any restriction on the hyper-order when n = 1. So we only need to focus on the

problem when n > 2.
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Perhaps Yang and Zhang (see [15]) were the first to consider the uniqueness of a

power of an entire function F = fn and its derivative F ′ when they share a certain

value and that leads to a specific form of the function f .

Yang and Zhang in [15] proved that the Brück conjecture holds for the function fn

and the order restriction on f is not needed if n is relatively large. In fact, they proved

the following result.

Theorem A ([15]). Let f be a non-constant entire function, n (> 7) be an integer

and let F = fn. If F and F ′ share 1 CM, then F ≡ F ′, and f assumes the form

f(z) = cez/n, where c is a nonzero constant.

Improving all the results obtained in [15], Zhang in [16] proved the following

theorem.

Theorem B ([16]). Let f be a non-constant entire function, and let n, k be

positive integers and a (6≡ 0,∞) be a meromorphic small function of f . If fn−a and

(fn)(k) − a share 0 CM and n > k + 5, then fn ≡ (fn)(k), and f assumes the form

f(z) = cezλ/n, where c is a nonzero constant and λk = 1.

In 2009, Zhang and Yang (see [17]) further improved the above result in the

following manner.

Theorem C ([17]). Let f be a non-constant entire function, and let n, k be

positive integers and a (6≡ 0,∞) be a meromorphic small function of f . Suppose

fn − a and (fn)(k) − a share 0 CM and n > k + 2. Then conclusion of Theorem B

holds.

In 2010, Zhang and Yang (see [18]) further improved the above result in the

following manner.

Theorem D ([18]). Let f be a non-constant entire function, and let n, k be

positive integers. Suppose fn and (fn)(k) share 1 CM and n > k+1. Then conclusion

of Theorem B holds.

In 2011, Lü and Yi (see [11]) proved the following extension of Theorem D.

Theorem E ([11]). Let f be a transcendental entire function, and let n, k be two

integers with n > k + 1, and let F = fn and Q 6≡ 0 be polynomials. If F −Q and

F (k) −Q share 0 CM, then F ≡ F (k) and f(z) = cewz/n, where c and w are nonzero

constants such that wk = 1.

R em a r k 1.1. It is easy to see that the condition n > k + 1 in Theorem E is

sharp by the following example.
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E x am p l e 1.1. Let f(z) = ee
z ∫ z

0
e−et(1− et)t dt and n = 1, k = 1. Then

f ′(z)− z

f(z)− z
= ez

and f ′(z)− z and f(z)− z share 0 CM, but f ′ 6≡ f .

In [12], Lü, Li and Yang asked the question of considering two shared polynomials

in Theorem E instead of a single shared polynomial. They answered the question

for the first derivative of the power of a transcendental entire function and further

proposed the following conjecture:

Conjecture B. Let f be a transcendental entire function, and let n be a positive

integer. If fn − Q1 and (fn)(k) − Q2 share 0 CM and n > k + 1, then (fn)(k) =

fnQ2/Q1, where Q1 and Q2 are polynomials with Q1Q2 6≡ 0. If, further, Q1 ≡ Q2,

then f = ceωz/n, where c and ω are nonzero constants such that ωk = 1.

Recently the second author (see [13]) fully resolved Conjecture B; thus giving rise

to a further investigation of the possibility of replacing in Conjecture B the shared

polynomials by shared small functions. Here we on one hand solve this problem

and also on the other hand we try to relax the nature of sharing of small functions,

thereby improving a number of known results including that in [13].

Extending the idea of weighted sharing (see [8], [9]), Lin and Lin in [10] introduced

the notion of weakly weighted sharing which is defined as follows.

Definition 1.1 ([10]). Let f and g be two non-constant meromorphic functions

sharing a “IM”, for a ∈ S(f) ∩ S(g), and let k be a positive integer or ∞.

(i) N
E

k)(r, a) denotes the counting function of those zeros of f − a whose mul-

tiplicities are equal to the corresponding zeros of g − a, where both of their

multiplicities are not greater than k, and where each zero is counted only once.

(ii) N
0

(k(r, a) denotes the counting function of those zeros of f − a which are zeros

of g − a, where both of their multiplicities are not less than k, and where each

zero is counted only once.

Definition 1.2 ([10]). For a ∈ S(f) ∩ S(g), if k is a positive integer or ∞ and

Nk)(r, a; f)−N
E

k)(r, a) = S(r, f), Nk)(r, a; g)−N
E

k)(r, a) = S(r, g);

N (k+1(r, a; f)−N
0

(k+1(r, a) = S(r, f), N (k+1(r, a; g)−N
0

(k+1(r, a) = S(r, g);

or if k = 0 and

N(r, a; f)−N0(r, a) = S(r, f), N(r, a; g)−N0(r, a) = S(r, g),

then we say f and g weakly share a with weight k. Here we write f , g share “(a, k)”

to mean that f , g weakly share a with weight k.
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Obviously, if f and g share “(a, k)”, then f and g share “(a, p)” for any p,

0 6 p 6 k. Also we note that f and g share a “IM” or “CM” if and only if f

and g share “(a, 0)” or “(a,∞)”, respectively (for the definitions of “IM” and “CM”

see pages 225–226 in [14]).

We note that a rational function f withN(r,∞; f) = S(r, f)must be a polynomial.

Also a small function of a polynomial must be a constant. Since k > 1, clearly if f is a

polynomial, then the relation (fn)(k) = cfn does not hold for any nonzero constant c

and n > k. Therefore in the following theorems we assume f to be transcendental.

Theorem 1.1. Let f be a transcendental meromorphic function such that

N(r,∞; f) = S(r, f) and let ai = ai(z) (6≡ 0,∞) be small functions of f , where

i = 1, 2. Let n and k be two positive integers such that n > k + 1. If fn − a1 and

(fn)(k) − a2 share “(0, 1)”, then (fn)(k) ≡ fna2a
−1
1 . Furthermore, if a1 ≡ a2, then

f(z) = cezλ/n, where c and λ are nonzero constants such that λk = 1.

Theorem 1.2. Let f be a transcendental meromorphic function such that

N(r,∞; f) = S(r, f) and let ai = ai(z) (6≡ 0,∞) be small functions of f , where

i = 1, 2. Let n and k be two positive integers such that n > k. If fn − a1 and

(fn)(k) − a2 share “(0, 0)” and N2)(r, 0; f) = S(r, f), then (fn)(k) ≡ a2a
−1
1 fn.

Furthermore, if a1 ≡ a2, then f
n ≡ (fn)(k) and f assumes the form f(z) = cezλ/n,

where c is a nonzero constant and λk = 1.

N o t e 1.1. If k > 2, then in Theorem 1.2 instead of N2)(r, 0; f) = S(r, f) we can

assume N1)(r, 0; f) = S(r, f).

R em a r k 1.2. It is easy to see that the condition n > k + 1 in Theorem 1.1 is

sharp by the following examples.

E x am p l e 1.2. Let f(z) = e2z + z. Then f − a1 and f
′ − a2 share 0 CM and

N(r,∞; f) = 0, but f ′ 6≡ a2a
−1
1 f , where a1(z) = z + 1 and a2(z) = 3.

E x am p l e 1.3. Let f(z) = e2z + z2 + z. Then f − a1 and f
′ − a2 share 0 CM

and N(r,∞; f) = 0, but f ′ 6≡ a2a
−1
1 f , where a1(z) = z2 + z + 1 and a2(z) = 2z + 3.

E x am p l e 1.4. Let

f(z) = ee
z
2

+ 1, a1(z) =
1

1 + e−z2
, a2(z) = −

2z

1 + e−z2
.

We note that

f(z)− a1(z) =
1

ez2 + 1

(

(ez
2

+ 1)ee
z
2

+ 1
)

and

f ′(z)− a2(z) =
2z

1 + e−z2

(

(ez
2

+ 1)ee
z
2

+ 1
)

.

Then f − a1 and f
′ − a2 share “(0,∞)” and N(r,∞; f) = 0, but f 6≡ a2a

−1
1 f ′.
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E x am p l e 1.5. Let

f(z) = 1− 5(z + 1) + zez

and a1(z) = a2(z) = −(4 + 4z + 5z2). We note that

f(z)− a1(z) = z(ez + 5z − 1)

and

f ′(z)− a2(z) = (z + 1)(ez + 5z − 1).

Then f − a1 and f
′ − a2 share “(0,∞)” and N(r,∞; f) = 0, but f 6≡ f ′.

R em a r k 1.3. It is easy to see that the conditions N2)(r, 0; f) = S(r, f) and

N(r,∞; f) = S(r, f) in Theorem 1.2 are essential by the following examples.

E x am p l e 1.6. Let

f(z) = z2 +
1

2
e(z−1)2 , a1(z) = z2 +

1

2
and a2(z) = 3z − 1.

We note that

f(z)−
(

z2 +
1

2

)

=
1

2
(e(z−1)2 − 1)

and

f ′(z)− (3z − 1) = (z − 1)(e(z−1)2 − 1).

Obviously f − a1 and f ′ − a2 share 0 IM, and N2)(r, 0; f) 6= S(r, f) and

N(r,∞; f) = 0, but f ′ 6≡ a2a
−1
1 f .

E x am p l e 1.7. Let

f(z) =
2

1− e−2z
.

Clearly f ′(z) = −4e−2z(1− e−2z)−2. We note that

f(z)− 1 =
1 + e−2z

1− e−2z
and f ′(z)− 1 = −

(1 + e−2z)2

(1− e−2z)2
.

Obviously f and f ′ share 1 IM, N(r,∞; f) 6= S(r, f) andN2)(r, 0; f) = 0, but f ′ 6≡ f .

E x am p l e 1.8. Let f(z) = 1+tan z. Since tan z does not assume the values ±i,

it follows that f(z) does not assume the values 1± i. So by the second fundamental

theorem, N(r, 0; f) = N2)(r, 0; f) = T (r, f) + S(r, f) and N(r,∞; f) = T (r, f) +

S(r, f). Also we see that f ′(z) − 1 = (f(z) − 1)2 and so f and f ′ share the value

1 IM, but f 6≡ f ′.
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2. Lemmas

In this section we present the lemmas which will be needed in the sequel.

Lemma 2.1 ([4]). Suppose that f is a transcendental meromorphic function and

that

fn(z)P (f(z)) = Q(f(z)),

where P (f(z)) and Q(f(z)) are differential polynomials in f with functions of small

proximity related to f as the coefficients and suppose that the degree of Q(f(z)) is

at most n. Then m(r, P ) = S(r, f).

Lemma 2.2 ([7]). Let f be a non-constant meromorphic function and let a1(z),

a2(z) be two meromorphic functions such that T (r, ai) = S(r, f), i = 1, 2. Then

T (r, f) 6 N(r,∞; f) +N(r, a1; f) +N(r, a2; f) + S(r, f).

Lemma 2.3 ([5]). Let f(z) be a non-constant entire function and k (> 2) be an

integer. If f(z)f (k)(z) 6= 0, then f(z) = eaz+b, where a (6= 0), b are constants.

Lemma 2.4. Let f be a non-constant meromorphic function such that

(2.1) (fn)(k) ≡ fn,

where k, n ∈ N. If n > k, then f assumes the form f(z) = cezλ/n, where c ∈ C \ {0}

and λk = 1.

P r o o f. First we suppose (2.1) holds. We claim that f does not have any

pole. In fact, if z0 is a pole of f with multiplicity p, then z0 is a pole of f
n with

multiplicity np and a pole of (fn)(k) with multiplicity np + k, which is impossible

by (2.1). Hence f is a non-constant entire function. From (2.1), it is clear that f

cannot be a polynomial. Therefore f is a transcendental entire function. We now

consider the following two cases.

Case 1. Let n > k. If z1 is a zero of f with multiplicity q, then z1 is a zero

of fn with multiplicity nq and a zero of (fn)(k) with multiplicity nq − k , which is

impossible by (2.1). Therefore from (2.1), we conclude that fn(z)(fn(z))(k) 6= 0. If

k > 2, then by Lemma 2.3 we have f(z) = cezλ/n, where c ∈ C \ {0} and λk = 1.

Next we suppose k = 1. Since f(z) 6= 0,∞, it follows that f(z) = eα(z), where

α(z) is a non-constant entire function. Now from (2.1) we have α′(z) = n−1, i.e.,

α(z) = zn−1 + c0, where c0 ∈ C. Consequently f(z) = cez/n, where c = ec0 .
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Case 2. Let n = k. First we suppose n = k = 1. Then from (2.1) we have

f(z) ≡ f ′(z) and so f(z) = cez, where c ∈ C \ {0}.

Next we suppose n = k > 2. Let F = fn. Then we have

F (k) =
dk

dzk
(fk) =

dk−1

dzk−1
(kfk−1f ′) = k

dk−2

dzk−2
((k − 1)fk−2(f ′)2 + fk−1f ′′)(2.2)

= k(k − 1)
dk−2

dzk−2
(fk−2(f ′)2) + k

dk−2

dzk−2
(fk−1f ′′)

= k(k − 1)
dk−3

dzk−3
((k − 2)fk−3(f ′)3) + k(k − 1)

dk−3

dzk−3
(2fk−2f ′f ′′)

+ k
dk−3

dzk−3
((k − 1)fk−2f ′f ′′) + k

dk−3

dzk−3
(fk−1f ′′)

= k(k − 1)(k − 2)
dk−3

dzk−3
(fk−3(f ′)3) + 2k(k − 1)

dk−3

dzk−3
(fk−2f ′f ′′)

+ k(k − 1)
dk−3

dzk−3
(fk−2f ′f ′′) + k

dk−3

dzk−3
(fk−1f ′′)

= . . . = k!(f ′)k +R(f),

where R(f) is a differential polynomial in f such that each term of R(f) contains fm

for some m (1 6 m 6 n− 1) as a factor.

From (2.1), we observe that f cannot have any multiple zero. Let z2 be a simple

zero of f . Clearly z2 is a zero of F of multiplicity k. From (2.1), it is clear that z2
is also a zero of F (k). On the other hand z2 is a zero of R(f). Now from (2.2),

we observe that z2 is a zero of f
′, which is impossible. Therefore f cannot have

any simple zero. Hence f does not have any zero. Since from (2.1) we see that

(fn(z))(k)fn(z) 6= 0, by Lemma 2.3 we have f(z) = cezλ/n, where c ∈ C \ {0} and

λk = 1. This completes the proof. �

3. Proofs of the theorems

P r o o f of Theorem 1.1. Let

(3.1) F = fn.

Since S(r, fn) = S(r, f), from Lemma 2.2 we see that

nT (r, f) 6 N(r, 0;F ) +N(r, a1;F ) + S(r, fn) = N(r, 0; f) +N(r, a1;F ) + S(r, f).

Since n > k+1, it follows that N(r, a1;F ) 6= S(r, f). As F − a1 and F
(k) − a2 share

“(0, 1)”, it follows that N(r, a2;F
(k)) 6= S(r, f).
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Let z0 be a common zero of F−a1 and F
(k)−a2 such that ai(z0) 6= 0,∞ (otherwise

the reduced counting functions of those zeros of F − a1 and F
(k) − a2 which are the

zeros or poles of a1(z) and a2(z), respectively, are equal to S(r, f)), where i = 1, 2.

Clearly F (z0), F
(k)(z0) 6= 0. Suppose z0 is a zero of F − a1 of multiplicity p0. Since

F − a1 and F
(k) − a2 share “(0, 1)”, it follows that z0 must be a zero of F

(k) − a2 of

multiplicity q0. Then in some neighbourhood of z0, we get by Taylor’s expansion

F (z) = a10 + a1r0(z − z0)
r0 + a1r0+1(z − z0)

r0+1 + . . . , a10 6= 0,

a1(z) = b10 + b1s0(z − z0)
s0 + b1s0+1(z − z0)

s0+1 + . . . , b10 6= 0.

Since z0 is a zero of F − a1 of multiplicity p0, it follows that a10 = b10 and p0 >

min{r0, s0}, when p0 = r0 = s0. Let us assume that

F (z)− a1(z) = c1p0
(z − z0)

p0 + c1p0+1(z − z0)
p0+1 + . . . , c1p0

6= 0.

Therefore

F (z)− a1(z)

a1(z)
= O((z − z0)

p0 ) and so
F (z)

a1(z)
− 1 = O((z − z0)

p0).

Similarly

(F (k)(z)− a2(z))

a2(z)
= O((z − z0)

q0) and
F (k)(z)

a2(z)
− 1 = O((z − z0)

q0).

Finally we conclude that F−a1 and F
(k)−a2 share “(0, 1)” if and only if Fa

−1
1 and

F (k)a−1
2 share “(1, 1)” except for the zeros and poles of a1(z) and a2(z), respectively.

Let F1 = fna−1
1 and G1 = (fn)(k)a−1

2 . Clearly F1 and G1 share “(1, 1)” except for

the zeros and poles of a1(z) and a2(z), respectively, and soN(r, 1;F1) = N(r, 1;G1)+

S(r, f). Let

Φ =
F ′

1(F1 −G1)

F1(F1 − 1)
=

F ′

1

F1 − 1

(

1−
G1

F1

)

=
F ′

1

F1 − 1

(

1−
a1
a2

·
F (k)

F

)

.(3.2)

We now consider the following two cases.

Case 1. Let Φ 6≡ 0. Then clearlyG1 6≡ F1, i.e., (f
n)(k) 6≡ a2a

−1
1 fn. Now from (3.2)

we get m(r,∞; Φ) = S(r, f).

Let z1 be a zero of f of multiplicity p such that ai(z1) 6= 0,∞, where i = 1, 2.

Then z1 will be a zero of F1 and G1 of multiplicities np and np−k, respectively, and

so from (3.2) we get

(3.3) Φ(z) = O((z − z1)
np−k−1).

Since n > k + 1, it follows that Φ is holomorphic at z1.
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Let z2 be a common zero of F1 − 1 and G1 − 1 such that ai(z2) 6= 0,∞, where

i = 1, 2. Suppose z2 is a zero of F1 − 1 of multiplicity q. Since F1 and G1 share

“(1, 1)” except for the zeros and poles of a1(z) and a2(z), respectively, it follows

that z2 must be a zero of G1 − 1 of multiplicity r. Then in some neighbourhood

of z2, we get by Taylor’s expansion

F1(z)− 1 = bq(z − z2)
q + bq+1(z − z2)

q+1 + . . . , bq 6= 0,

G1(z)− 1 = cr(z − z2)
r + cr+1(z − z2)

r+1 + . . . , cr 6= 0.

Clearly

F ′

1(z) = qbq(z − z2)
q−1 + (q + 1)bq+1(z − z2)

q + . . .

Note that

F1(z)−G1(z) =











bq(z − z2)
q + . . . if q < r,

−cr(z − z2)
r − . . . if q > r,

(bq − cq)(z − z2)
q + . . . if q = r.

Clearly from (3.2) we get

(3.4) Φ(z) = O((z − z2)
t−1),

where t > min{q, r}. Now from (3.4), it follows that Φ is holomorphic at z2.

We note from (3.2) that if z∗ is a zero of F1 − 1 that is also a zero of a2 with

multiplicity p1, then z∗ is a possible pole of Φ with multiplicity at most 1 + p1.

Again if z∗ is a zero of f that is also a zero of a2 with multiplicity p2, then z
∗

is a possible pole of Φ with multiplicity at most k + p2. So from (3.2), the above

discussion and the hypothesis of Theorem 1.1 we note that

N(r,∞; Φ) 6 (k + 1)N
(

r,
a1
a2

)

+ (k + 1)N(r, 0; a1) + (k + 1)N(r, 0; a2)

+ (k + 1)N(r, F1) + (k + 1)N(r, f)

= (k + 1)N(r, F1) + S(r, f) = S(r, f).

Consequently T (r,Φ) = S(r, f).

Let q > 2. Since F1 and G1 share “(1, 1)” except for the zeros and poles of a1(z)

and a2(z), it follows that r > 2. Therefore from (3.4) we see that

N (2(r, 1;F1) 6 N(r, 0; Φ) + S(r, f) 6 T (r,Φ) + S(r, f) = S(r, f).

Since F1 and G1 share “(1, 1)” except for the zeros and poles of a1(z) and a2(z), it

follows that N (2(r, 1;G1) = S(r, f). Again from (3.2) we get

1

F1
=

1

Φ

( F ′

1

F1 − 1
−
F ′

1

F1

)(

1−
a1
a2

(fn)(k)

fn

)
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and so m(r, 1/F1) = S(r, f). Hence

(3.5) m(r, 0; f) = m
(

r,
1

f

)

= S(r, f).

We consider the following two sub-cases.

Sub-case 1.1. Let n > k + 1. From (3.3) we see that N(r, 0; f) 6 N(r, 0; Φ) 6

T (r,Φ) + O(1) = S(r, f). Then from (3.5) we get T (r, f) = S(r, f), which is a

contradiction.

Sub-case 1.2. Let n = k+1. Since for p > 2, we have np−k−1 = (k+1)p−k−1 > p,

from (3.3) we see that

N(2(r, 0; f) 6 N(r, 0; Φ) 6 T (r,Φ) +O(1) = S(r, f).

Then (3.5) gives

(3.6) T (r, f) = N1)(r, 0; f) + S(r, f).

Note that N (2(r, a1;F ) = N (2(r, 1;F1) + S(r, f) = S(r, f), N (2(r, a2;F
(k)) =

N (2(r, 1;G1) + S(r, f) = S(r, f) and N(r,∞;F ) = S(r, f). Let

(3.7) β =
F (k) − a2
F − a1

, i.e., F (k) − a2 = β(F − a1).

We claim that β 6≡ 0. If not, suppose β ≡ 0. Then from (3.7) we have (fn)(k) ≡ a2.

Since n = k + 1, we immediately have N1)(r, 0, f) = S(r, f) and so from (3.6) we

arrive at a contradiction. Hence β 6≡ 0. We now consider following two sub-cases.

Sub-case 1.2.1. Suppose T (r, β) 6= S(r, f). Let z11 be a zero of F − a1 such that

F (k)(z11) − a2(z11) 6= 0. Then obviously β has a pole at z11. Let z12 be a zero of

F (k)−a2 such that F (z12)−a1(z12) 6= 0. In that case β has a zero at z12. Let z13 be

a common zero of F − a1 and F
(k) − a2. Since F − a1 and F

(k) − a2 share “(0, 1)”,

it follows that β has a zero at z13 if z13 is a zero of F − a1 and F
(k) − a2 with

multiplicities p13 (> 2) and q13 (> 2), respectively, such that p13 < q13 and β has a

pole at z13 if q13 < p13. Therefore

N(r, 0;β) 6 N (2(r, a2;F
(k)) + S(r, f) = S(r, f)

and

N(r,∞;β) 6 N (2(r, a1;F ) + S(r, f) = S(r, f).

Let ξ = β′/β. Clearly

T (r, ξ) = N
(

r,∞;
β′

β

)

+m
(

r,
β′

β

)

= N(r, 0;β) +N(r,∞;β) + S(r, β) = S(r, f) + S(r, β).
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Note that

T (r, β) 6 T (r, F (k) − a2) + T (r, F − a1) 6 T (r, F (k)) + T (r, F ) + S(r, F ) + S(r,G)

6 (k + 1)T (r, fn) + nT (r, f) + S(r, f) = n(k + 2)T (r, f) + S(r, f),

which implies that S(r, β) can be replaced by S(r, f). Consequently T (r, ξ) = S(r, f).

By logarithmic differentiation we get from (3.7)

F (k+1)F − ξF (k)F − F (k)F ′ = a1F
(k+1) − (ξa1 + a′1)F

(k) − a2F
′(3.8)

+ (a′2 − ξa2)F + ξa1a2 + a2a
′

1 − a1a
′

2.

We deduce from (3.1) that

(3.9)

F (k) =
dk

dzk
(fk+1) =

dk−1

dzk−1
((k + 1)fkf ′) = (k + 1)

dk−2

dzk−2
(kfk−1(f ′)2 + fkf ′′)

= (k + 1)k
dk−2

dzk−2
(fk−1(f ′)2) + (k + 1)

dk−2

dzk−2
(fkf ′′)

= (k + 1)k
dk−3

dzk−3
((k − 1)fk−2(f ′)3) + (k + 1)k

dk−3

dzk−3
(2fk−1f ′f ′′)

+ (k + 1)
dk−3

dzk−3
(kfk−1f ′f ′′) + (k + 1)

dk−3

dzk−3
(fkf ′′′)

= (k + 1)k(k − 1)
dk−3

dzk−3
(fk−2(f ′)3) + 2(k + 1)k

dk−3

dzk−3
(fk−1f ′f ′′)

+ (k + 1)k
dk−3

dzk−3
(fk−1f ′f ′′) + (k + 1)

dk−3

dzk−3
(fkf ′′′)

= . . .= (k + 1)!f(f ′)k +
k(k − 1)

4
(k + 1)!f2(f ′)k−2f ′′ + . . .+ (k + 1)fkf (k).

Therefore

f ′

f
F (k) = (k + 1)!(f ′)k+1 +

k(k − 1)

4
(k + 1)!f(f ′)k−1f ′′(3.10)

+ . . .+ (k + 1)fk−1f ′f (k)

and

F (k+1) = (k + 1)!(f ′)k+1 +
k(k + 1)

2
(k + 1)!f(f ′)k−1f ′′(3.11)

+ . . .+ (k + 1)fkf (k+1).

Substituting (3.1), (3.9), (3.10) and (3.11) into (3.8), we have

(3.12) fn(z)P (z) = Q(z),
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where Q(z) is a differential polynomial in f of degree n and

(3.13) P (z) = F (k+1) − ξF (k) − n
f ′

f
F (k)

= − k(k + 1)!(f ′)k+1 − (k + 1)!ξf(f ′)k

+
k(k + 1)(3− k)(k + 1)!

4
f(f ′)k−1f ′′

+ . . .+ (k + 1)fkf (k+1) − (k + 1)ξfkf (k) − (k + 1)2fk−1f ′f (k)

= − k(k + 1)!(f ′)k+1 +R1(f)

is a differential polynomial in f of degree k + 1, where R1(f) is a differential poly-

nomial in f such that each term of R1(f) contains f
m for some m (1 6 m 6 n− 1)

as a factor.

We suppose that P ≡ 0. Then from (3.13) we get F (k+1) − ξF (k) −nF (k)f ′/f ≡ 0

and so F (k+1)/F (k) = ξ + nf ′/f = β′/β + F ′/F . By integration we have F (k) =

DβF , where D ∈ C \ {0}. Since n = k + 1 and N(r,∞;β) = S(r, f), it follows

that N(r, 0; f) = S(r, f). Then from (3.6) we have T (r, f) = S(r, f), which is a

contradiction. So P 6≡ 0. Then by Lemma 2.1 we get m(r, P ) = S(r, f). Since

N(r, f) = S(r, f) we have

(3.14) T (r, P ) = S(r, f) and T (r, P ′) = S(r, f).

Note that from (3.13) we get

(3.15) P ′(z) = A1(f
′)kf ′′ +B1(f

′)k+1 + S1(f),

which is a differential polynomial in f , where A1 = − 1
4k(k + 1)2(k + 1)!, B1 =

−(k + 1)!ξ and S1(f) is a differential polynomial in f such that each term of S1(f)

contains fm for some m (1 6 m 6 n− 1) as a factor.

Let z3 be a simple zero of f such that ξ(z3) 6= 0,∞. Then from (3.13) and (3.15)

we have

P (z3) = −k(k + 1)!(f ′(z3))
k+1, P ′(z3) = A1(f

′(z3))
kf ′′(z3) +B1(z3)(f

′(z3))
k+1.

This shows that z3 is a zero of Pf
′′ − (K1P

′ −K2P )f
′, where K1 = −k(k + 1)!/A1

and K2 = B1/A1. Also T (r,K1) = S(r, f) and T (r,K2) = S(r, f). Let

(3.16) Φ1 =
Pf ′′ − (K1P

′ −K2P )f
′

f
.

Then clearly m(r,Φ1) = S(r, f) and since N(2(r, 0; f) + N(r, f) = S(r, f), we have

T (r,Φ1) = S(r, f). From (3.16) we obtain

(3.17) f ′′(z) = α1(z)f(z) + β1(z)f
′(z),
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where

(3.18) α1 =
Φ1

P
and β1 = K1

P ′

P
−K2.

Differentiating (3.17) and using it repeatedly we have

(3.19) f (i)(z) = αi−1(z)f(z) + βi−1(z)f
′(z),

where i > 2 and T (r, αi−1) = S(r, f), T (r, βi−1) = S(r, f).

Also (3.18) yields

(3.20) P ′ =
( β1
K1

+
K2

K1

)

P and β1 = K1
P ′

P
−K2 =

−k(k + 1)!

A1

P ′

P
−
B1

A1
,

so that

(3.21) A1β1 +B1 + k(k + 1)!
P ′

P
= 0.

Now we consider following two sub-cases.

Sub-case 1.2.1.1. Let k = 1. Now from (3.13) and (3.17) we have

P = −2(f ′)2 − 2ξff ′ + 2ff ′′ = −2(f ′)2 + (2β1 − 2ξ)ff ′ + 2α1f
2

and so

P ′ = (−2β1 − 2ξ)(f ′)2 + (2β′

1 − 2ξ′ + 2β2
1 − 2β1ξ)ff

′ + (2α1β1 − 2α1ξ + 2α′

1)f
2.

Note that K1 = 1 and K2 = ξ and so from (3.20) we have

(3.22) (β′

1 − ξ′ − β1ξ + ξ2)f ′ + (−2α1ξ + α′

1)f ≡ 0.

If −2α1ξ + α′

1 ≡ 0, then from (3.22) we get, because ff ′ 6≡ 0,

(3.23) β′

1 − ξ′ − β1ξ + ξ2 ≡ 0.

Let β1 ≡ ξ. Then a simple calculation gives 2β′β−1 = P ′P−1 and so on integration

we get β2 = d0P , where d0 ∈ C\{0}. This contradicts the fact that T (r, β) 6= S(r, f).

So β1 6≡ ξ. Now from (3.23) we get (β′

1 − ξ′)(β1 − ξ)−1 = ξ = β′β−1. So on

integration we get β = d1(β1− ξ), where d1 ∈ C \ {0}. This contradicts the fact that

T (r, β) 6= S(r, f). So we conclude that −2α1ξ + α′

1 6≡ 0. Then from (3.22) we see

that if z4 is a simple zero of f , then z4 is either a pole of −2α1ξ + α′

1 or a zero of

β′

1 − ξ′ − β1ξ + ξ2. Hence

N1)(r, 0; f) 6 N(r,∞;−2α1ξ + α′

1) +N(r, 0;β′

1 − ξ′ − β1ξ + ξ2) = S(r, f).

So we arrive at a contradiction by (3.6).
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Sub-case 1.2.1.2. Let k > 2. From (3.9) and (3.11) we have F (k) = T1(f),

F (k+1) = (k+1)!(f ′)k+1+T2(f) and F
(k+2) = 1

2 (k+1)(k+2)(k+1)!(f ′)kf ′′+T3(f),

where T1(f), T2(f) and T3(f) are differential polynomials in f such that each term

of T1(f), T2(f) and T3(f) contain f as a factor.

Comparing (3.8) and (3.12) and noting that F = fn = fk+1 we have

(3.24) Q = a1F
(k+1) − (ξa1 + a′1)F

(k) − a2F
′ + (a′2 − ξa2)F + γ

= a1((k + 1)!(f ′)k+1 + T2(f))− (ξa1 + a′1)T1(f)

− (k + 1)a2f
kf ′ + (a′2 − ξa2)f

k+1 + γ,

where γ = ξa1a2 + a2a
′

1 − a1a
′

2.

Now suppose γ(z) ≡ 0. Then by integration we obtain β = d2a2a
−1
1 , where

d2 ∈ C \ {0} and so T (r, β) = S(r, f), which is a contradiction. Consequently

γ(z) 6≡ 0. Similarly we can verify that ξa1 + a′1 6≡ 0 and a′2 − ξa2 6≡ 0. We further

note that T (r, γ) = S(r, f). Differentiating (3.24) we have

Q′ = a′1F
(k+1) + a1F

(k+2) − (ξa1 + a′1)F
(k+1) − (ξa1 + a′1)

′F (k)(3.25)

− a′2F
′ − a2F

′′ + (a′2 − ξa2)
′F + (a′2 − ξa2)F

′ + γ′

= a′1((k + 1)!(f ′)k+1 + T2(f))− (ξa1 + a′1)((k + 1)!(f ′)k+1 + T2(f))

+ a1

( (k + 1)(k + 2)

2
(k + 1)!(f ′)kf ′′ + T3(f)

)

− (ξa1 + a′1)
′T1(f)

− (k + 1)a′2f
kf ′ − a2(k(k + 1)fk−1(f ′)2 + (k + 1)fkf ′′)

+ (a′2 − ξa2)
′fk+1 + (k + 1)(a′2 − ξa2)f

kf ′ + γ′.

Let z5 be a simple zero of f(z) such that z5 is not a zero or a pole of a1, a2 and ξ.

Then from (3.12), (3.24) and (3.25) we have

γ(z5) = A(z5)(f
′(z5))

k+1, γ′(z5) = A2(z5)(f
′(z5))

kf ′′(z5) +B2(z5)(f
′(z5))

k+1,

where A(z) = −(k + 1)!a1(z), A2(z) = − 1
2 (k + 1)(k + 2)(k + 1)!a1(z) and B2(z) =

(k + 1)!ξ(z)a1(z). This shows that z5 is a zero of γf
′′ − (K3γ

′ − K4γ)f
′, where

K3 = AA−1
2 and K4 = B2A

−1
2 . Also T (r,K3) = S(r, f) and T (r,K4) = S(r, f).

Let

(3.26) Φ2 =
γf ′′ − (K3γ

′ −K4γ)f
′

f
.

Then clearly T (r,Φ2) = S(r, f). From (3.26) we obtain

(3.27) f ′′ = ϕ1f + ψ1f
′,

where

(3.28) ϕ1 =
Φ2

γ
and ψ1 = K3

γ′

γ
−K4.
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Now we show that ψ1 6≡ β1. If ψ1 ≡ β1 then from (3.18) and (3.28) we have

2

(k + 1)(k + 2)

γ′

γ
+

2

(k + 1)(k + 2)
ξ ≡

4

(k + 1)2
P ′

P
−

4

k(k + 1)2
ξ,

i.e.,

2k(k + 2)
P ′

P
− k(k + 1)

γ′

γ
≡ (k2 + 3k + 4)

β′

β
.

On integration we have

βk2+3k+4 ≡
d3P

2k(k+2)

γk(k+1)
,

where d3 ∈ C \ {0} and so from (3.14) we have T (r, β) = S(r, f), a contradiction.

Now from (3.27) we have

(3.29) f (i) = ϕi−1f + ψi−1f
′,

where i > 2 and T (r, ϕi−1) = S(r, f), T (r, ψi−1) = S(r, f).

Also from (3.13), (3.15) and (3.29) we have, respectively,

P = −k(k + 1)!(f ′)k+1 +

k+1
∑

j=1

Tjf
j(f ′)k+1−j ,(3.30)

P ′ = (A1ψ1 +B1)(f
′)k+1 +

k+1
∑

j=1

Sjf
j(f ′)k+1−j ,(3.31)

where T (r, Tj) = S(r, f) and T (r, Sj) = S(r, f).

Multiplying (3.30) by P ′ and (3.31) by P and then subtracting we get

(3.32) H0(f
′)k+1 +H1f(f

′)k + . . .+Hk+1f
k+1 ≡ 0,

where

(3.33)

H0 = P
(

A1ψ1 +B1 + k(k + 1)!
P ′

P

)

and Hj = PSj − P ′Tj for j = 1, 2, . . . , k + 1.

Since β1 6≡ ψ1 and P 6≡ 0, it follows from (3.21) and (3.33) that H0 6≡ 0. Again

since H0(f
′)k+1 6≡ 0, from (3.32) we conclude that Hi 6≡ 0 for at least one i ∈

{1, 2, . . . , k + 1}. Let S = {1, 2, . . . , k + 1} and S1 = {i ∈ S : Hi 6≡ 0}. Note that

T (r,H0) = S(r, f) and T (r,Hj) = S(r, f) for j ∈ S1.

Now from (3.32) we see that a simple zero of f must be either a zero of H0 or a

pole of at least one Hi’s, where i ∈ S1. Therefore

N1)(r, 0; f) 6 N(r, 0;H0) +
∑

j, j∈S1

N(r,∞;Hj) + S(r, f) = S(r, f).

So we arrive at a contradiction by (3.6).
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Sub-case 1.2.2. Suppose T (r, β) = S(r, f). Then from (3.7) we have

(3.34) F (k) − βF ≡ a2 − βa1.

If a2 − βa1 ≡ 0, then from (3.34) we get (fn)(k) ≡ a2a
−1
1 fn, which contadicts the

fact that Φ 6≡ 0. So we suppose that a2−βa1 6≡ 0. Let z6 be a simple zero of f . If z6

is not a pole of β, then from (3.34) we see that z6 is a zero of a2 − a1β. Therefore

N1)(r, 0; f) 6 N(r, 0; a2 − a1β) +N(r,∞;β) = S(r, f).

So by (3.6) we arrive at a contradiction.

Case 2. Let Φ ≡ 0. Now from (3.2) we get F1 ≡ G1, i.e., (f
n)(k) ≡ a2a

−1
1 fn.

Furthermore if a1 ≡ a2, then f
n ≡ (fn)(k), and by Lemma 2.4, f assumes the

form f(z) = cezλ/n, where c ∈ C \ {0} and λk = 1. �

P r o o f of Theorem 1.2. Let F1 = fna−1
1 and G1 = (fn)(k)a−1

2 . Clearly F1

and G1 share “(1, 0)” except for the zeros and poles of a1(z) and a2(z) and so

N(r, 1;F1) = N(r, 1;G1) + S(r, f). We now consider following two cases.

Case 1. Let F1 6≡ G1. Then

(3.35) N(r, 1;F1) 6 N(r, 0;G1 − F1 | F1 6= 0) + S(r, f)

6 N
(

r, 0;
G1 − F1

F1

)

+ S(r, f) 6 T
(

r,
G1 − F1

F1

)

+ S(r, f)

6 T
(

r,
G1

F1

)

+ S(r, f) 6 N
(

r,∞;
G1

F1

)

+m
(

r,∞;
G1

F1

)

+ S(r, f)

= N
(

r,∞;
a1
a2

(fn)(k)

fn

)

+m
(

r,∞;
a1
a2

(fn)(k)

fn

)

+ S(r, f)

6 kN(r,∞; f) + kN(r, 0; fn) + S(r, f) = kN(r, 0; f) + S(r, f).

Now using (3.35) and N2)(r, 0; f) = S(r, f), we get from the second fundamental

theorem that

(3.36) nT (r, f) = T (r, fn) + S(r, f) 6 T (r, F1) + S(r, f)

6 N(r,∞;F1) +N(r, 0;F1) +N(r, 1;F1) + S(r, F )

6 N(r,∞; f) +N(r, 0; fn) +N(r, 1;F1) + S(r, f)

6 (k + 1)N(r, 0; f) + S(r, f)

6
k + 1

3
N(r, 0; f) + S(r, f) 6

k + 1

3
T (r, f) + S(r, f).

Since n > k, (3.36) leads to a contradiction.

Case 2. F1 ≡ G1. Then (fn)(k) ≡ a2a
−1
1 fn. Furthermore if a1 ≡ a2, then f

n ≡

(fn)(k), and, by Lemma 2.4, f assumes the form f(z) = cezλ/n, where c ∈ C \ {0}

and λk = 1. �
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