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RESTRICTED WEAK TYPE INEQUALITIES FOR THE ONE-SIDED

HARDY-LITTLEWOOD MAXIMAL OPERATOR

IN HIGHER DIMENSIONS

Fabio Berra, Santa Fe

Received August 20, 2021. Published online May 5, 2022.

Abstract. We give a quantitative characterization of the pairs of weights (w, v) for which
the dyadic version of the one-sided Hardy-Littlewood maximal operator satisfies a restricted
weak (p, p) type inequality for 1 6 p < ∞. More precisely, given any measurable set E0,
the estimate

w({x ∈ R
n : M+,d(XE0

)(x) > t}) 6
C[(w, v)]p

A+,d
p (R)

tp
v(E0)

holds if and only if the pair (w, v) belongs to A+,d
p (R), that is,

|E|

|Q|
6 [(w, v)]

A+,d
p (R)

(
v(E)

w(Q)

)1/p

for every dyadic cube Q and every measurable set E ⊂ Q+. The proof follows some ideas
appearing in S.Ombrosi (2005). We also obtain a similar quantitative characterization for
the non-dyadic case in R2 by following the main ideas in L. Forzani, F. J.Martín-Reyes,
S.Ombrosi (2011).

Keywords: restricted weak type; one-sided maximal operator

MSC 2020 : 42B25, 28B99

1. Introduction

In 1986 Sawyer in [10] started the theory of one-sided weights. Namely, he intro-

duced the class of weights A+
p and showed that this class is necessary and sufficient

for the weighted boundedness of the one-sided Hardy-Littlewood maximal function.
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Some extensions and generalizations were given consequently in the articles [5], [6]

and [7], among others. In [9], the author characterizes the functions w for which the

one-sided Hardy-Littlewood maximal operator

M+
v f(x) = sup

h>0

∫ x+h

x
|f |v

∫ x+h

x v

verifies a restricted weak (p, p) type on the real line, that is, a weak type inequality

applied to the function f = XE , where E is an arbitrary measurable set. More

precisely, the inequality

w({x ∈ R : M+
v (XE)(x) > t}) 6

C

tp
v(E)

holds if and only if w ∈ A+
p (R)(v dx). This set corresponds to the class of weights

that satisfy a restricted A+
p condition with respect to the measure dµ = v(x) dx, see

the section below for details.

Although the theory in this setting was deeply developed and the main results

were improved and generalized, most of the results were set on R.

In [8], Ombrosi characterized the pair of weights (w, v) for which the inequality

(1.1) w({x ∈ Rn : M+,df(x) > t}) 6
C

tp

∫

Rn

|f |pv

holds for every positive t, and where 1 6 p < ∞. The operator M+,d is a dyadic

version of M+ defined on Rn. A similar result was also obtained for M−,d.

It is well-known that the operatorsM+f andM+,df are pointwise equivalent on R,

see [6]. However, this result is false in general in higher dimensions. This means that

a non-dyadic version of (1.1) cannot be obtained directly from the dyadic case, and

the problem of finding such an estimate remained open.

In [1], Forzani, Martín-Reyes and Ombrosi proposed a way to generalize the op-

erators M+ and M− to higher dimensions and solved the problem discussed above

on R2. The technique used, although newfangled and quite delicate, relied heavily

upon the dimension. This means that the corresponding problem for n > 3 still

remains open.

Related to strong estimates in dimension greater than one, some partial results

were obtained in [4]. At this point we would also like to mention interesting appli-

cations of this theory to parabolic differential equations obtained by Kinnunen and

Saari in [2] and [3].

In this article we use some ideas of [1] and [8] to give a characterization of the

pairs of weights for which the one-sided Hardy-Littlewood maximal operator satisfies

a restricted weak type inequality in higher dimensions.

1004



Concretely, for the dyadic case we have the following result.

Theorem 1.1. Let (w, v) be a pair of weights and 1 6 p < ∞. Then the following

statements are equivalent:

(a) The operator M+,d is of restricted weak (p, p) type with respect to (w, v), that

is, there exists a positive constant C such that the inequality

w({x ∈ Rn : M+,d(XE)(x) > t}) 6
C[(w, v)]p

A+,d
p (R)

tp
v(E)

holds for every positive t and every measurable set E.

(b) (w, v) belongs to A+,d
p (R).

For the non-dyadic case we prove the next theorem.

Theorem 1.2. Let (w, v) be a pair of nonnegative measurable functions defined

in R2 and 1 6 p < ∞. The following conditions are equivalent:

(a) The operator M+ is of restricted weak (p, p) type with respect to (w, v), that

is, there exists a positive constant C such that the inequality

w({x ∈ R2 : M+(XE)(x) > t}) 6
C[(w, v)]p

A+,d
p (R)

tp
v(E)

holds for every positive t and every measurable set E.

(b) (w, v) belongs to A+
p (R).

The article is organized as follows. In Section 2 we give the preliminaries and

definitions required for these main results. In Sections 3 and 4 we prove Theorems 1.1

and 1.2, respectively.

2. Preliminaries and basic definitions

We shall deal with dyadic cubes with sides parallel to the coordinate axes. Given

a dyadic cube Q =
n∏

i=1

[ai, bi), we denote with Q+ =
n∏

i=1

[bi, 2bi − ai) and Q− =
n∏

i=1

[2ai − bi, ai).

Given a positive number s, we denote (Q)s,+ =
n∏

i=1

[ai, ai+ sh), where h = bi − ai.

Similarly, we denote (Q)s,− =
n∏

i=1

[bi − sh, bi).

For x = (x1, . . . , xn) in Rn and h > 0, we denote Qx,h =
n∏

i=1

[xi, xi + h) and

Qx,h− =
n∏

i=1

[xi − h, xi). The one-sided Hardy-Littlewood maximal operators are
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given by

M+f(x) = sup
h>0

1

|Qx,h|

∫

Qx,h

|f(y)| dy, and M−f(x) = sup
h>0

1

|Qx,h− |

∫

Q
x,h−

|f(y)| dy.

We shall consider the dyadic version of these operators, that is,

M+,df(x) = sup
Q∋x

1

|Q|

∫

Q+

|f(y)| dy and M−,df(x) = sup
Q∋x

1

|Q|

∫

Q−

|f(y)| dy,

where the supremum is taken over dyadic cubes.

Given 1 < p < ∞, we say that a pair of weights (w, v) belongs to A+
p if there

exists a positive constant C such that the inequallity

(∫

Q

w

)(∫

Q+

v1−p′

)p−1

6 C|Q|p

holds for every cube Q in Rn.

When p = 1, we say that (w, v) belongs to A+
1 if there exist a positive constant C

that verifies

M−w(x) 6 Cv(x)

for almost every x. The smallest constant for which these inequalities hold is denoted

by [(w, v)]A+
p
.

Similarly, we say that (w, v) belongs to A+,d
p if the inequalities above hold for

every dyadic cube Q and when p = 1, the involved operator is M−,d. In this case,

the corresponding smallest constant is denoted by [(w, v)]A+,d
p
.

For 1 6 p < ∞ we say that (w, v) ∈ A+,d
p (R) if there exists a positive constant C

such that the inequality

(2.1)
|E|

|Q|
6 C

( v(E)

w(Q)

)1/p

holds for every dyadic cube Q and every measurable set E ⊂ Q+. The smallest

constant C for which the inequality above holds will be denoted by [(w, v)]A+,d
p (R).

We say that a pair of weights (w, v) belongs to A+
p (R), 1 6 p < ∞, if inequal-

ity (2.1) holds for every cube Q and every measurable subset E of Q+.

Remark 2.1. By replacing Q+ by Q− and M− by M+ we can define the A−
p

classes for 1 6 p < ∞. The dyadic version of these classes, A−,d
p , are defined by con-

sidering dyadic cubes on their definitions. The same occurs for A−
p (R) and A−,d

p (R).

Throughout the paper we shall present the results forM+, but the same arguments

can be adapted to get the corresponding versions for M−.
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The novelty of considering restricted weak type inequalities relies on that although

we take a particular function f , we consider a wider class of weights. This property

is contained in the following proposition.

Proposition 2.1. A+
p ⊂ A+

p (R) for every 1 < p < ∞, and A+
1 = A+

1 (R).

P r o o f. Let 1 < p < ∞ and assume that (w, v) ∈ A+
p . Fix a cube Q and

a measurable subset E of Q+ with |E| > 0. Then

|E| 6

(∫

E

v

)1/p(∫

Q+

v1−p′

)1/p′

6 [(w, v)]
1/p

A+
p

( v(E)

w(Q)

)1/p
|Q|,

which implies that (w, v) ∈ A+
p (R) and [(w, v)]A+

p (R) 6 [(w, v)]
1/p

A+
p

.

On the other hand, set p = 1 and assume that (w, v) ∈ A+
1 . Fix a cube Q and

a measurable set E ⊂ Q+ with positive measure. Then for every x ∈ E we have that

1

|Q|

∫

(Q+)−
w 6 [(w, v)]A+

1
v(x),

which implies that
w(Q)

|Q|
6 [(w, v)]A+

1

v(E)

|E|
,

and then (w, v) ∈ A+
1 (R). Conversely, fix x and h > 0. Let Q = Qx,h− , λ > ess inf

Qx,h

v

and E = {y ∈ Qx,h : v(y) < λ}. Then we have that

w(Qx,h−)

|Qx,h− |
6 [(w, v)]A+

1 (R)λ.

By letting λ → ess inf
Qx,h

v and then taking supremum over h we get that

M−w(x) 6 [(w, v)]A+
1 (R)v(x).

�

The following lemma states a useful property for weights on the A+
p (R) class.

Lemma 2.1. Let 1 6 p < ∞, (w, v) be a pair of weights in A+
p (R) and a, b two

positive constants. Then

(a) if a 6 b, then (w0, v0) = (max{w, a},max{v, b}) belongs to A+
p (R) and

[(w0, v0)]A+
p (R) 6 2max{1, [(w, v)]A+

p (R)};

(b) (w1, v1) = (min{w, a},max{v, b}) belongs to A+
p (R) and [(w0, v0)]A+

p (R) 6

[(w, v)]A+
p (R).
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P r o o f. Let us first prove statement (a). Fix a cube Q and a measurable subset E

of Q+. We have to show that there exists a positive constant C, independent of Q

and E, such that
w0(Q)

v0(E)
6 C

( |Q|

|E|

)p
.

We write

w0(Q) =

∫

Q∩{w>a}

w0 +

∫

Q∩{w<a}

w0 = w(Q ∩ {w > a}) + a|Q ∩ {w < a}|,

and therefore,

w0(Q)

v0(E)
=

w(Q ∩ {w > a})

v0(E)
+

a|Q ∩ {w < a}|

v0(E)
= I + II.

Now observe that

I 6
w(Q)

v(E)
6 [(w, v)]A+

p (R)

( |Q|

|E|

)p

.

On the other hand,

II 6
a|Q|

b|E|
6

( |Q|

|E|

)p

,

since a 6 b and |Q| > |E|. Therefore, (w0, v0) ∈ A+
p (R) and [(w0, v0)]A+

p (R) 6

2max{1, [(w, v)]A+
p (R)}.

For the proof of statement (b), observe that w1 6 w and v1 > v, so

w1(Q)

v1(E)
6

w(Q)

v(E)
6 [(w, v)]A+

p (R)

( |Q|

|E|

)p

,

which shows that (w1, v1) ∈ A+
p (R) with [(w1, v1)]A+

p (R) 6 [(w, v)]A+
p (R). �

3. Restricted weak (p, p) type of M+,d
in Rn

We devote this section to proving Theorem 1.1. We start with the following lemma

which will be useful for this purpose. This result is an adaptation of Lemma 2.1 in [8].

Lemma 3.1. Let 1 6 p < ∞, (w, v) ∈ A+,d
p (R) and µ > 0. Let E be a measurable

set such that 0 < |E| < ∞ and {Qj}j∈Γµ
a disjoint family of dyadic cubes such that

for every j ∈ Γµ we have

(3.1) µ <
|E ∩Q+

j |

|Qj |
6 2µ.

Then we have that

∑

j∈Γµ

w(Qj) 6
C[(w, v)]p

A+,d
p (R)

µp
v
(
E ∩

( ⋃

j∈Γµ

Q+
j

))
.
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P r o o f. For m > 0 we define the sets

im = {j ∈ Γµ : there exist exactly m cubes Q
+
s : Q+

j ( Q+
s with s ∈ Γµ}

and also

σm =
⋃

j∈im

Q+
j .

Also, we define E+
j = E ∩Q+

j and Fm =
⋃

j∈im

E+
j .

Notice that Γµ =
⋃

m>0

im and if j1 and j2 belong to im for some m, then

Q+
j1
∩Q+

j2
= ∅. This yields

|Fm| =
∑

j∈im

|E+
j |.

On the other hand, σm+1 ⊂ σm for every m > 0, so

(3.2) Fm+1 ⊂ Fm and |Fm+1| 6 |Fm|.

For fixed m0 and j0 ∈ im0 , if Q
+
j ( Q+

j0
, then j ∈ im with m > m0 and Qj ⊂ Q2,+

j0
.

Therefore, ⋃

m>m0

⋃

j∈im : Q+
j
(Q+

j0

Qj ⊂ (Qj0)
2,+

and this implies that

∑

m>m0

∑

j∈im : Q+
j
(Q+

j0

|Qj| 6 |(Qj0)
2,+| = 2n|Qj0 |,

since the cubes Qj are disjoint. Thus, by (3.1) we get

∑

m>m0

|Fm ∩Q+
j0
| =

∑

m>m0

∑

j∈im : Q+
j
(Q+

j0

|E+
j | 6 2µ

∑

m>m0

∑

j∈im : Q+
j
(Q+

j0

|Qj |

6 2n+1µ|Qj0 | 6 2n+1|E+
j0
|.

This last estimate implies that

m0+2n+2∑

m=m0+1

|Fm ∩Q+
j0
| < 2n+1|E+

j0
|

and then there must be an index m, m0 + 1 6 m 6 m0 + 2n+2 such that

|Fm ∩Q+
j0
| <

|E+
j0
|

2
.
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By (3.2) we get

|Fm0+2n+2 ∩Q+
j0
| 6 |Fm ∩Q+

j0
| <

|E+
j0
|

2
,

and consequently,
|Q+

j0
∩ (E \ Fm0+2n+2)|

|Qj0 |
>

1

2

|E+
j0
|

|Qj0 |
>

µ

2
.

Now, we can estimate

∑

j∈Γµ

w(Qj) =

∞∑

m=0

∑

j∈im

w(Qj)

<
( 2

µ

)p ∞∑

m=0

∑

j∈im

w(Qj)
( |Q+

j ∩ (E \ Fm0+2n+2)|

|Qj|

)p

6

( 2

µ

)p ∞∑

m=0

∑

j∈im

[(w, v)]p
A+,d

p (R)
w(Qj)

v(Q+
j ∩ (E \ Fm0+2n+2))

w(Qj)

6

( 2

µ

)p

[(w, v)]p
A+,d

p (R)

∞∑

m=0

∫

σm−σ
m+2n+2

XEv

=
( 2

µ

)p

[(w, v)]p
A+,d

p (R)

2n+2−1∑

k=0

∞∑

m=0

∫

σ2n+2m+k
−σ2n+2(m+1)+k

XEv

6

( 2

µ

)p

[(w, v)]p
A+,d

p (R)

2n+2−1∑

k=0

∫

σk

XEv

6

2n+p+2[(w, v)]p
A+,d

p (R)

µp
v(E ∩ σ0).

�

P r o o f of Theorem 1.1. We shall first prove that (a) implies (b). Fix a dyadic

cube Q and a measurable subset E of Q+. Assume that |E| > 0, since otherwise the

condition follows inmediately. For every x in Q we have that

M+,dXE(x) >
1

|Q|

∫

Q+

XE =
|E|

|Q|
,

which implies that Q ⊂ {x : M+,dXE(x) > |E|/(2|Q|)}. By using statement (a)

we get

w(Q) 6 C
( |Q|

|E|

)p
v(E),

which shows that (w, v) ∈ A+,d
p (R).
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Now we prove that (b) implies (a). Fix a measurable set E and assume, without

loss of generality, that 0 < |E| < ∞. For fixed t > 0, let F be the family of dyadic

cubes Q such that |E ∩ Q+|/|Q| > t and let {Qj}j be the family of the maximal

cubes of F . It follows that the cubes Qj are disjoint and

{x : M+,dXE(x) > t} =
⋃

j

Qj .

We shall consider a partition of this family of cubes. Given k > 0, we set

Ck =
{
j : 2kt <

|E ∩Q+
j |

|Qj |
6 2k+1t

}

and apply Lemma 3.1 to the family Ck with µ = 2kt for every k. Therefore,

∑

j∈Ck

w(Qj) 6
C[(w, v)]p

A+,d
p (R)

(2kt)p
v
( ⋃

j∈Ck

E+
j

)
.

This yields

w({x : M+,dXE(x) > t}) =
∑

j

w(Qj) =

∞∑

k=0

∑

j∈Ck

w(Qj)

6

∞∑

k=0

C[(w, v)]p
A+,d

p (R)

(2kt)p
v(E)

=
C[(w, v)]p

A+,d
p (R)

tp
v(E),

which completes the proof. �

4. Restricted weak (p, p) type of M+
in R2

We devote this section to the proof of Theorem 1.2. Along this section we shall

assume that the space, where we work, is R2. We begin by introducing some specifics

in this setting.

We say that a square Q has dyadic size if l(Q) = 2k for an integer k. Let l(Q)

denote the length of the sides of Q. Given a square Q, αQ will denote the square

with the same center as Q and sides of length αl(Q).

For h > 0 and Q = [a, a + h] × [b, b + h], we set Q̃ the dilation of Q to the right

and to the bottom in 1
2 l(Q). That is, Q̃ = [a, a+ 3

2h]× [b− 1
2h, b+ h].
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1

2
h

h

h
1

2
h

Q

Q̃

Figure 1. The cubes Q and Q̃.

Given x = (x1, x2) ∈ R2 and h > 0 recall that Qx,h = [x1, x1 + h] × [x2, x2 + h].

We shall consider the following partition of a cube Qx,h:

Qx,h = Qx,h/2 ∪Q1
x,h ∪Q2

x,h ∪Q3
x,h,

where

Q1
x,h = [x1 +

1
2h, x1 + h]× [x2 +

1
2h, x2 + h],

Q2
x,h = [x1 +

1
2h, x1 + h]× [x2, x2 +

1
2h],

Q3
x,h = [x1, x1 +

1
2h]× [x2 +

1
2h, x2 + h].

Qx,h/2 Q2

x,h

Q3

x,h Q1

x,h

Figure 2. Subsquares of Qx,h.

The proof of Theorem 1.2 relies on the following covering lemma, that is, a con-

sequence of Lemma 3.1 stated and proved in [1], when we take f = XE . This result

contains a covering argument that is related to the subcube Q2
x,h. For the main proof

we will require the corresponding versions for Q1
x,h and Q

3
x,h, which can be achieved

by following similar ideas.

Lemma 4.1. Let t > 0 and E be a measurable set such that 0 < |E| < ∞. Let

A = {xj}Nj=1 be a finite set of points in R2. Suppose that for every 1 6 j 6 N , we

have a square of dyadic size Qj with xj as its upper right corner and that satisfies

t

4
<

|E ∩Q+2
j |

|Qj |
.
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Then there exists a set Γ ⊂ {1, . . . , N} such that

(4.1) A ⊂
⋃

i∈Γ

Q̃i

and

(4.2)
t

4
<

|E ∩ Q̃+
j |

|Qj |
.

Moreover, for every i, j ∈ Γ with i 6= j we have Q̃i 6⊆ Q̃j and the squares Q̃i, i ∈ Γ,

of the same size are almost disjoint, that is, there exists a positive constant C such

that for every l ∑

i∈Γ,l(Qi)=l

XQ̃i
(x) 6 C.

This implies that the squares (Q̃i)
+ are almost disjoint, too. Further, if

|E ∩ (Q̃j)
+|

|Qj |
6 8t,

then there exists a family of sets {Fj}j∈Γ with Fj ⊂ (Q̃j)
+ such that

t

8
<

|E ∩ Fj |

|Qj|

and they are almost disjoint, that is, there exists a positive constant C (independent

of everything) such that ∑

j∈Γ

XFj
(x) 6 C.

P r o o f of Theorem 1.2. The fact that (a) implies (b) can be achieved in a similar

way to Theorem 1.1. Let us prove that (b) implies (a). The operatorM+ is pointwise

equivalent to the operator

M+f(x) = sup
k∈Z

1

|Qx,2k |

∫

Q
x,2k

|f |,

that is, the one-sided maximal operator defined over squares of dyadic size. We shall

consider for i = 1, 2, 3 the operators

M+if(x) = sup
k∈Z

1

|Qi
x,2k

|

∫

Qi

x,2k

|f |,

where the cubes Qi
x,2k are depicted in Figure 2.
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Let us fix a measurable set E with 0 < |E| < ∞. Let (w, v) be a pair of weights

in A+
p (R). We shall prove that

w({x ∈ R2 : M+(XE)(x) > t}) 6
C

tp
v(E)

for every t > 0. It will be enough to show that

w({x ∈ R2 : t < M+(XE)(x) 6 2t}) 6
C

tp
v(E),

and this also reduces to proving that

(4.3) w({x ∈ R2 : t < M+i(XE)(x), M
+(XE)(x) 6 2t}) 6

C

tp
v(E)

for i = 1, 2, 3. We show the proof for i = 2, being similar for the other indices.

Given a positive number ξ we consider the truncated maximal operator defined by

M+2
ξ (XE)(x) = sup

h=2k>ξ
k∈Z

4|E ∩Q2
x,h|

h2
.

Observe that M+2
ξ (XE) ↑ M+2(XE) when ξ → 0+. Therefore, it will be enough to

prove that

(4.4) w({x ∈ R2 : t < M+2
ξ (XE)(x), M

+(XE)(x) 6 2t}) 6
C

tp
v(E)

for every t > 0 and with C independent of ξ, E and t.

By virtue of Lemma 2.1 we can assume that w ∈ L1
loc and also that there exists

a positive constant γ such that 0 < γ 6 w(x) for every x ∈ R2.

Let Ωt = {x ∈ R2 : t < M+2
ξ (XE)(x), M

+(XE)(x) 6 2t}. The measure dµ(x) =

w(x) dx is finite over compact sets since we are assuming w ∈ L1
loc. Therefore,

inequality (4.4) follows if we prove that

w(K) 6
C

tp
v(E)

for every compact set K ⊂ Ωt and with C independent of K.

Fix a compact set K ⊂ Ωt. For every x = (x1, x2) ∈ K there exists a square

Qx = [x1 − l, x1]× [x2 − l, x2] with ξ 6 l, l = 2k for some k ∈ Z and

t

4
<

|E ∩Q+2
x |

|Qx|
.
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Let Qx,2l = [x1, x1 + 2l]× [x2, x2 + 2l]. We have that (Q̃x)
+2 ⊂ Qx,2l (see Figure 3)

and thus,

|E ∩ (Q̃x)
+2|

|Qx|
6

|E ∩Qx,2l|

|Qx|
=

4|E ∩Qx,2l|

|Qx,2l|
6 4M+(XE)(x) 6 8t.

Qx,2l

(Q̃x)
+

(Q̃x)
+2

Qx

x

Figure 3. (Q̃x)
+2 ⊂ Qx,2l.

Therefore, we have that for every x ∈ K there exists a square Qx = [x1 − l, x1]×

[x2 − l, x2] such that ξ 6 l,

t

4
<

∣∣E ∩Q+2
x

∣∣
|Qx|

and
|E ∩ (Q̃x)

+2|

|Qx|
6 8t.

We have also that there exists a positive constantM , depending on t and E, such

that l 6 M since

|Qx| 6
4|E ∩Q+2

x |

t
6

4|E|

t
< ∞.

This implies that there exists a square R such that
⋃

x∈K

Q̃x ⊂ R. We shall consider

the square 2R. Since w is integrable in 2R, there exists 0 < ε < 1 such that if Q ⊂ R

is a square, then

w((1 + ε)Q \Q) 6 γξ2.

If Q ⊂ R verifies l(Q) > ξ, then

w((1 + ε)Q \Q) 6 γξ2 6 γ|Q| 6 w(Q).

This yields

w((1 + ε)Q) 6 2w(Q)

for every Q ⊂ R with l(Q) > ξ. Particularly,

w((1 + ε)Q̃x) 6 2w(Q̃x) for every x ∈ K.

1015



Let Bx(r) be the ball of radius r centered at x. We have that K ⊂
⋃

x∈K

Bx(
1
2ξε), and

then there exist x1, x2, . . . , xs ∈ K such that K ⊂
s⋃

j=1

Bxj
(12ξε), since K is compact.

We apply now Lemma 4.1 to the set A = {xj}sj=1 and the squares {Qj}sj=1 associ-

ated to the points xj . Then there exists a set Γ ⊂ {1, . . . , s} that verifies A ⊂
⋃
i∈Γ

Q̃xi

and there also exist {Fxi
: i ∈ Γ}, Fxi

⊂ (Q̃xi
)+,

(4.5)
t

8
<

|E ∩ Fxi
|

|Qxi
|

and ∑

i∈Γ

XFxi
(x) 6 C.

Observe that if xj ∈ A, there exists i ∈ Γ such that xj ∈ Q̃xi
. Then Bxj

(12ξε) ⊂

(1 + ε)Q̃xi
. In fact, this is straightforward if we assume 0 < ξ < 1. Consequently,

we have that

K ⊂
s⋃

j=1

Bxj

(ξε
2

)
⊂

⋃

i∈Γ

(1 + ε)Q̃xi
,

which implies that

w(K) 6
∑

i∈Γ

w((1 + ε)Q̃xi
) 6 2

∑

i∈Γ

w(Q̃xi
).

Thus, by using (4.5) and the A+
p (R) condition of (w, v), we obtain

w(K) 6 2
∑

i∈Γ

w(Q̃xi
) 6

C

tp

∑

i∈Γ

w(Q̃xi
)
( |E ∩ Fxi

|

|Qxi
|

)p

=
C

tp

∑

i∈Γ

w(Q̃xi
)
( |(Q̃xi

)+|

|Qxi
|

)p( |E ∩ Fxi
|

|(Q̃xi
)+|

)p

6
C

tp
[(w, v)]p

A+
p (R)

∑

i∈Γ

v(E ∩ Fxi
)

6
C

tp
[(w, v)]p

A+
p (R)

v
(
E ∩

(⋃

i∈Γ

Fxi

))

6
C

tp
[(w, v)]p

A+
p (R)

v(E).
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