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Abstract. A version of the John-Nirenberg inequality suitable for the functions b ∈ BMO
with b− ∈ L∞ is established. Then, equivalent definitions of this space via the norm
of weighted Lebesgue space are given. As an application, some characterizations of this
function space are given by the weighted boundedness of the commutator with the Hardy-
Littlewood maximal operator.
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1. Introduction

The bounded mean oscillation space (BMO) was introduced by John and Niren-

berg in 1961 (see [10]), it is defined by the semi-norm

‖b‖BMO = sup
Q

1

|Q|

∫

Q

|b(x)− bQ| dx < ∞,

where bQ = (1/|Q|)
∫

Q
b(x) dx. The authors also established the John-Nirenberg in-

equality for a BMO function as follows. If b ∈ BMO, there exist positive constants a1
and a2 such that for any cube Q and t > 0, we get

|{x ∈ Q : |b(x)− bQ| > t}| 6 a1e
−a2t/‖b‖BMO |Q|.
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Subsequently, the theory of BMO has received wide attention. It is known that

functions in a Sobolev space with critical exponent are embedded into the space

of functions of bounded mean oscillation, and therefore satisfy the John-Nirenberg

inequality and a corresponding exponential integrability estimate. In 2020, Martínez

and Spector in [11] established an improvement to the John-Nirenberg inequality

for functions in critical Sobolev spaces. Moreover, in the theory of boundedness of

commutators, many results show that BMO function is the right set, see [3], [4],

[5], [9]. The foundational paper of Coifman, Rochberg and Weiss (see [5]) proved

that the commutator [b, T ](f) = bT (f)−T (bf) is bounded on some Lebesgue spaces

if and only if b belongs to BMO, where T is the Riesz transform. The theory was

then generalized and extended in several directions. For instance, Janson in [9]

extended the result to the commutators of Calderón-Zygmund operators with smooth

homogeneous kernels; Bloom in [3] investigated the same result in the two-weight

case; and Uchiyama in [14] extended the boundedness result to compactness.

On the other hand, Bastero, Milman and Ruiz in 2000 (see [1]) studied the class

of functions for which the commutator with the Hardy-Littlewood maximal func-

tion [b,M ] is bounded on the Lebesgue space, where

M(f)(x) = sup
x∈Q

1

|Q|

∫

Q

|f(y)| dy.

It is proved that the commutator [b,M ](f)(x) = b(x)M(f)(x)−M(bf)(x) is bounded

on Lp, 1 < p < ∞, if and only if b ∈ BMO with b− ∈ L∞, where b−(x) =

−min{b(x), 0}. They also showed that b ∈ BMO with b− ∈ L∞ if and only if

‖b‖BMO−

p
= sup

Q

(

1

|Q|

∫

Q

|b(x)−MQ(b)(x)|
p dx

)1/p

< ∞,

where

MQ(b)(x) = sup
Q⊇Q′∋x

1

|Q′|

∫

Q′

|b(y)| dy.

Here, 1 6 p < ∞, and, for brevity, we put BMO− = BMO−
1 .

An interesting question arises: can we establish the John-Nirenberg inequality

suitable for those functions b ∈ BMO with b− ∈ L∞? In this paper, we will give

a positive answer as follows.

Theorem 1.1. Suppose that ‖b‖BMO− = 1, then for any cube Q and t > 0, we

have

|{x ∈ Q : |b(x)−MQ(b)(x)| > t}| 6 c1e
−c2t|Q|,

where c1 and c2 are positive constants.

1122



As an application, some characterizations of this function class will be given.

We first recall the definition of the Muckenhoupt class. For a nonnegative locally

integrable function ω on R
n, if it satisfies the condition

sup
Q

1

|Q|

∫

Q

ω(x) dx

(

1

|Q|

∫

Q

ω(x)−p′/p dx

)p−1

< ∞, 1 < p < ∞,

then the function ω is in the Muckenhoupt Ap class, see [12]. And ω belongs to the

class A1 if
1

|Q|

∫

Q

ω(x) dx
(

ess sup
x∈Q

ω(x)−1
)

< ∞.

We write A∞ =
⋃

16p<∞

Ap. For a nonnegative locally integrable function ω on R
n,

ω is in the Muckenhoupt Ap,q class if

sup
Q

(

1

|Q|

∫

Q

ω(x)q dx

)1/q(
1

|Q|

∫

Q

ω(x)−p′

dx

)1/p′

< ∞, 1 < p, q < ∞.

From Theorem 1.1, it follows that BMO−
p spaces are independent of the scale

p ∈ (1,∞) in the sense of norm. We further consider the characterization connections

with the weighted Lebesgue spaces. In 1975, Muckenhoupt and Wheeden in [13]

proved that for all ω-locally integrable functions b such that

‖b‖BMOω
= sup

Q

1

ω(Q)

∫

Q

|b(x)− bω,Q|ω(x) dx < ∞,

where

ω ∈ A∞, ω(Q) =

∫

Q

ω(x) dx and bω,Q =
1

ω(Q)

∫

Q

b(x)ω(x) dx,

BMO = BMOω and ‖b‖BMO ≈ ‖b‖BMOω
.

Specifically, Ho in [7] also proved that

‖b‖BMO ≈ sup
Q

(

1

ω(Q)

∫

Q

|b(x)− bQ|
pω(x) dx

)1/p

< ∞.

Furthermore, Wang, Zhou and Teng in [17] proved a similar result in terms of Ap,q

weights. Inspired by the results above, we obtain the following conclusions.

Theorem 1.2. Let 1 < p < ∞ and ω ∈ Ap. Then b ∈ BMO− if and only if there

exists a constant C > 0 such that for any Q,

1

ω(Q)

∫

Q

|b(x)−MQ(b)(x)|
pω(x) dx 6 C.
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Theorem 1.3. Let 1 < p < q < ∞ and ω ∈ Ap,q. Then b ∈ BMO− if and only if

there exists a constant C > 0 such that for any Q,

(
∫

Q

|b(x)−MQ(b)(x)|
qω(x)q dx

)1/q

6 C|Q|1/q−1/p

(
∫

Q

ω(x)p dx

)1/p

.

In fact, in the definition of BMO− space, the (weighted) Lebesgue spaces can

be replaced by variable Lebesgue spaces (see [15], [16]) or a ball Banach function

space X , see [7], [8]. We leave the details to the interested reader.

Finally, applying Theorem 1.2, we can characterize BMO− by the boundedness of

commutators on weighted Lebesgue spaces.

Theorem 1.4. Let 1 < p < ∞ and ω ∈ Ap. Then, the following are equivalent:

(1) b ∈ BMO−;

(2) [b,M ] is a bounded operator from Lp(ω) to Lp(ω).

In this paper, we write A . B if A 6 CB for some constant C that can depend on

the dimension, Lebesgue exponents, weight constants, and on various other constants

appearing in the assumptions. In the above we do not track the dependence on the

weight constants and we encourage the interested readers to do so.

2. Main lemma and proof of Theorem 1.1

Before proceeding with the proof of Theorem 1.1, we recall the following result.

For a fixed cube Q, the BMO seminorm relative to Q is defined by

‖b‖BMO(Q) = sup
Q′⊂Q

1

|Q′|

∫

Q′

|b(x)− bQ′ | dx.

Bennett, Devore and Sharpley in [2], Theorem 4.2, showed that there exists some

C0 > 0 such that for all b ∈ BMO(Q),

(2.1) ‖MQ(b)‖BMO(Q) 6 C0‖b‖BMO(Q).

In order to prove the John-Nirenberg inequality suitable for a BMO− function,

we need the following auxiliary lemma. The approach to this part is similar to that

in [6] but we need to carefully use the properties of the local maximal function MQ.

Lemma 2.1. Suppose that ‖b‖BMO− = 1, then for any cube Q and t > 0, we

have

|{x ∈ Q : |b(x)− (MQ(b))Q| > t}| 6 b1e
−b2t|Q|,

where b1 and b2 are positive constants.
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P r o o f. Let t > 0 and Q be a fixed cube. Then

0 6 (MQ(b))Q − bQ 6 ‖b‖BMO− = 1,

which implies that (MQ(b))Q is a well-defined constant depending on Q and b. Mean-

while, it follows from Proposition 4 in [1] and the assumption that ‖b‖BMO− = 1,

that ‖b‖BMO 6 2, and the inequality (2.1) gives

(2.2)

∫

Q

|b(x)− (MQ(b))Q| dx 6

∫

Q

|b(x) −MQ(b)(x)| dx

+

∫

Q

|MQ(b)(x) − (MQ(b))Q| dx

6 ‖b‖BMO− |Q|+ ‖MQ(b)‖BMO(Q)|Q|

6 (1 + 2C0)|Q|.

We write EQ = {x ∈ Q : |b(x) − (MQ(b))Q| > t}, then

|EQ| 6

∫

EQ

|b(x)− (MQ(b))Q|

t
dx 6

(1 + 2C0)|Q|

t
.

Write F1(t) = (1 + 2C0)/t, then |EQ| 6 F1(t)|Q|.

For a fixed s > 1 + 2C0, applying the Calderón-Zygmund decomposition to

|b(x) − (MQ(b))Q|, we obtain countably many disjoint cubes {Qj} such that

Qj ⊂ Q and

(i) s < (1/|Qj|)
∫

Qj
|b(x)− (MQ(b))Q| dx 6 2ns;

(ii) |b(x)− (MQ(b))Q| 6 s for almost every x ∈ Q \
⋃

j

Qj .

Therefore, by (i), we have

|(MQj
(b))Qj

− (MQ(b))Q| =
1

|Qj |

∫

Qj

|MQj
(b)(y)− (MQ(b))Q| dy

6
1

|Qj |

∫

Qj

|b(y)−MQj
(b)(y)| dy

+
1

|Qj |

∫

Qj

|b(y)− (MQ(b))Q| dy

6 1 + 2ns 6 2n+1s.

We deal with the cases t 6 2n+1s and t > 2n+1s separately.

Case 1 : t 6 2n+1s. Then use the trivial estimate

(2.3) |EQ| 6 |Q| 6 e−te2
n+1s|Q|.
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Case 2 : t > 2n+1s. It follows from (ii) that EQ ⊂
⋃

j

Qj up to a set of measure

zero. From this, (i) and (2.2), it follows that

|EQ| 6
∑

j

|{x ∈ Qj : |b(x)− (MQ(b))Q| > t}|

6
∑

j

|{x ∈ Qj : |b(x)− (MQj
(b))Qj

|+ |(MQj
(b))Qj

− (MQ(b))Q| > t}|

6
∑

j

|{x ∈ Qj : |b(x)− (MQj
(b))Qj

| > t− 2n+1s}|

6
∑

j

F1(t− 2n+1s) · |Qj |

6 F1(t− 2n+1s)
∑

j

1

s

∫

Qj

|b(x)− (MQ(b))Q| dx

6
F1(t− 2n+1s)(1 + 2C0)

s
|Q|.

Put F2(t) = F1(t− 2n+1s)(1 + 2C0)/s, then we have |EQ| 6 F2(t)|Q|.

Continuing this process infinitely, we can obtain for any k > 2, that |EQ| 6

Fk(t)|Q| with

Fk(t) =
Fk−1(t− 2n+1s)(1 + 2C0)

s
=

(1 + 2C0)
k

sk−1(t− (k − 1)2n+1s)
.

We now return to the estimate for |EQ|. For any t > 2n+1s, there exists some

k ∈ N such that

k · 2n+1s < t 6 (k + 1) · 2n+1s,

which shows that

(2.4) |EQ| 6 |{x ∈ Q : |b(x)− (MQ(b))Q| > t}|

6 |{x ∈ Q : |b(x)− (MQ(b))Q| > k · 2n+1s}|

6 Fk(k · 2n+1s)|Q| =
1

2n+1

( s

1 + 2C0

)−k

|Q|

6
s

2n+1(1 + 2C0)
e−(t/2n+1s) ln(s/(1+2C0))|Q|,

since −k 6 1− t/2n+1s.

Combining estimates (2.3) and (2.4), and setting s = e(1 + 2C0), we see that

|{x ∈ Q : |b(x)− (MQ(b))Q| > t}| 6 b1e
−b2t|Q|

for some positive constants b1 and b2, which proves the inequality of Lemma 2.1. �
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We now proceed with the proof of Theorem 1.1.

P r o o f of Theorem 1.1. Let t > 0, Q be a fixed cube and ‖b‖BMO− = 1.

The inequality (2.1) shows that MQ(b) ∈ BMO(Q) with ‖MQ(b)‖BMO(Q) 6 2C0.

Combining the John-Nirenberg inequality applied to MQ(b) on the cube Q with the

result of Bennett, Devore and Sharpley gives

(2.5) |{x ∈ Q : |MQ(b)(x) − (MQ(b))Q| > t}| 6 a1e
−a2/2C0t|Q|.

Let c = max{a1, b1} and c2 = min{a2/2C0, b2}. We arrive at

1

c|Q|
ec2t|{x ∈ Q : |b(x)−MQ(b)(x)| > t}|

6
1

c|Q|
ec2t|{x ∈ Q : |b(x)− (MQ(b))Q| > t}|

+
1

c|Q|
ec2t|{x ∈ Q : |(MQ(b))Q −MQ(b)(x)| > t}|.

By Lemma 2.1 and (2.5), there exist constants c1 = 2c and c2 such that

|{x ∈ Q : |b(x)−MQ(b)(x)| > t}| 6 c1e
−c2t|Q|.

Thus, we have completed the proof of Theorem 1.1. �

3. Proofs of Theorems 1.2 to 1.4

Using the result of Theorem 1.1, we now give the proofs of Theorems 1.2 to 1.4.

P r o o f of Theorem 1.2. Suppose that b ∈ BMO− with ‖b‖BMO− = 1. According

to Theorem 1.1, there are two constants c1, c2 > 0 such that for any cubeQ and λ > 0,

|{x ∈ Q : |b(x)−MQ(b)(x)| > λ}| 6 c1e
−c2λ|Q|.

Since ω ∈ Ap ⊂ A∞, for any measurable set S ⊂ Q there exists a positive constant ε

such that
ω(S)

ω(Q)
.

( |S|

|Q|

)ε

.

This implies that for S = {x ∈ Q : |b(x)−MQ(b)(x)| > λ}, we have

ω({x∈Q : |b(x) −MQ(b)(x)|>λ})

ω(Q)
.
( |{x∈Q : |b(x)−MQ(b)(x)|>λ}|

|Q|

)ε

. e−c2ελ.
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Hence, for any cube Q,

(3.1)
∫

Q

|b(x)−MQ(b)(x)|
pω(x) dx = p

∫ ∞

0

λp−1ω({x ∈ Q : |b(x)−MQ(b)(x)| > λ}) dλ

.

∫ ∞

0

λp−1e−c2ελω(Q) dλ . ω(Q).

Similarly to the proof process in [1], we can obtain that b ∈ BMO with b− ∈ L∞ is

necessary for inequality (3.1) as follows.

Let Q1 = {x ∈ Q : b(x) 6 bQ} and Q2 = Q \Q1. Then
∫

Q1

|b(x) − bQ| dx =

∫

Q2

|b(x)− bQ| dx.

It follows from Hölder’s inequality, (3.1) and ω ∈ Ap that
∫

Q

|b(x) − bQ| dx = 2

∫

Q1

|b(x)− bQ| dx 6 2

∫

Q1

|b(x)−MQ(b)(x)| dx

6 2

(
∫

Q

|b(x)−MQ(b)(x)|
pω(x) dx

)1/p(∫

Q

ω(x)1−p′

dx

)1/p′

.

(
∫

Q

ω(x) dx

)1/p(∫

Q

ω(x)1−p′

dx

)1/p′

. |Q|.

Therefore, we can conclude that b ∈ BMO. Meanwhile,
∫

Q

b−(x) dx 6

∫

Q

|MQ(b)(x) − b(x)| dx

6

(
∫

Q

|b(x)−MQ(b)(x)|
pω(x) dx

)1/p(∫

Q

ω(x)1−p′

dx

)1/p′

.

(
∫

Q

ω(x) dx

)1/p(∫

Q

ω(x)1−p′

dx

)1/p′

. |Q|,

which implies that b− ∈ L∞ by Lebesgue’s differentiation theorem, and the result

follows from here. �

P r o o f of Theorem 1.3. Suppose that ‖b‖BMO− = 1. Since ω ∈ Ap,q, we have

ν = ωq ∈ Aq ⊂ A∞. Then for S = {x ∈ Q : |b(x) − MQ(b)(x)| > λ}, there exists

a positive constant ε such that

ν(S)

ν(Q)
.

( |S|

|Q|

)ε

,

which shows that

ν({x ∈ Q : |b(x)−MQ(b)(x)| > λ}) . e−c2ελν(Q).
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Meanwhile, we conclude that

‖(b−MQ(b))χQ‖
q
Lq(ν) = q

∫ ∞

0

λq−1ν({x ∈ Q : |b(x)−MQ(b)(x)| > λ}) dλ

.

∫ ∞

0

λq−1e−c2ελν(Q) dλ . ν(Q).

By Hölder’s inequality, we arrive at

|Q| 6

(
∫

Q

ω(x)p dx

)1/p(∫

Q

ω(x)−p′

dx

)1/p′

.

It follows from ω ∈ Ap,q that

|Q|1/p−1/q ν(Q)1/q

‖χQ‖Lp(ωp)
6 |Q|1/p−1/q−1

(
∫

Q

ω(x)q dx

)1/q(∫

Q

ω(x)−p′

dx

)1/p′

6

(

1

|Q|

∫

Q

ω(x)q dx

)1/q(
1

|Q|

∫

Q

ω(x)−p′

dx

)1/p′

.

Thus, b ∈ BMO− shows that

‖(b−MQ(b))χQ‖Lq(ωq)

‖χQ‖Lp(ωp)
. |Q|1/q−1/p.

Now let’s show the proof of sufficiency. From the definition of ω ∈ Ap,q, it follows that

∫

Q

|b(x)−MQ(b)(x)| dx 6

(
∫

Q

|b(x)−MQ(b)(x)|
pω(x)p dx

)1/p(∫

Q

ω(x)−p′

dx

)1/p′

6

(
∫

Q

|b(x)−MQ(b)(x)|
qω(x)q dx

)1/q

×

(
∫

Q

ω(x)−p′

dx

)1/p′

|Q|1/p−1/q

6 ‖(b−MQ(b)(x))χQ‖Lq(ωq)

(
∫

Q

ω(x)−p′

dx

)1/p′

|Q|1/p−1/q

.

(
∫

Q

ω(x)−p′

dx

)1/p′
(
∫

Q

ω(x)p dx

)1/p

. |Q|

(

1

|Q|

∫

Q

ω(x)−p′

dx

)1/p′
(

1

|Q|

∫

Q

ω(x)q dx

)1/q

. |Q|.

Therefore, we have completed the proof of Theorem 1.3. �
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P r o o f of Theorem 1.4. We only need to show that b ∈ BMO− is necessary for

the boundedness of the commutator [b,M ] on Lp(ω), since the weighted boundedness

of the commutator [b,M ] had been shown by Zhang in [18]. For the necessity, he

proved only the unweighted case.

Let Q be any fixed cube. For all x ∈ Q, it is obvious to find out that there holds

M(χQ)(x) ≡ 1 and that M(bχQ)(x) = MQ(b)(x). Therefore, we have finished the

proof of the equality

[b,M ](χQ)(x) = b(x)−MQ(b)(x), x ∈ Q.

From the boundedness of [b,M ] from Lp(ω) to Lp(ω), we arrive at

‖(b−MQ(b))χQ‖Lp(ω)

‖χQ‖Lp(ω)
6 ‖[b,M ]‖Lp(ω)→Lp(ω),

which shows that b ∈ BMO− by Theorem 1.2. �

Acknowledgments. We would like to thank the anonymous referee for his/her

comments.
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