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Abstract. In order to distinguish the connected graded Frobenius algebras determined
by different twisted superpotentials, we introduce the nondegeneracy of twisted superpo-
tentials. We give the sufficient and necessary condition for connected graded Frobenius
algebras determined by two nondegenerate twisted superpotentials to be isomorphic. As
an application, we classify the connected Z-graded Frobenius algebra of length 3, whose
dimension of the degree 1 is 2.
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1. Introduction

Frobenius algebras, as a class of algebras with some symmetric properties, have

been applied to many branches of mathematics, cf. [5], [6]. Consequently, it is sig-

nificant to explore the way of constructing Frobenius algebras. It is proved in [8]

that we can derive a graded Frobenius algebra with two specifical properties from an

admissible system. Conversely, the authors declared that the basic graded Frobenius

algebra, possessing the two properties, is isomorphic to an algebra grew out from an

admissible system. The structure of graded Frobenius algebras stemmed from differ-

ent admissible systems over K has been studied in the paper as well. In the previous

paper (see [2]), the authors showed that for any connected Z-graded Frobenius alge-

bra A = K ⊕A1 ⊕ . . .⊕An over a field K, that is, when A is isomorphic as a graded

right A-module to the shift A∗(n) of the dual A∗ of the left A-graded module A, if A
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is generated by A1, there exists a twisted superpotential w in (A∗
1)

⊗n with respect

to a linear automorphism of (A1)
∗ induced by the Nakayama automorphism of A

such that A is isomorphic to the dual algebra of the subcoalgebra generated by w

inside T ((A1)
∗). Conversely, they proved that if V is a finite dimensional vector

space and w is a twisted superpotential in (V ∗)⊗n corresponding to a linear auto-

morphism ν of V ∗, one can construct a graded algebra A as above, whose Nakayama

automorphism is induced by ν. However, the authors did not investigate when the

Frobenius algebras established by different twisted superpotentials are isomorphic.

In this note, we focus on the isomorphisms between the connected graded Frobe-

nius algebras corresponding to different twisted superpotentials. Let V be a finite-

dimensional K-vector space, which has a basis {x1, . . . , xm}. Let U = V ∗, yi = x∗
i ,

1 6 i 6 m, then {y1, . . . , ym} is the dual basis of U . We know that there is a bijection

from the group of allK-linear bijective transformations of U to the group of all invert-

ible m×m matrices, where m is the dimension of U . For each linear automorphism ν

of U , M is the matrix of ν under the basis {y1, . . . , ym}. Assume that w1 ∈ (U)⊗n is

a nondegenerate ν1- twisted superpotential of degree n, w2 ∈ (U)⊗n is a nondegener-

ate ν2-twisted superpotential of degree n. Let M1, M2 be the matrix corresponding

to ν1, ν2, respectively. Let C = 〈w1〉, D = 〈w2〉 be the subcoalgebra of T (U) gener-

ated by w1, w2, respectively. The relevant definition can be viewed in Preliminaries.

In Section 3, we prove that C and D are isomorphic as graded K-coalgebras if and

only if w2 = w1 ◦ s
⊗n and hence ν2 = s∗ν1(s

∗)−1 for some s ∈ GL(V ), where GL(V )

is the group of all K-linear bijective transformations of V . Naturally, we can obtain

that C and D are isomorphic as graded K-coalgebras if and only if M1 and M2 are

similar matrices. Specifically, if w1 and w2 are the different ν-twisted superpotential

of degree n, we can deduce when the corresponding Frobenius algebras of w1 and w2

are isomorphic.

In Section 4, we focus on the nondegenerate twisted superpotentials of degree 3

and calculate all the corresponding connected graded Frobenius algebras of length 3,

whose dimension of the degree 1 is two.

2. Preliminaries

Throughout this paper, K is a field. Let A be a finite dimensional algebra over K.

Then K-dual space A∗ = Hom(A,K) has a natural coalgebra structure. Let C be

a finite dimensional coalgebra over K. Then the K-dual space C∗ = Hom(C,K)

has a natural algebra structure. Recall that an algebra A is called Z-graded if there

exists subspace (Ai)i∈Z such that

A =
⊕

i∈Z

Ai and Ai ·Aj ⊆ Ai+j
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for all i, j ∈ Z. The elements in Ai are said to be homogeneous of degree i. Dually,

a coalgebra C is called Z-graded if there exists subspace (Ci)i∈Z such that

C =
⊕

i∈Z

Ci and ∆(Cn) ⊆
⊕

i+j=n

Ci ⊗ Cj

for all n ∈ Z. We say that two Z-graded algebras A and B are isomorphic if there

is an algebra isomorphism f : A → B which preserves the degrees of homogeneous

elements. Similarly, we may define two isomorphic Z-graded coalgebras. In this

paper, by a graded algebra (coalgebra) we always mean a Z-graded algebra (coalge-

bra). If A =
⊕
i∈Z

Ai is a nonnegatively graded algebra with A0 = K, then A is called

a connected graded algebra.

Since A is a finite dimensional algebra, A∗ has a natural left and right A-module

structure. Then A is a Frobenius algebra if A ∼= A∗ as left A-modules. This is

equivalent to A ∼= A∗ as right A-modules. Therefore, recall from [7] that A is

a Frobenius algebra if and only if there is a K-bilinear form σ : A×A → K satisfying

the following conditions. For all x, y, z ∈ A,

(i) σ(xy, z) = σ(x, yz),

(ii) the map σ is nondegenerate, that is, σ(x, y) = 0 for all x only if y = 0.

The map σ is called the Frobenius form of the algebra. For each Frobenius algebra,

the K-algebra automorphism µ : A → A given by

(2.1) σ(µ(a), b) = σ(b, a)

for all a, b ∈ A, is usually called Nakayama automorphism, cf. [4].

If C∗ is a Frobenius algebra, then C is called coFrobenius coalgebra. Assume that

A = A0 ⊕ A1 ⊕ . . .⊕An is a finite dimensional graded algebra. Then A is a graded

Frobenius algebra of length n if A is a Frobenius algebra and the Frobenius form σ

satisfies that σ(a, b) = 0 for all a ∈ Ai, b ∈ Aj such that i + j 6= n. The graded

Frobenius algebra considered in this paper is indeed the n-graded Frobenius algebra

introduced in [1].

Let V be a finite-dimensional K-vector space. Let T (V ) = K ⊕ V ⊕ V ⊗ V ⊕ . . .

be the tensor algebra, which is typically an N-graded algebra. Let W , V be finite

dimensional K-vector spaces. Then the map λ : W ∗ ⊗ V ∗ → (W ⊗ V )∗ defined by

λ(f ⊗ g)(w ⊗ v) = f(w) · g(v)

for all f ∈ W ∗, g ∈ V ∗, w ∈ W , v ∈ V, is an isomorphism. Then we can obtain that

there is an isomorphism

λn : (V ∗)⊗n → (V ⊗n)∗

for each n ∈ N. We identify (V ∗)⊗n with (V ⊗n)∗ through the isomorphism λn. For

details about the above, the reader can refer to [3].
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Assume that {x1, . . . , xn} is the basis of V . Let U = V ∗, and yi = x∗
i : V → K,

1 6 i 6 n defined by x∗
i

( n∑
j=1

kjxj

)
= ki. Then {y1, . . . , ym} form the basis of U ,

which is usually called the dual basis of U . The tensor space T (U) can be seen as the

locally finite dual space of T (V ), hence, it has the coalgebra structure induced by

the algebra structure of T (V ). The coproduct and counit of T (U) are determined by

(2.2) ∆(yi1 ⊗ yi2 ⊗ . . .⊗ yin) = 1⊗ (yi1 ⊗ yi2 ⊗ . . .⊗ yin)

+

n−1∑

j=1

(yi1 ⊗ . . .⊗ yij )⊗ (yij+1
⊗ . . .⊗ yin)

+ (yi1 ⊗ yi2 ⊗ . . .⊗ yin)⊗ 1,

ε(yi1 ⊗ yi2 ⊗ . . .⊗ yin) = 0 for n > 0.

For each w ∈ T (U), the minimal subcoalgebra of T (U) containing w is de-

noted by 〈w〉.

For a homogeneous element ̟ ∈ U⊗n (n > 1), recall the partial derivations of ̟

as follows, see [2]:

∂l
yi
(̟) = (y∗i ⊗ 1⊗n−1)(̟) for each 1 6 i 6 m,(2.3)

∂r
yi
(̟) = (1⊗n−1 ⊗ y∗i )(̟) for each 1 6 i 6 m.(2.4)

Let ν be a linear automorphism of U . An element w ∈ U⊗n is called a ν-twisted

superpotential of degree n if cn(w) = (ν ⊗ 1⊗n−1)(w), where cn : U⊗n → U⊗n,

yi1 ⊗ . . .⊗ yin 7→ yin ⊗ yi1 ⊗ . . .⊗ yin−1
, cf. [2].

Let A∗ be the dual graded space of A. It means that A∗ is a graded vector

space concentrated in degrees −n, . . . , 0 with −ith component A∗
i for each 0 6 i 6 n.

Let A∗(n) be the nth shift of A∗, that is, the ith component of A∗(n) is equal to A∗
n−i

for i = 0, . . . , n.

The next lemma was proved in [7], Lemma 3.2, or more generally in [1], Theo-

rem 4.1.

Lemma 2.1. Let A = A0 ⊕A1 ⊕A2 ⊕ . . .⊕An be a graded Frobenius algebra of

length n. Then Ai
∼= A∗

n−i as a K-vector space for each i. Moreover, A ∼= A∗(n) as

graded right A-modules.
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3. Twisted superpotentials

Throughout this section, let V be a finite-dimensional K-vector space, which has

a basis {x1, . . . , xm}. Let U = V ∗, yi = x∗
i , 1 6 i 6 m. Then {y1, . . . , ym} is the

dual basis of U . Let T (U) be the tensor coalgebra with the same coproduct defined

as in (2.2). We assume that the degree of elements in U is −1. So, T (U) is a graded

coalgebra concentrated in nonpositive degrees. Let GL(V ) denote the group of all

invertible K-linear transformations of V .

Assume that w is a ν-twisted superpotential of degree n, let C be the subcoalgebra

of T (U) generated by w. Since w is a homogeneous element, C is a graded subcoal-

gebra. If C−1 = U , we call w nondegenerate. The result of the following lemma is

evident.

Lemma 3.1. Let w be a ν-twisted superpotential of degree n. Then for each

0 6= k ∈ K, kw is ν-twisted superpotential, and 〈w〉 = 〈kw〉.

Lemma 3.2. Let w be a ν-twisted superpotential of degree n. Then for s ∈

GL(V ), w◦s⊗n is s∗ν(s∗)−1-twisted superpotential. Moreover, if w is nondegenerate,

then so is w ◦ s⊗n.

P r o o f. For each a1 ⊗ a2 ⊗ . . .⊗ an ∈ V ⊗n, since cn(w) = (ν ⊗ 1⊗n−1)(w), it can

be obtained that

cn(w ◦ s⊗n)(a1 ⊗ a2 ⊗ . . .⊗ an) = (w ◦ s⊗n)(a2 ⊗ a3 ⊗ . . .⊗ a1)

= w(s(a2)⊗ s(a3)⊗ . . .⊗ s(a1))

= cn(w)(s(a1)⊗ s(a2) . . .⊗ s(an))

= w(ν∗s(a1)⊗ s(a2)⊗ . . .⊗ s(an)),

(s∗ν(s∗)−1 ⊗ 1⊗n−1)(w ◦ s⊗n)(a1 ⊗ . . .⊗ an) = (w ◦ s⊗n)(s−1ν∗s(a1)⊗ . . .⊗ an)

= w(ν∗s(a1)⊗ . . .⊗ s(an)).

Then we have cn(w ◦ s⊗n) = (ν ⊗ 1⊗n−1)(w ◦ s⊗n), and w ◦ s⊗n is s∗ν(s∗)−1-twisted

superpotential.

Let C = 〈w〉 and D = 〈w ◦ s⊗n〉 be the graded subcoalgebras of T (U) generated

by w and w ◦ s⊗n, respectively. According to [2], Lemma 4.8

C−1 = span{∂r
yin−1

. . . ∂r
yi1

(w) : 1 6 i1, . . . , in−1 6 m},

D−1 = span{∂r
yin−1

. . . ∂r
yi1

(w ◦ s⊗n) : 1 6 i1, . . . , in−1 6 m}.

For any 1 6 i1, . . . , in−1 6 m we have

∂r
yin−1

. . . ∂r
yi1

(w ◦ s⊗n) = ∂r
yin−1

. . . ∂r
yi1

((s∗)⊗n(w)).
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Assume that M is the matrix of the linear automorphism (s∗)⊗n of U⊗n on the

basis {yi1 ⊗ . . . ⊗ yin−1 : 1 6 i1, . . . , in 6 m} with lexicographic order. Then

∂r
yin−1

. . . ∂r
yi1

((s∗)⊗n(w)) is a linear combination of ∂r
yin−1

. . . ∂r
yi1

(w), whose coef-

ficients are those of i1 . . . in−1th row of M in the lexicographic order. We have

C−1 = D−1 since M is invertible. Then we can obtain that if w is nondegenerate,

then so is w ◦ s⊗n. �

Lemma 3.3. Assume that w is a ν-twisted superpotential of degree n and

a ν′-twisted superpotential of degree n. If w is nondegenerate, then ν = ν′.

P r o o f. Let w1 : V → (V ⊗n−1)∗ be the k-linear map defined by w1(y)(z) =

w(z⊗y) for each y ∈ V , z ∈ V ⊗n−1. Similarly, the k-linear map ŵ1 : V → (V ⊗n−1)∗

is defined by ŵ1(y)(z) = w(y⊗ z). The fact that w is a ν-twisted superpotential and

ν′-twisted superpotential implies the following commutative diagram

V

ν∗

��

w1
// (V ⊗n−1)∗

id

��

V
ŵ1

// (V ⊗n−1)∗.

We have ŵ1 ◦ ν∗ = w1. By the same reason, we have ŵ1 ◦ (ν′)∗ = w1, and hence

ŵ1 ◦ ν
∗ = ŵ1 ◦ (ν

′)∗. For w being nondegenerate, ŵ1 is injective and it follows that

ν∗ = (ν′)∗. As a result, we have ν = ν′. �

Theorem 3.4. Assume that w1 is a nondegenerate ν1-twisted superpotential of

degree n, w2 is a nondegenerate ν2-twisted superpotential of degree n. Let C = 〈w1〉

and D = 〈w2〉. Then C and D are isomorphic as graded K-coalgebras if and only if

w2 = w1 ◦ s
⊗n and hence ν2 = s∗ν1(s

∗)−1 for some s ∈ GL(V ).

P r o o f. Suppose

s(xi) =

m∑

j=1

aijxj , 1 6 i 6 m.

Then s∗ acts on U as follows

s∗(yi) =

m∑

j=1

ajiyj , 1 6 i 6 m.

Assume that

w1 =
∑

16i1,i2,...,in6m

si1i2...inyi1 ⊗ yi2 ⊗ . . .⊗ yin .
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If w2 = w1 ◦ s
⊗n, then,

w2 =
∑

16i1,i2,...,in6m

( ∑

16j1,j2,...,jn6m

sj1j2...jnai1j1 . . . ainjn

)
yi1 ⊗ yi2 ⊗ . . .⊗ yin .

For each 1 6 t 6 m,

w1 =
∑

16i1,i2,...,in6m

si1i2...inyi1 ⊗ yi2 ⊗ . . .⊗ yin

=
∑

16i1,...,it6m

yi1 ⊗ yi2 ⊗ . . .⊗ yit

⊗

( ∑

16it+1,it+2,...,in6m

si1i2...inyit+1
⊗ yit+2

⊗ . . .⊗ yin

)
.

According to [2], Theorems 4.4 and 4.5, we have

Ct−n = span

{ ∑

16it+1,it+2,...,in6m

si1i2...inyit+1
⊗yit+2

⊗ . . .⊗yin : 1 6 i1, . . . , it 6 m

}
.

Similarly,

w2 =

m∑

i1,i2,...,in=1

( m∑

j1,j2,...,jn=1

sj1j2...jnai1j1 . . . ainjn

)
yi1 ⊗ . . .⊗ yin

=

m∑

i1,...,it=1

yi1 ⊗ . . .⊗ yit

⊗

( m∑

it+1,it+2,...,in=1

( m∑

j1,...,jn=1

sj1j2...jnai1j1 . . . ainjn

)
yit+1

⊗ . . .⊗ yin

)

=
m∑

i1,...,it=1

yi1 ⊗ . . .⊗ yit ⊗

( m∑

j1,...,jt=1

ai1j1 . . . aitjt

m∑

it+1,...,in=1

m∑

jt+1,...,jn=1

sj1j2...jnait+1jt+1
. . . ainjnyit+1

⊗ . . .⊗ yin

)
.

Let

αi1i2...it =

m∑

j1,...,jt=1

ai1j1 . . . aitjt

m∑

it+1,...,in=1

m∑

jt+1,...,jn=1

sj1j2...jnait+1jt+1
. . . ainjnyit+1

⊗ . . .⊗ yin ,
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then

Dt−n = span{αi1i2...it : 1 6 i1, . . . , it 6 m}

= span

{ m∑

it+1,...,in=1

m∑

jt+1,...,jn=1

sj1j2...jnait+1jt+1
. . . ainjnyit+1

⊗ . . .⊗ yin ,

1 6 i1, . . . , it 6 m

}
.

Then for each 1 6 j1, . . . , jt 6 m,

(s∗)⊗n−t

( ∑

16jt+1,jt+2,...,jn6m

sj1j2...jnyjt+1
⊗ yjt+2

⊗ . . .⊗ yjn)

=
∑

16it+1,it+2,...,in6m

( ∑

16jt+1,jt+2,...,jn6m

sj1j2...jnait+1jt+1
. . . ainjn

)
yit+1

⊗ . . .⊗ yin .

So (s∗)⊗n−t is the bijection from Ct−n to Dt−n. So




(s∗)⊗n 0
(s∗)⊗n−1

. . .

0 1




is the graded K-coalgebra morphism from C to D.

Conversely, suppose that we are given a graded K-coalgebra isomorphism f :

C → D, where f−i is from C−i to D−i. We obtain the commutative diagrams

C−i

��

f−i
// D−i

��

U⊗i
(f−1)

⊗i

// U⊗i

for all i, where the vertical maps are the natural injection.

Naturally, we have K ∼= C−n, D−n
∼= K, then we can obtain an isomorphism

from K to K, denoted by ϕ. Let c = ϕ(1), then we have ϕ = c(idK). We have the

commutative diagram

K

∼=

��

c(idK)
// K

∼=

��

C−n

��

f−n
// D−n

��

U⊗n
(f−1)

⊗n

// U⊗n.
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Let us put s′ = t−1f−1 ∈ GL(U), t ∈ K, tn = c. After that, composing vertical

maps in the above diagram, we have the commutative diagram

K

w∗
1

��

id
// K

w∗
2

��

U⊗n s′⊗n

// U⊗n.

Let s = (s′)∗. Then (w2)
∗ = (s∗)⊗n◦(w1)

∗. As a result, we have w2 = w1◦(s)
⊗n. �

Remark 3.5. For two given twisted superpotentials w1, w2, if 〈w1〉 and 〈w2〉

are isomorphic as graded K-coalgebras, we say w1 and w2 are equivalent and denote

it by w1 ∼ w2.

Corollary 3.6. Retain the notation as above. Let A = C∗, B = D∗, which are

the corresponding Frobenius algebras of w1, w2, respectively. Then A and B are

isomorphic as graded K-algebras if and only if w2 = w1 ◦ s
⊗n for some s ∈ GL(V ).

Corollary 3.7. Assume that w1, w2 are nondegenerate ν-twisted superpotentials

of degree n. Then w1 ∼ w2 if and only if w2 = w1 ◦ s
⊗n and hence ν = s∗ν(s∗)−1

for some s ∈ GL(V ).

4. connected graded Frobenius algebra of length 3

According to Theorem 3.4, we can classify the connected graded Frobenius algebras

through computing the twisted superpotentials under different matrices which are

not similar. For a given matrix, it is possible that the corresponding superpotential

is not the only one, so it is necessary to discuss the graded Frobenius algebras

corresponding to different twisted superpotentials under the circumstances. In this

section, we focus on the connected graded Frobenius algebra of length 3, whose

dimension of degree 1 is 2. It can be easily obtained that the dimension of the

graded Frobenius algebra in this case is 6 by Lemma 2.1.

Assume that U is a vector space over K with a basis {y1, y2}, and let ν be a lin-

ear automorphism of U . Let V = U∗, x1 = (y1)
∗, x2 = (y2)

∗. Then {x1, x2} is

the dual basis of V . To simplify notation, we omit the symbol “⊗” in the tensor

coalgebra T (U) and simply write y1y2 for an element y1 ⊗ y2 ∈ U⊗2. The field K

considered in this section is the complex number field C. Let K{x1, x2} denote the

binary free algebra. And by a ν-twisted superpotential, we always mean a ν-twisted

superpotentials of degree 3.
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Let

w =
∑

16i1,i2,i362

ki1i2i3yi1yi2yi3 ∈ U ⊗ U ⊗ U.

Then w is a ν-twisted superpotential if and only if

(4.1) (ν ⊗ 1⊗ 1)(w) = c3(w).

LetM be the matrix of ν associated to the basis {y1, y2}. We may assume thatM

is a Jordan-type matrix (by choosing a suitable basis if necessary). Moreover, we

can discuss the twisted superpotential when M has the form
(

λ1 0

0 λ2

)
or

(
λ 0

1 λ

)
.

Case 1 : M is a diagonal matrix. Set

M =

(
λ1 0

0 λ2

)
.

Naturally, the matrix
(

λ1 0

0 λ2

)
is similar to

(
λ2 0

0 λ1

)
.

By calculating equation (4.1), we obtain that ifM satisfies the following situation,

w is equal to 0:

(1) λ1 = 1, λ2 6= ±1,

(2) λ2 = 1, λ1 6= ±1,

(3) λ1, λ2 6= 1, λ2
1λ2 6= 1, λ2

2λ1 6= 1.

Then we conclude that the nondegenerate ν-twisted superpotential exists in four

situations as follows.

Subcase 1.1 : M =
(

1 0

0 1

)
. In this case, for each s ∈ GL(V ) the equation ν =

s∗ν(s∗)−1 holds. According to equation (4.1), we have

(4.2) w = c3(w).

Assuming that

w =
∑

16i1,i2,i362

ki1i2i3yi1yi2yi3 ∈ U ⊗ U ⊗ U,

we can obtain that

(4.3)
∑

16i1,i2,i362

ki1i2i3yi1yi2yi3 =
∑

16i1,i2,i362

ki2i3i1yi1yi2yi3 .

Then the nondegenerate ν-twisted superpotential has the form

w = a1y1y1y1+a2y2y2y2+a3(y1y2y1+y1y1y2+y2y1y1)+a4(y1y2y2+y2y1y2+y2y2y1),

where a3 and a4 are not simultaneously zero. If a3a4 6= 0, at least two of the following

equations are not valid:

a2a3 = (a4)
2, a1a4 = (a3)

2, a1a2 = a3a4.
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Otherwise, w is not nondegenerate. We want to discuss the corresponding algebra

in the following four situations.

Subcase 1.1.1 : Assume that at least two of a1, a2, a3, a4 are 0. There are three

kinds of nondegenerate ν-twisted superpotentials which are not equivalent for each

0 6= k1 ∈ K,

w1 = y1y2y1 + y1y1y2 + y2y1y1,

w2 = k1y2y2y2 + y1y2y1 + y1y1y2 + y2y1y1,

w3 = y1y2y1 + y1y1y2 + y2y1y1 + k1(y1y2y2 + y2y1y2 + y2y2y1).

Let C = 〈w1〉 be the graded subcoalgebras of T (U) generated by w1. According

to [2], Lemma 4.8, we can obtain that

C = C−3 ⊕ C−2 ⊕ C−1 ⊕ C0,

where C−3 = span{w1}, C−2 = span{y1y2 + y2y1, y1y1}, C−1 = U , C0 = K. Conse-

quentially, the corresponding Frobenius algebra

A = C∗ = K ⊕ V ⊕A2 ⊕A3,

A2 = (C−2)
∗ = V ⊗2 � R2, R2 = L(x1x2 − x2x1, x2x2),

where L(x1x2 − x2x1, x2x2) is the subspace generated by {x1x2 − x2x1, x2x2},

A3 = (C−3)
∗ = V ⊗3 � R3, R3 = R2 ⊗ V + V ⊗R2 + L(x1x1x1).

And we have A ∼= K{x1, x2} � (x1x2 − x2x1, x2x2, x1x1x1).

Let s1 ∈ GL(V ) be defined by

s1(x1) = x1, s1(x2) =
1

a
x2,

where a2 = k1. Then

w2 ∼ w2 ◦ (s1)
⊗3 =

1

a
(y2y2y2 + y1y2y1 + y1y1y2 + y2y1y1).

Naturally,

1

a
(y2y2y2 + y1y2y1 + y1y1y2 + y2y1y1) ∼ y2y2y2 + y1y2y1 + y1y1y2 + y2y1y1.

It shows that the corresponding Frobenius algebras of w2 are independent of the

coefficient k1.
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The corresponding Frobenius algebra of w2 is

A ∼= K{x1, x2} � (x1x2 − x2x1, x2x2 − x1x1, x1x1x1).

Let s2 ∈ GL(V ) be defined by

s2(x1) = bx2, s2(x2) =
b

k1
x1,

where b3 = k1. Then

w3 ∼ w3 ◦ (s2)
⊗3 = y1y2y1 + y1y1y2 + y2y1y1 + y1y2y2 + y2y1y2 + y2y2y1.

It shows that the corresponding Frobenius algebras of w3 are independent of the

coefficient k1 as well.

The corresponding Frobenius algebra of w3 is

A ∼= K{x1, x2} � (x1x2 − x2x1, x2x2 + x1x1 − x1x2, x2x2x2).

Subcase 1.1.2 : Assume that a1a2 6= 0, a3a4 = 0. In the sense of equivalence,

there is only one kind of nondegenerate ν-twisted superpotentials as follows: for

each 0 6= k2, k3 ∈ K,

w4 = k2y1y1y1 + k3y2y2y2 + y1y2y1 + y1y1y2 + y2y1y1.

The corresponding Frobenius algebra of w4 is

A ∼= K{x1, x2} �
(
x1x2 − x2x1, x1x1 − k2x1x2 −

1

k3
x2x2, x1x2x2

)
.

Subcase 1.1.3 : Assume that a3a4 6= 0, a1a2 = 0, a1 + a2 6= 0. In the sense of

equivalence, there is only one kind of nondegenerate ν-twisted superpotentials as

follows: for each 0 6= k4, k5 ∈ K,

w5 = y1y1y1 + k4(y1y2y1 + y1y1y2 + y2y1y1) + k5(y1y2y2 + y2y1y2 + y2y2y1).

The corresponding Frobenius algebra of w5 is

A ∼= K{x1, x2} �
(
x1x2 − x2x1, x1x1 −

( 1

k5
−
(k4
k5

)2)
x2x2 −

k4

k5
x1x2, x2x2x2

)
.
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Subcase 1.1.4 : Assume that a1a2 6= 0, a3a4 6= 0, there are three kinds of nonde-

generate ν-twisted superpotentials as follows: for each 0 6= k7, k8, k9, k10, k11 ∈ K,

k7(k8)
2 6= 1, k10k11 6= 1, k9 6= (k11)

2,

w6 = k
(
k7y1y1y1 + k8y2y2y2 +

1

k8
(y1y2y1 + y1y1y2 + y2y1y1)

+ (y1y2y2 + y2y1y2 + y2y2y1)
)
,

w7 = k((k8)
2y1y1y1 + k7k8y2y2y2 + k8(y1y2y1 + y1y1y2 + y2y1y1)

+ (y1y2y2 + y2y1y2 + y2y2y1),

w8 = k(k9y1y1y1 + k10y2y2y2 + k11(y1y2y1 + y1y1y2 + y2y1y1)

+ (y1y2y2 + y2y1y2 + y2y2y1)).

Let s7 ∈ GL(V ) be defined by

s3(x1) = ax2, s3(x2) = ax1,

where a3 = k8. Then we can obtain that w7 = w6 ◦ (s3)
⊗3, w7 ∼ w6.

The corresponding Frobenius algebra of w6 is

A ∼= K{x1, x2} � (x1x2 − x2x1, x2x2 − k8x1x2, x1x1x1 − k7x1x2x2).

The corresponding Frobenius algebra of w8 is

A ∼= K{x1, x2} �
(
x1x2 − x2x1, x2x2 −

1− k10k11

k9 − (k11)2
x1x1

+
k11 − k9k10

k9 − (k11)2
x1x2, x1x1x2 − k11x1x2x2

)
.

Remark 4.1. Assume that

w = a1y1y1y1 + a2y2y2y2 + a3(y1y2y1 + y1y1y2 + y2y1y1)

+ a4(y1y2y2 + y2y1y2 + y2y2y1),

w′ = a′1y1y1y1 + a′2y2y2y2 + a′3(y1y2y1 + y1y1y2 + y2y1y1)

+ a′4(y1y2y2 + y2y1y2 + y2y2y1)

are different ν-twisted superpotentials. Then w ∼ w′ if and only if the following

system of equations has a solution:

(4.4) a1a
3 + a2c

3 + 3a3a
2c+ 3a4c

2a = a′1,

a1b
3 + a2d

3 + 3a3b
2d+ 3a4d

2b = a′2,

a1a
2b+ a2c

2d+ a3(2abc+ a2d) + a4(2acd+ c2b) = a′3,

a1b
2a+ a2d

2c+ a3(2abd+ b2c) + a4(2bcd+ d2a) = a′4.
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The system of equations is obtained by the equation w′ = w ◦ s⊗3, where s ∈ GL(V )

is defined by

s(x1) = ax1 + cx2, s(x2) = bx1 + dx2.

As we can see, this system of equations is difficult to solve, so we can not con-

clude whether any two nondegenerate ν-twisted superpotentials in subcases 1.1.2,

1.1.3, 1.1.4 are equivalent or not.

Subcase 1.2 : M =
(

1 0

0 −1

)
. In this case, the equation ν = s∗ν(s∗)−1 holds if and

only if s is defined by

s(x1) = ax1, s(x2) = bx2,

where a, b,∈ K, ab 6= 0.

There are two kinds of nondegenerate ν-twisted superpotentials which are not

equivalent as follows: for each 0 6= k1, k2 ∈ K,

w1 = k1y1y1y1 + k2(y2y1y2 − y1y2y2 − y2y2y1),

w2 = y2y1y2 − y1y2y2 − y2y2y1.

Let s ∈ GL(V ) be defined by

s(x1) =
1

a
x1, s(x2) =

1

b
x2,

where a, b are the solution of the following system of equations:

(4.5) a3 = k1, ab2 = k2.

Then

w1 ∼ w1 ◦ (s)
⊗3 = y1y1y1 + y2y1y2 − y1y2y2 − y2y2y1.

It turns out that the corresponding Frobenius algebras of w1 are independent of the

coefficients k1 and k2.

The corresponding Frobenius algebra of w1 is

A ∼= K{x1, x2} � (x1x2 + x2x1, x1x1 + x2x2, x2x2x2).

The corresponding Frobenius algebra of w2 is

A ∼= K{x1, x2} � (x1x2 + x2x1, x1x1, x2x2x2).
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Subcase 1.3 : M = c
(

1/λ2 0

0 λ

)
, where λ3 6= 1, λ 6= −1. In the sense of equivalence,

there is only one kind of nondegenerate ν-twisted superpotential as follows:

w = y2y1y2 + λy1y2y2 +
1

λ
y2y2y1.

The corresponding Frobenius algebra of w is

A ∼= K{x1, x2} �
(
x2x1 −

1

λ
x1x2, x1x1, x2x2x2

)
.

Subcase 1.4 : M =
(

ξ 0

0 ξ

)
, where ξ 6= 1, ξ3 = 1. In the sense of equivalence, there

is only one kind of nondegenerate ν-twisted superpotentials as follows:

w = y1y1y2 + ξy1y2y1 + ξ2y2y1y1.

The corresponding Frobenius algebra of w is

A ∼= K{x1, x2} � (x1x2 − ξx2x1, x1x1, x2x2x2).

Case 2 : M is not a diagonal matrix. Set

(4.6) M =

(
λ 0

1 λ

)
.

By calculating equation (4.1), we obtain that if M satisfies the following situations,

w is either equal to 0 or is not nondegenerate.

(1) λ = 1, the ν-twisted superpotential w = ky2y2y2 is not nondegenerate.

(2) λ3 6= 1, the ν-twisted superpotential w = 0.

Accordingly, the ν-twisted superpotential w is nondegenerate only in the following

case:

M =

(
ξ 0

1 ξ

)
,

where ξ3 = 1, ξ 6= 1. In the sense of equivalence, there is only one kind of nondegen-

erate ν-twisted superpotential as follows:

w = y1y2y2 + ξy2y2y1 + ξ2y2y1y2 +
1

1− ξ
y2y2y2.

The corresponding Frobenius algebra of w is

A ∼= K{x1, x2} �
(
x1x2 − ξx2x1, x1x1, x2x2x2 −

1

1− ξ
x1x2x2

)
.

On the whole, we can obtain the following theorem.

Theorem 4.2. Let A be a connected graded Frobenius algebra of length 3 over

the complex number field C, whose dimension of degree 1 is 2. Then A is isomorphic

to one of the Frobenius algebras in Case 1 and Case 2.
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