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1. Introduction

A group G is called monomial if every complex irreducible character χ of G is

induced by a linear character λ of a subgroup H of G, that is, χ = λG. A group G

is called quasi-monomial if for every irreducible character χ of G, there exists a sub-

group H of G and a linear character λ of H such that λG = dχ, where d is a positive

integer. A finite group G is called almost monomial if for all distinct complex irre-

ducible characters χ and ψ of G there exists a subgroup H of G and a linear char-

acter λ of H such that the induced character λG contains χ and does not contain ψ.

This definition, which generalizes quasi-monomial groups, appears [14] in connection

with the study of the holomorphy of Artin L-functions associated to a finite Galois

extension of Q at a point in the complex plane. An equivalent characterization for
almost monomial groups is given in Proposition 2.3.

Let K/Q be a finite Galois extension with Galois group G. For any character χ
of G, let L(s, χ) := L(s, χ,K/Q) be the corresponding Artin L-function, see [3],
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page 296. Artin’s conjecture states that L(s, χ) is holomorphic in C \ {1}. If the

group G is monomial (or quasi-monomial), then Artin’s conjecture holds.

Let Hol(s0) be the semigroup of Artin L-functions, holomorphic at s0 ∈ C \ {1}.

Nicolae in [14] proved that if G is almost monomial, then Artin’s conjecture holds

at s0 if and only if Hol(s0) is factorial. Let χ1, . . . , χr be the complex irreducible char-

acters of G, f1 = L(s, χ1), . . . , fr = L(s, χr) the corresponding Artin L-functions.

In [7] it was proved that if G is almost monomial and s0 is not a common zero

for any two distinct L-functions fk and fl then all Artin L-functions of K/Q are
holomorphic at s0. Also in [7], some basic properties of almost monomial groups

were stated.

The notion of a supercharacter theory for a finite group was introduced in 2008, by

Diaconis and Isaacs (see [8]), as follows: A supercharacter theory of a finite group G,

is a pair C = (X ,K), where X = {X1, . . . , Xr} is a partition of Irr(G), the set

of irreducible characters of G, and K is a partition of G, such that: (1) {1} ∈ K,

(2) |X | = |K| and (3) σX :=
∑
ψ∈X

ψ(1)ψ is constant for each X ∈ X and K ∈ K.

The aim of our paper is to extend the notions of quasi-monomial and almost

monomial groups in the framework of supercharacter theories, and to discuss the

connections with the supercharacter theoretic Artin conjecture, introduced by Wong

(see [16]), which states that L(s, σX) are holomorphic in C \ {1} for each X ∈ X .

We say that G is C-quasi-monomial if for each X ∈ X , there exist some subgroups

H1, . . . , Ht of G and some linear characters λ1, . . . , λt such that λ
G
1 + . . .+λGt = dσX ,

see Definition 3.3. We prove that the class of C-quasi-monomial groups is closed un-

der factorization and taking direct products, see Theorems 3.6 and 3.8. In Proposi-

tion 4.1, we note that a C-quasi-monomial group satisfies the supercharacter theoretic

Artin conjecture.

We say that G is C-almost monomial if for any k 6= l, there exist some sub-

groups H1, . . . , Ht 6 G and linear characters λ1, . . . , λt of H1, . . . , Ht such that:

λG1 + . . . + λGt =
m∑
i=1

αiσXi
, where αi > 0 are integers with αk > 0 and αl = 0, see

Definition 3.9. We prove that the class of C-almost monomial groups is closed under

factorization and taking direct products, see Theorems 3.14 and 3.15.

Let F1 := L(s, σX1
), . . . , Fm := L(s, σXm

) and let Hol(C, s0) be the semigroup of

the functions of the form F := F a11 . . . F amm , where ai > 0 are integers which are

holomorphic at s0. In Theorem 4.3, we prove that if G is C-almost monomial, then

the supercharacter theoretic Artin conjecture holds at s0 if and only if Hol(C, s0) is

factorial. Also, in Theorem 4.4, we prove that if G is C-almost monomial and s0
is not a common zero for any two distinct L-functions Fl and Fk, where k 6= l ∈

{1, . . . ,m}, then the supercharacter theoretic Artin conjecture holds at s0. These

results generalize the aforementioned results on almost-monomial groups.
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2. Preliminaries

We recall that a finite group G is monomial (or an M-group) if for any χ ∈ Irr(G)

there exists a subgroup H 6 G and a linear character λ of H such that λG = χ. Any

Abelian group G is monomial, since all the irreducible characters of G are linear, but

the converse is not true. According to Taketa’s Theorem (see [15]), every monomial

group is solvable, but there are solvable groups which are not monomial, the smallest

example being SL(2, 3). A slight generalization of monomial groups is the following:

Definition 2.1. A finite group G is called quasi-monomial (or an QM-group)

if for any χ ∈ Irr(G) there exists a subgroup H 6 G and a linear character λ of H

such that λG = dχ, where d is a positive integer.

It is not known if there are quasi-monomial groups which are not monomial.

For a character ψ of G, we denote by Cons(ψ) the set of constituents of ψ. We

recall the following definition, which generalizes quasi-monomial groups:

Definition 2.2 ([14]). A finite groupG is called almost monomial (orAM-group)

if for every two distinct characters χ 6= ψ ∈ Irr(G) there exists a subgroup H of G

and a linear character λ of H such that χ ∈ Cons(λG) and ψ /∈ Cons(λG).

An important class of almost monomial groups are the symmetric groups, Sn,

see [7], Theorem 1.1. If G is an almost monomial group and N E G is a normal

subgroup, then G/N is almost monomial, see [7], Theorem 2.2. Also, if G, G′ are

finite groups, then G × G′ is almost monomial if and only if G and G′ are almost

monomial, see [7], Theorem 2.3.

The following result provides an equivalent form of Definition 2.2 and shows that

there is a kind of “duality” between the notions of quasi-monomial and almost mono-

mial groups.

Proposition 2.3. Let G be a finite group and assume that Irr(G) = {χ1, . . . , χr}.

Then, the following are equivalent:

(1) G is almost monomial.

(2) For any k ∈ {1, . . . , r}, there exist some subgroups H1, . . . , Hm of G and some

linear characters λ1, . . . , λm of H1, . . . , Hm such that:

Cons(λG1 + . . .+ λGm) = Irr(G) \ {χk}.

P r o o f. (1) ⇒ (2). Without loss of generality, we can assume that k = r. Ac-

cording to Definition 2.2, for any 1 6 j 6 r−1 =: m, there exists a subgroup Hj 6 G

and a linear character λj of Hj such that χj ∈ Cons(λGj ) and χr /∈ Cons(λGj ). It

follows that Cons(λG1 + . . .+ λGm) = {χ1, . . . , χr−1}, as required.
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(2) ⇒ (1). We fix 1 6 i, k 6 r with k 6= i and assume Condition (2) is satisfied

for k. It follows that there exists 1 6 j 6 m such that χi ∈ Cons(λGj ). On the other

hand, χk /∈ Cons(λGj ), hence G is almost monomial. �

Example 2.4. Let A5 be the alternating group of order 5. Since A5 is a simple

non-Abelian group, it is not solvable. Therefore, A5 is not monomial. However, A5 is

almost monomial: We have that Irr(A5) = {χ1, χ2, χ3, χ4, χ5}, where χ1 is the trivial

character, χ2 and χ3 are conjugated characters of degree 3, χ4 has degree 4 and χ5

has degree 5. Obviously, χ1 is linear. Also, one can check that χ5 is monomial.

Let H = 〈(12345)〉 ⊂ A5, which is isomorphic to the cyclic group of order 5. The

characters induced from the irreducible (linear) characters ofH are χ1+χ2+χ3+χ5,

χ2 + χ4 + χ5 and χ3 + χ4 + χ5.

Let U = 〈(12)(45), (345)〉 ⊂ A5, which is isomorphic to S3. Let ψ : U → {±1} be

the sign function on U , which is a linear character. We have that ψA5 = χ2+χ3+χ4.

From Proposition 2.3 it follows that A5 is almost monomial.

Let K/Q be a finite Galois extension. For the character χ of a representation of
the Galois group G := Gal(K/Q) on a finite-dimensional complex vector space, let

L(s, χ) := L(s, χ,K/Q) be the corresponding Artin L-function, see [3], page 296.

Artin conjectured that L(s, χ) is holomorphic in C \ {1}. Brauer proved that L(s, χ)

is meromorphic in C. Let χ1, . . . , χr be the irreducible characters of G, and f1 =

L(s, χ1), . . . , fr = L(s, χr) the corresponding Artin L-functions.

For two characters ϕ and ψ of G, L(s, ϕ + ψ) = L(s, ϕ) · L(s, ψ), so the set

of L-functions corresponding to all characters of G is a multiplicative semigroup,

denoted by Ar.

Since any character of G is a linear combination with positive integer coefficients

of irreducible characters, the semigroup Ar is generated by f1, . . . , fr, that is

Ar := {fk11 · . . . · fkrr : k1 > 0, . . . , kr > 0}.

Since f1, . . . , fr are multiplicatively independent, see [2], Satz 5, page 106, it follows

that Ar is factorial of rank r; in other words, Ar is isomorphic to Zr>0. Moreoever,

Nicolae in [12] proved that f1, . . . , fr are algebraically independent over C, a result
extended later in [6], where it was proved that f1, . . . , fr are algebraically independent

over the field of meromorphic functions of order < 1.

For s0 ∈ C, s0 6= 1 let Hol(s0) be the subsemigroup of Ar consisting of the

L-functions which are holomorphic at s0. Nicolae in [13] proved that Hol(s0) is

an affine subsemigroup of Ar, isomorphic to an affine subsemigroup of Zr>0. Artin’s

conjecture at s0 can be stated as: Hol(s0) = Ar. We end this section by recalling

the following results:
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Theorem 2.5 ([14]). If G = Gal(K/Q) is almost monomial and s0 ∈ C \ {1},

then the following assertions are equivalent:

(1) Artin’s conjecture is true at s0 : Hol(s0) = Ar .

(2) The semigroup Hol(s0) is factorial.

Theorem 2.6 ([7]). If G = Gal(K/Q) is almost monomial, and s0 is not a com-

mon zero for any two distinct L-functions fk and fl, then all Artin L-functions

of K/Q are holomorphic at s0.

3. Supercharacter theoretic quasi and almost monomial groups

Diaconis and Isaacs in [8] introduced the theory of supercharacters as follows:

Definition 3.1. Let G be a finite group. Let K be a partition of G and let X

be a partition of Irr(G). The ordered pair C := (X ,K) is a supercharacter theory if:

(1) {1} ∈ K,

(2) |X | = |K|, and

(3) for each X ∈ X , the character σX =
∑
ψ∈X

ψ(1)ψ is constant on each K ∈ K.

The characters σX are called supercharacters, and the elements K in K are called

superclasses. We denote by Sup(G) the set of supercharacter theories of G.

Diaconis and Isaacs showed that their theory enjoys properties similar to the

classical character theory. For example, every superclass is a union of conjugacy

classes in G, see [8], Theorem 2.2. The irreducible characters and conjugacy classes

of G give a supercharacter theory of G, which will be referred to as the classical

theory of G.

Also, as noted in [8], every group G admits a non-classical theory with only two

supercharacters 1G and Reg(G) − 1G and superclasses {1} and G \ {1}, where 1G
denotes the trivial character of G and

Reg(G) =
∑

χ∈Irr(G)

χ(1)χ

is the regular character of G. This theory will be called the maximal theory of G.

Let C = (X ,K) and C′ = (X ′,K′) be two supercharacter theories of G. We write

X � X ′ if every X ∈ X is a subset of some X ′ ∈ X ′. This is equivalent to saying

that any X ′ ∈ X ′ is a union of parts of X . According to [10], Corollary 3.4, X � X ′

if and only if K � K′.

Definition 3.2 ([10], Definition 3.4). We say that C � C′ if X � X ′.
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The set (Sup(G),�) forms a poset with the minimal element being the classical

theory of G and the maximal element being the maximal theory of G.

We introduce the following generalization of Definition 2.1:

Definition 3.3. Let G be a finite group and let C := (X ,K) be a superchar-

acter theory on G. Assume that X = {X1, . . . , Xm}. We say that G is C-quasi-

monomial (or a C-QM-group), if for any k ∈ {1, . . . ,m}, there exists some sub-

groups H1, . . . , Ht 6 G (not necessarily distinct) and linear characters λ1, . . . , λt

of H1, . . . , Ht such that:

λG1 + . . .+ λGt = dσXk
,

where d is a positive integer.

Proposition 3.4. Let G be a finite group. Then the following hold:

(1) If (X ,K) is the classical theory of G, then G is quasi-monomial in the sense of

Definition 2.1 if and only if G is C-quasi-monomial in the sense of Definition 3.3.

(2) If C,C′ ∈ Sup(G) with C � C′ and G is C-quasi-monomial, then G is C′-quasi-

monomial.

(3) If C is the maximal theory of G, then G is C-quasi-monomial.

P r o o f. (1) and (2) are obvious.

(3) According to the Aramata-Brauer Theorem (see [1] and [4]) Reg(G)− 1G can

be written as a positive rational linear combination of induced linear characters. It

follows that there exist some subgroups H1, . . . , Ht 6 G (not necessarily distinct)

and linear characters λ1, . . . , λt of H1, . . . , Ht such that

λG1 + . . .+ λGt = d(Reg(G)− 1G),

where d is a positive integer. On the other hand, (1G)
G = 1G. Thus, we get the

required result. �

Let G be a finite group and let N E G be a normal subgroup of G. It is well

known that Irr(G/N) is in bijection with the set

{χ ∈ Irr(G) : N ⊂ Ker(χ)}.

For a character χ̃ ∈ Irr(G/N), we denote by χ the corresponding character in Irr(G),

that is χ(g) := χ̃(ĝ) for all g ∈ G, where ĝ is the class of g in G/N .

Lemma 3.5. Let G be a finite group, H 6 G a subgroup and N E G a normal

subgroup. Let λ be a linear character of H such that N ⊂ Ker(λG). Then:

(1) H∩N ⊂ Ker(λ), hence λ̃ : HN/N → C∗, λ̃(hN) := λ(h)N , is a linear character

of HN/N .

(2) For any character χ of G with N ⊂ Ker(χ), we have that 〈λ̃G/N , χ̃〉 = 〈λG, χ〉.
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P r o o f. (1) We assume that H ∩ N * Ker(λ). Then λH∩N is a nontrivial lin-

ear character of H ∩ N . On the other hand, since N ⊂ Ker(λG), it follows that

(λG)H∩N = |G : H |1H∩N . Therefore, by Frobenius reciprocity, we have that:

(3.1) 〈(λH∩N )H , (λG)H〉 = 〈λH∩N , (λ
G)H∩N 〉 = 0.

On the other hand, we have that:

(3.2) 〈(λH∩N )H , λ〉 = 〈λH∩N , λH∩N 〉 = 1.

From (3.1) and (3.2) it follows that

0 = 〈λ, (λG)H〉 = 〈λG, λG〉,

and we get a contradiction.

(2) By Frobenius reciprocity, we have that:

〈λ̃G/N , χ̃〉 = 〈λ̃, χ̃|HN/N 〉 =
|H ∩N |

|H |

∑

h̃∈HN/N

λ̃(h̃)χ̃(h̃) =
1

|H |

∑

h∈H

λ(h)χ(h)

= 〈λ, χH〉 = 〈λG, χ〉,

hence, we are done. �

Let G be a finite group and let C := (X ,K) be a supercharacter theory of G. Let

N E G be a normal subgroup of G. The group N is called C-normal or supernormal

if N is a union of superclasses from C, see [10] and [11]. Let X ∈ X . By abuse of

notation, we write X ⊂ Irr(G/N) if N ⊂ Ker(χ) for all χ ∈ X . If X ⊂ Irr(G/N), we

denote X̃ = {χ̃ : χ ∈ X}. Let K ∈ K. We denote K̃ := KN/N ⊂ G/N .

Now, assume that N is C-normal. Without loss of generality, we can assume

that Xi ⊂ Irr(G/N) for 1 6 i 6 p and Xi ( Irr(G/N) for p + 1 6 i 6 m. Let

X̃ := {X̃1, . . . , X̃p} and K̃ := {K̃1, . . . , K̃p}. According to [10], Proposition 6.4, the

pair C̃ := CG/N = (X̃ , K̃) is a supercharacter theory of G/N .

Theorem 3.6. With the above notations, if G is C-quasi-monomial and N E G

is a C-normal subgroup of G, then G/N is CG/N -quasi-monomial.

P r o o f. Let X̃k ∈ X̃ . Since G is C-quasi-monomial, there exist some subgroups

H1, . . . , Ht 6 G and some linear characters λ1, . . . , λt of H1, . . . , Ht such that

λG1 + . . .+ λGt = dσXk
,

where d is a positive integer. We fix an index i with 1 6 i 6 t. Since Cons(λGi ) ⊂ Xk,

and for any χ ∈ Xk, we have N ⊂ Ker(χ), it follows that N ⊂ Ker(λGi ). From
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Lemma 3.5 (1), it follows that Hi ∩ N ⊂ Ker(λi) and thus λ̃i : HiN/N → C∗,

λ̃i(hiN) = λi(hi), is a linear character of the subgroup HiN/N of G/N . From

Lemma 3.5 (2) and straightforward computations, it follows that:

λ̃1
G/N

+ . . .+ λ̃t
G/N

= dσ
X̃k
,

and thus G/N is C-quasi-monomial. �

We recall the following result:

Lemma 3.7 ([10], Proposition 8.1). Let G and G′ be two finite groups and let

C = (X ,K) and C′ = (X ′,K′) be supercharacter theories of G and G′, respectively.

Then C×C′ = (X×X ′,K×K′) is a supercharacter theory of the direct productG×G′.

Theorem 3.8. Let G and G′ be two finite groups and let C = (X ,K) and

C′ = (X ′,K′) be supercharacter theories of G and G′, respectively. Then the follow-

ing are equivalent:

(1) G is C-quasi-monomial and G′ is C′-quasi-monomial.

(2) G×G′ is C × C′-quasi-monomial.

P r o o f. (1) ⇒ (2) Let X ∈ X and X ′ ∈ X ′. From hypothesis, there exist

H1, . . . , Ht 6 G, λ1, . . . , λt, linear characters of H1, . . . , Ht such that

λG1 + . . .+ λGt = dσXk
,

where d > 1 is an integer. Also, there exist H ′
1, . . . , H

′
t′ 6 G′, µ1, . . . , µt′ , linear

characters of H ′
1, . . . , H

′
t′ such that

µG
′

1 + . . .+ µG
′

t′ = d′σX′ ,

where d′ > 1 is an integer. We consider the subgroupsHi×H
′
i′ ofG×G′ and the linear

characters λi × µi′ of Hi ×H ′
i′ , where 1 6 i 6 t and 1 6 i′ 6 t′. A straightforward

computation shows that

t∑

i=1

t′∑

i′=1

(λi × µi′)
G×G′

= dd′σX×X′ ,

thus, G×G′ is C × C′-quasi-monomial.

(2)⇒ (1) The group G′ can be seen as a C×C′-normal subgroup of G×G′, hence,

by Theorem 3.6, it follows that G is C-quasi-monomial. �

We introduce the following generalization of both Definitions 2.2 and 3.3:
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Definition 3.9. Let G be a finite group and let C = (X ,K) be a supercharacter

theory on G. Assume that X = {X1, . . . , Xm}. We say that G is C-almost monomial

if for any k 6= l there exist some subgroups H1, . . . , Ht 6 G (not necessarily distinct)

and linear characters λ1, . . . , λt of H1, . . . , Ht such that:

λG1 + . . .+ λGt =

m∑

i=1

αiσXi
,

where αi > 0 are integers with αk > 0 and αl = 0.

Proposition 3.10. If G is a finite group and C = (X ,K) is the classical theory

on G, then G is C-almost monomial, in the sense of Definition 3.9, if and only if G

is almost monomial in the sense of Definition 2.2.

P r o o f. Assume that Irr(G) = {χ1, . . . , χr}, dj = χj(1) for j ∈ {1, . . . , r}, and

let d = lcm(d1, . . . , dr). If G is almost monomial, then for any k 6= l, there exists

a subgroup H of G and a linear character λ of H such χk ∈ Cons(λG) and χl /∈

Cons(λG). Then

dλG = α1(d1χ1) + . . .+ αr(drχr)

for some integers αj > 0 with αk > 0 and αl = 0.

Conversely, if G is (X ,K)-almost monomial, then there exist H1, . . . , Ht 6 G,

subgroups of G, and linear characters λ1, . . . , λt of H1, . . . , Ht such that:

λG1 + . . .+ λGt = α1(d1χ1) + . . .+ αr(drχr),

where αj > 0 are integers with αk > 0 and αl = 0. In particular, χl /∈ Cons(λGj )

for any j ∈ {1, . . . , r} and there exists j0 ∈ {1, . . . , r} with χk ∈ Cons(λGj0). We

choose H = Hj0 and λ = λj0 and we note that χk ∈ Cons(λG) and χl /∈ Cons(λG).

Thus, G is almost monomial. �

The following result generalizes Proposition 2.3 and its proof is similar to the proof

of Proposition 2.3, so we skip it.

Proposition 3.11. Let G be a finite group and let C = (X ,K) be a superchar-

acter theory on G, where X = {X1, . . . , Xm}. Then the following are equivalent:

(1) G is C-almost monomial.

(2) For any k ∈ {1, . . . ,m}, there exist some subgroups H1, . . . , Hs of G and some

linear characters λ1, . . . , λs of H1, . . . , Hs such that:

λG1 + . . .+ λGm = α1σX1
+ . . .+ αk−1σXk−1

+ αk+1σXk−1
+ . . .+ αmσXm

,

where αi > 0 are some integers.
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For a finite group G, we may ask if C,C′ ∈ Sup(G) with C � C′ and G is

C-almost monomial then G is C′-almost monomial also, as in the quasi-monomial

case, see Proposition 3.4 (2). The following example shows that this phenomenon is

not always true:

Example 3.12. Let G = SL(2, 3) be the special linear group of degree two over

a field of three elements. It is well known that G is solvable, but it is not monomial.

However, G is almost monomial. The group G has 7 irreducible characters: χ1 = 1G,

χ2, χ3 are linear, χ4, χ5, χ6 have the degree 2 and χ7 has the degree 3. The characters

χ1, χ2, χ3 and χ7 are monomial, but χ4, χ5 and χ6 are not. Also, χ5 = χ2χ4 and

χ6 = χ3χ4. Moreover, χ45 := χ4 + χ5, χ46 := χ4 + χ6 and χ456 := χ4 + χ5 + χ6 are

monomial, and any monomial character of G is a positive linear combination of χ1,

χ2, χ3, χ7, χ45, χ46 and χ456. We let:

X := {X1 := {χ1}, X2 := {χ2, χ3}, X3 := {χ4}, X4 := {χ5, χ6}, X5 := {χ7}}.

One can easily check that there exists a partition K of G such that C = (X ,K) is

a supercharacter theory ofG (K is the set of classes for the equivalence relation g ∼ g′

if and only if σXi
(g) = σXj

(g′) for all 1 6 i, j 6 5).

We claim that G is not C-almost monomial. Indeed, we cannot find subgroups

H1, . . . , Ht and linear characters λ1, . . . , λt of H1, . . . , Ht such that

λG1 + . . .+ λGt = α1σX1
+ α2σX2

+ α3σX3
+ α5σX5

,

with α3 > 0, since for any H 6 G and λ ∈ Lin(H) with χ4 ∈ Cons(λG), one

has χ5 ∈ Cons(λG) or χ6 ∈ Cons(λG). Contradiction by Proposition 3.11.

We let: X ′ := {X ′
1 := {χ1}, X

′
2 := {χ2, χ3}, X

′
3 := {χ4, χ5, χ6}, X

′
4 := {χ7}}.

Then, there exists a partition K′ of G such that C′ = (X ′,K′) is a supercharacter

theory of G. Since χ1, χ2, χ3, χ456 and χ7 are monomial, it follows that G is

C′-quasi-monomial.

Lemma 3.13. Let G be a finite group, H 6 G a subgroup and N E G a normal

subgroup. Let λ be a linear character of H and χ an irreducible character of G with

N ⊆ Ker(χ). If H ∩N * Ker(λ), then χ /∈ Cons(λG).

P r o o f. Since H ∩N * Ker(λ), it follows that λH∩N is a nontrivial linear char-

acter of H ∩N . Since N ⊆ Ker(χ), it follows that χH∩N = χ(1)1H∩N . Therefore,

(3.3) 0 = 〈λH∩N , χH∩N 〉 = 〈(λH∩N )H , χH〉.

Since λ ∈ Cons((λH∩N )H), from (3.3) it follows that

0 = 〈λ, χH〉 = 〈λG, χ〉,

thus, χ /∈ Cons(λG), as required. �
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The following result generalizes Theorem 2.2 of [7] and Theorem 3.6:

Theorem 3.14. Let G be a finite group and let C = (X ,K) be a supercharacter

theory of G. Let N E G be a C-normal subgroup of G. If G is C-almost monomial,

then G/N is CG/N -almost monomial.

P r o o f. Let X̃k ∈ X̃ . Since G is C-almost monomial, from Proposition 3.11, it

follows that there exist some subgroups H1, . . . , Hs 6 G and some linear characters

λ1, . . . , λs of H1, . . . , Hs such that

λG1 + . . .+ λGs = α1σX1
+ . . .+ αk−1σXk−1

+ αk+1σXk+1
+ . . .+ αmσXm

,

where αi > 0 are some integers.

Without loss of generality, from Lemma 3.13, we can assume that there exists

1 6 t 6 s such that Hi ∩N ⊆ Ker(λj) for all 1 6 j 6 t and Hi ∩N * Ker(λj) for all

t+1 6 j 6 s. From Lemma 3.5 (2), we can define the linear characters λ̃j of HjN/N

for 1 6 j 6 t, and, applying Lemma 3.13, we have:

λ̃1
G
+ . . .+ λ̃s

G
= α1σX̃1

+ . . .+ αk−1σX̃k−1

+ αk+1σX̃k+1

+ . . .+ αpσX̃p
,

and thus G/N is CG/N -almost monomial. �

The following result generalizes Theorem 2.3 of [7] and Theorem 3.8:

Theorem 3.15. Let G and G′ be two finite groups and let C = (X ,K) and

C′ = (X ′,K′) be supercharacter theories of G and G′, respectively. Then the follow-

ing are equivalent:

(1) G is C-almost monomial and G′ is C′-almost monomial.

(2) G×G′ is C × C′-almost monomial.

P r o o f. (1) ⇒ (2). Assume that X = {X1, . . . , Xm} and X ′ = {X ′
1, . . . , X

′
m′}.

We fix

(k, k′) ∈ {1, . . . ,m} × {1, . . . ,m′}.

Since G is C-almost monomial, from Proposition 3.11 it follows that there exist

some subgroups H1, . . . , Hs of G, some linear characters λ1, . . . , λs of H1, . . . , Hs,

and some positive integers αi such that:

(3.4) λG1 + . . .+ λGs = α1σX1
+ . . .+ αk−1σXk−1

+ αk+1σXk+1
+ . . .+ αmσXm

.

Similarly, there exists some subgroups H ′
1, . . . , H

′
s′ of G

′, some linear characters

λ1, . . . , λs′ of H
′
1, . . . , H

′
s′ , and some positive integers α

′
i such that:

(3.5) λ′G
′

1 + . . .+ λ′G
′

s′ = α′
1σX′

1
+ . . .+ α′

k′−1σX′

k′
−1

+ α′
k′+1σX′

k′+1
+ . . .+ αmσX′

m
.
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If 1 is the unique character of the trivial subgroup ofG, and 1′ is the unique character

of the trivial subgroup of G′, then

(3.6) 1
G = Reg(G) = σX1

+ . . .+ σXm
, 1

′G′

= Reg(G′) = σX′

1
+ . . .+ σX′

m′
.

By straightforward computations, from (3.4), (3.5) and (3.6), it follows that:

(λ1 × 1G′)G×G′

+ . . .+ (λs × 1G′)G×G′

+ (1G × λ′1)
G×G′

+ . . .+ (1G × λ′s′)
G×G′

=

m∑

i=1

m′∑

i′=1,
i′ 6=k′

αi′σXi×X′

i′
+

m∑

i=1,
i6=k

m′∑

i′=1

αiσXi×X′

i′
=

m∑

i=1

m′∑

i′=1

aii′σXi×X′

i′
.

Note that aii′ > 0 for all (i, i′) ∈ {1, . . . ,m} × {1, . . . ,m′} with (i, i′) 6= (k, k′) and

akk′ = 0. Therefore, from Proposition 3.11, it follows that G ×G′ is C × C′-almost

monomial.

(2) ⇒ (1). Follows from Theorem 3.14, using a similar argument as in the proof

of Theorem 3.8. �

4. Supercharacter theoretic Artin conjecture

Let G be a finite group. Let C = (X ,K) ∈ Sup(G) be a supercharacter theory ofG.

We consider the multiplicative semigroup Ar(C) generated by {L(s, σX) : X ∈ X}.

Obviously, Ar(C) is a subsemigroup of Ar. Also, we consider

Hol(C, s0) = Hol(s0) ∩ Ar(C),

the semigroup of the L-functions associated to C, which are holomorphic at s0.

Assume that X = {X1, . . . , Xm}. For 1 6 i 6 m, we have that:

Fi := L(s, σXi
) =

∏

χj∈Xi

f
dj
j ,

where dj := χj(1), 1 6 j 6 r. The semigroup Ar(C) is generated by F1, . . . , Fm.

It follows that F1, . . . , Fm are also multiplicatively independent, hence the semi-

group Ar(C) is factorial of rank m, i.e., it is isomorphic to Zm>0.

For 1 6 i 6 m, let li = ords0(Fi), where ords0(Fi) denotes the order of the

meromorphic function Fi at s0. We have that:

Hol(C, s0) = {F a11 . . . F amm : a1l1 + . . .+ amlm > 0}.

Hence, by Gordan’s lemma, see for instance [5], Lemma 2.9, the semigroup Hol(C, s0)

is finitely generated. See also the proof of Theorem 1 of [13].

The supercharacter-theoretic variant of Artin’s conjecture (or C-Artin conjecture)

at s0, see [16], Conjecture 1, can be stated as: Hol(C, s0) = Ar(C).
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Proposition 4.1. Let G be a finite group which is C-quasi-monomial. Then G

satisfies the C-Artin conjecture for every s0 ∈ C \ {1}.

P r o o f. Since G is C-quasi-monomial, for any k ∈ {1, . . . ,m}, there exist some

subgroups H1, . . . , Ht 6 G and linear characters λ1, . . . , λt of H1, . . . , Ht such that:

λG1 + . . .+ λGt = dσXk
,

where d is a positive integer. It follows that

F dk =
t∏

i=1

L(λGi , s)

is holomorphic at s0, hence Fk is holomorphic at s0. �

Remark 4.2. If G = Gal(K/Q) is equipped with the maximal theory C, then,

according to Proposition 3.4 (2), G is C-quasi-monomial. Hence, from Proposi-

tion 4.1, it follows that G satisfies the C-Artin conjecture at s0. Note that the Artin

L-functions attached to supercharacters with respect to the maximal theory are:

L(s, 1G) = ζ(s) and L(s,Reg(G)− 1G) = ζK(s)/ζ(s).

By a result of Aramata and Brauer (see [4]), we know that ζK(s)/ζ(s) is holomorphic

at s0 and, of course, the Riemann-zeta function ζ(s) is holomorphic on C \ {1}.

The following result generalizes Theorem 2.5:

Theorem 4.3. Let G = Gal(K/Q), let C = (X ,K) be a supercharacter theory

of G, and let s0 ∈ C \ {1}. If G is C-almost monomial, then the following are

equivalent:

(1) The supercharacter theoretic Artin conjecture is true at s0: Hol(C, s0) = Ar(C).

(2) The semigroup Hol(C, s0) is factorial.

P r o o f. (1) ⇒ (2) Since the semigroup Ar(C) is factorial, there is nothing to

prove.

(2) ⇒ (1) Suppose that the supercharacter theoretic Artin conjecture at s0 is not

true. Then, there exists 1 6 k 6 m such that

(4.1) ords0(Fk) < 0.

The Dedekind zeta function ζK of K can be decomposed as

(4.2) ζK =

r∏

i=1

fdii = F1 . . . Fm.

Since ζK is holomorphic in C \ {1}, it follows that

(4.3) ords0(ζk) > 0.
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From (4.1), (4.2) and (4.3) it follows that there exists l ∈ {1, . . . ,m} such that

ords0(Fl) > 0. For i ∈ {1, . . . ,m}, let ni := min{t : t > 0 and ords0(F
t
l Fi) > 0}.

Since f1, . . . , fr are multiplicatively independent, the functions F
n1

l F1, . . . , F
nm

l Fm
are irreducible in Hol(C, s0). The Hilbert basis H of Hol(C, s0) is the uniquely

determined minimal system of generators of Hol(C, s0), hence Hol(C, s0) is factorial

if and only if H has m elements. It follows that H = {Fn1

l F1, . . . , F
nm

l Fm}.

From (4.1) it follows that nk > 0. Since G is C-almost monomial, there exist some

subgroups H1, . . . , Ht of G and linear characters λ1, . . . , λt of H1, . . . , Ht such that

(4.4) λG1 + . . .+ λGt = α1σX1
+ . . .+ αmσXm

,

where αi > 0 are integers, αk > 0 and αl = 0. By Class Field Theory, for any

i ∈ {1, . . . , n}, the Artin L-function L(s, λGi ) is a Hecke L-function, so it is holomor-

phic at s0. Hence, the function

(4.5) F :=

t∏

i=1

L(s, λGi ) = L(s, λG1 + . . .+ λGt ),

is holomorphic at s0.

From (4.4) and (4.5) it follows that F = Fα1

1 . . . Fαm
m ∈ Hol(C, s0). Since αk > 0

and αl = 0 this contradicts the fact that F is a product of elements of H. �

The following result generalizes Theorem 2.6:

Theorem 4.4. Let G = Gal(K/Q) and let C = (X ,K) be a supercharacter

theory of G with X = {X1, . . . , Xm}. If G is C-almost monomial and s0 is not

a common zero for any two distinct L-functions L(s, σXl
) and L(s, σXk

), where

k 6= l ∈ {1, . . . ,m}, then all Artin L-functions from Ar(C) are holomorphic at s0,

i.e., the supercharacter theoretic Artin conjecture is true at s0.

P r o o f. We assume that s0 is a pole of Fj , that is, ords0(Fj) < 0. Since the

Dedekind zeta function ζK = F1 . . . Fm is holomorphic at s0, there is an index k 6= j

such that Fk(s0) = 0. Since G is C-almost monomial, there exist some subgroups

H1, . . . , Ht 6 G and λ1, . . . , λt some linear characters on H1, . . . , Ht such that

λG1 + . . .+ λGt = α1σX1
+ . . .+ αmσXm

,

with αj > 0 and αk = 0. The L-function

L(s, λG1 + . . .+ λGt ) = Fα1

1 . . . F
αk−1

k−1 · F
αk+1

k+1 . . . Fαm

m ,

is holomorphic at s0. Since αj > 0 and ords0(Fj) < 0, it follows that there exists

some index l /∈ {j, k} such that Fl(s0) = 0, which contradicts the hypothesis. �
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