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Abstract. We study weighted mixed norm spaces of harmonic functions defined on
smoothly bounded domains in R

n. Our principal result is a characterization of Carleson
measures for these spaces. First, we obtain an equivalence of norms on these spaces. Then
we give a necessary and sufficient condition for the embedding of the weighted harmonic
mixed norm space into the corresponding mixed norm space.
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1. Introduction

Let X be a topological vector space of functions defined on a domain Ω. The prob-

lem of characterizing measures µ on Ω such that X continuously embeds into Lp(µ)

is a classical one. Such measures are called Carleson measures for the space X , the

characterization always involves a geometric condition on µ.

The case of spaces of analytic functions, of one or several complex variables, has

been extensively studied by many authors. We note recent results on the weighted

Bergman spaces with Békollé weights on the unit ball in [14], on the spaces induced

by two-side doubling weights in [11], and on the mixed norm weighted Bergman

spaces on homogeneous Siegel domains in [3].

The case when X consists of harmonic functions has also been studied. For exam-

ple, a Carleson type embedding theorem for weighted Bergman spaces of harmonic

functions on Ω ⊂⊂ R
n can be found in [9]. For results on weighted mixed norm

spaces in R
n+1
+ , see [2].

In this paper, we prove a Carleson type embedding theorem for weighted mixed

norm spaces Bp,q
α (Ω) defined on smoothly bounded domains Ω ⊂⊂ R

n. This scale
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of spaces includes weighted Bergman spaces on Ω. We alert the reader that here we

are looking for embeddings into mixed norm spaces Lp,q(Ω, µ), in distinction with

the usual case of embeddings into Lp(Ω, µ). A different type of embedding of one

space Bp,q
α (Ω) into another Bp1,q1

α1
(Ω) was proved in [1] under certain conditions on

the parameters.

Our results are motivated by paper [8]. One of the results obtained in that pa-

per is a characterization of Carleson measures for (unweighted) mixed norm spaces.

We generalize that result by allowing power-type weights. The novelty here is the

use of representation of the weighted Bergman kernel obtained by Engliš after the

publication of [8], see [5].

Throughout this paper, we apply the convention of using C to denote any positive

constant which may change from one occurrence to the next. Given two positive

quantities A and B, we write A ≍ B if there exist constants 0 < c 6 C such that

cA 6 B 6 CA.

Let Ω ⊂ R
n be a bounded domain with C∞ boundary and let ̺(x) be a defining

function for Ω. This means ̺ is a real valued function on R
n which is C∞ in

a neighborhood of the boundary ∂Ω of Ω such that Ω = {x ∈ R
n : ̺(x) > 0} is

bounded and |∇̺(x)| 6= 0 on ∂Ω. Throughout this paper such a domain Ω is fixed.

It is convenient to work with a particular defining function, namely the distance

function r(x) defined by r(x) = d(x, ∂Ω) for x ∈ Ω and r(x) = −d(x, ∂Ω) for x 6∈ Ω.

Indeed, there is an ε > 0 such that for all 0 < r 6 ε the set Ωr = {x ∈ R
n : r(x) > r}

is a smoothly bounded subdomain of Ω with the defining function r(x) − r. We fix

such ε > 0. We denote by Γr the boundary ∂Ωr = {x ∈ R
n : r(x) = r}.

We denote by dσr the induced surface measure on ∂Ωr. The symbol dm denotes

the Lebesgue volume measure on R
n. We also use weighted measures dmγ(x) =

r(x)γdm(x) on Ω, where γ ∈ R. Furthermore, h(Ω) denotes the space of all harmonic

functions in Ω.

For 0 < p < ∞ and 0 < r 6 ε, we set

(1.1) Mp(f, r) =

{
∫

Γr

|f(ζ)|p dσr(ζ)

}1/p

.

Now let 0 < p, q < ∞ and α > 0. We define a mixed norm space Bp,q
α (Ω) as the

space of all f ∈ h(Ω) such that the (quasi-)norm

(1.2) ‖f‖Bp,q
α

=

{
∫ ε

0

rαq−1M q
p (f, r) dr

}1/q

is finite. Bp,q
α (Ω) is a Banach space for 1 6 p < ∞ and 1 6 q < ∞.
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Let us set r0 = max{r(x) : x ∈ Ω} > 0 and put rj = r0/2
j for all j ∈ N. For

j ∈ N, we set

Sj = {x ∈ Ω: rj < r(x) 6 rj−1}.

It is obvious that Ω =
∞
⋃

j=1

Sj .

For a given Borel measure µ on Ω, and positive fixed p, and q, we define Lp,q(Ω, dµ)

as the set of all Borel measurable functions f on Ω such that

‖f‖Lp,q(µ) =

{ ∞
∑

j=1

[
∫

Sj

|f(x)|p dµ(x)

]q/p

2j(q/p−1)

}1/q

< ∞.

In other words, if we set

aj(f) =

(
∫

Sj

|f(x)|p dµ(x)

)1/p

2j(1/p−1/q)

then ‖f‖Lp,q(µ) = ‖aj(f)‖lq . Also, we define Lp,q
α (Ω) for α > 0 as the set of all

Lebesgue measurable functions f on Ω such that

‖f‖Lp,q
α

=

{ ∞
∑

j=1

[
∫

Sj

|f(x)|p dm(x)

]q/p

2j(q/p−αq)

}1/q

< ∞.

For γ > −1, let Rγ(x, y) be the reproducing kernel of the harmonic Bergman space

b2γ(Ω) = h(Ω) ∩ L2(Ω, dmγ). Note that b
2
γ(Ω) = B2,2

(γ+1)/2(Ω). For every function

f ∈ b2γ(Ω) we have a reproducing formula

f(x) =

∫

Ω

Rγ(x, y)f(y) dmγ(y), x ∈ Ω.

The kernel Rγ(x, y) is symmetric and real-valued.

2. Carleson type measures for weighted harmonic mixed norm spaces

First, we state and prove a theorem about the equivalence of certain norms.

Theorem 2.1. Let 1 < p, q < ∞, and α > 0. Then, we have

‖f‖q
Bp,q

α
≍

∞
∑

j=1

[
∫

Sj

|f(x)|p dm(x)

]q/p

2j(q/p−β−1), f ∈ h(Ω),

where β = αq − 1.
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P r o o f. In the proof we will use the fact that there is a positive constant C,

depending only on the defining function of Ω, such that

(2.1) Mp(f, r) 6 CMp(f, s) for 0 < s < r 6 ε,

see Theorem 3.1 of [12]. Let J be a positive integer such that rJ > ε and rJ+1 6 ε,

where, as before, rj = r0/2
j for j = 1, 2, . . . We set ΩJ = {x ∈ Ω: r(x) > rJ+1}.

Note that rj → 0 as j → ∞. Now using (1.2) we have

(2.2) ‖f‖q
Bp,q

α
=

∫ ε

0

rβM q
p (f, r) dr =

∫ ε

rJ+1

rβM q
p (f, r) dr+

∞
∑

j=J+2

∫ rj−1

rj

rβM q
p (f, r) dr.

We first estimate the infinite sum
∞
∑

j=J+2

∫ rj−1

rj
rβM q

p (f, r) dr by estimating each

term in the sum. Using (2.1) twice we have, for j > J + 2,
∫ rj−1

rj

rβM q
p (f, r) dr 6 CM q

p (f, rj)

∫ rj−1

rj

rβ dr

= C
(

Mp
p (f, rj)

r
(β+1)p/q
0

2j(β+1)p/q

)q/p

6 C

(
∫ rj

rj+1

Mp
p (f, r)r

(β+1)p/q−1 dr

)q/p

6 C2(j+1)(q/p−(β+1))

(
∫ rj

rj+1

∫

Γr

|f(ζ)|p dσr(ζ) dr

)q/p

6 C

[
∫

Sj+1

|f(x)|p dm(x)

]q/p

2(j+1)(q/p−1−β).

Hence, summation over j gives

∞
∑

j=J+2

∫ rj−1

rj

rβM q
p (f, r) dr 6 C

∞
∑

j=J+3

[
∫

Sj

|f(x)|p dm(x)

]q/p

2j(q/p−1−β).

Also, using (2.1) twice, we similarly get
∫ rj−1

rj

rβM q
p (f, r) dr > CM q

p (f, rj−1)

∫ rj−1

rj

rβ dr

= C
(

Mp
p (f, rj−1)

r
(β+1)p/q
0

2(j−1)(β+1)p/q

)q/p

> C

(
∫ rj−2

rj−1

Mp
p (f, r)r

(β+1)p/q−1 dr

)q/p

> C

[
∫

Sj−1

|f(x)|p dm(x)

]q/p

2(j−1)(q/p−β−1),
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where the above inequalities hold for j = J + 3, J + 4, . . . Hence, we have

∞
∑

j=J+2

[
∫

Sj

|f(x)|p dm(x)

]q/p

2j(q/p−1−β)
6 C

∞
∑

j=J+3

∫ rj−1

rj

rβM q
p (f, r) dr.

Now we estimate
∫ ε

rJ+1
rβM q

p (f, r) dr. We obtain

∫ ε

rJ+1

rβM q
p (f, r) dr 6 CrβJ+1 sup

ΩJ

|f(x)|q

6 CrβJ+1

J+1
∑

j=1

[
∫

Sj

|f(x)|p dm(x)

]q/p

2j(q/p−1)

6 C

J+1
∑

j=1

[
∫

Sj

|f(x)|p dm(x)

]q/p

2j(q/p−1−β)

using definition of the sets ΩJ and Sj , j = 1, . . . , J + 1, and subharmonicity of |f |p.

On the other hand, using the maximum modulus principle, we have

J+1
∑

j=1

[
∫

Sj

|f(x)|p dm(x)

]q/p

2j(q/p−1−β) 6 C sup
ΩJ

|f(x)|q 6 C sup
Ωε

|f(x)|q

6 C sup
Γε

|f(x)|q = CM q
∞(f, ε)

6 C

∫ ε

0

rβM q
p (f, r) dr.

We have used Lemma 4 of [7] to obtain the last inequality. �

Notice that r(x)γ ≍ 2−jγ on Sj for j ∈ N and γ ∈ R, hence the sum in Theorem 2.1

is equivalent to
∞
∑

j=1

[
∫

Sj

|f(x)|p dmγ(x)

]q/p

2j(q/p−1),

where γ = βp/q = p(α − 1/q) and dmγ(x) = r(x)γdm(x), as before. Note that we

will use the letter β to denote αq − 1 in the whole paper.

Note that the sum appearing in Theorem 2.1 is actually ‖f‖q
Lp,q

α
. The theorem is

also valid for 0 < p, q < ∞ and it can be proved in this more general case using the

inequality

M q
p (f, r) 6

C

r

∫ c2r

c1r

M q
p (f, s) ds

which holds for all f ∈ h(Ω), 0 < r < ε/c2 and constants 0 < c1 < 1 < c2, instead

of (2.1). A proof of the above inequality can be found in [7]. A further modification
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of the proof, needed in the case 0 < p, q < ∞, is the use of subharmonic behaviour

of |f |p as a substitute for subharmonicity, which is no longer available for 0 < p < 1.

This is a classical result proved in [6], Lemma 2 of IV. 9.

For x, y ∈ Ω, let D(x, y) = r(x) + r(y) + |x − y|. The boundary behavior of

the harmonic Bergman kernel can be most efficiently decribed by this quasi-distance

function. Let

Eδ(x) = {y ∈ Ω: |y − x| < δr(x)} for x ∈ Ω and 0 < δ < 1.

The next lemma was proven in [8]. We use it to obtain Proposition 2.5 which, in

turn, is needed to get vital estimates of the test functions fx, see Lemma 2.6 below.

Lemma 2.2 (see [8]). For any s > n − 1, there exists some C (depending on s)

such that for all x ∈ Ω and 0 < r 6 ε,

∫

Γr

dσ(y)

D(x, y)s
6

C

(r(x) + r)s−(n−1)
.

Estimates of the harmonic Bergman kernel on a smoothly bounded domain in Rn

are given in [10]. However, we need more general estimates of the weighted harmonic

Bergman kernel on a bounded domain in R
n with smooth boundary. These can be

derived from general results on Schwartz kernels for the so-called singular Green

operators, which can be found in [5].

Specifically, Corollary 12 of [5] describes the boundary behavior of the Schwartz

kernel of the singular Green operator. Theorem 14 of [5] is a slight strengthen-

ing of Corollary 12 for the particular case of the singular Green operator, namely

the Bergman projection, and it gives the form of the Bergman kernel which is the

Schwartz kernel of the Bergman projection. The theorem describes the Bergman

kernel in the term of |x − ỹ|n, where ỹ is the “reflection” of y with respect to the

boundary of Ω. An expression for the Bergman kernel valid on all of Ω×Ω is given

as a remark after the theorem. Since the weighted Bergman kernel Rγ(x, y) is the

Schwartz kernel of a particular Green operator (see Subsection 7.1 of [5]), it can be

described using Corollary 12, similarly as the Bergman kernel in Theorem 14, in the

term of |x− ỹ|n+γ . Description can be obtained even for the more general case of the

weight of the Bergman kernel but we need description only for power-type weight.

Notice that D(x, y) ≍ |x − ỹ| so we can estimate the weighted Bergman kernel by

the quasi-distance function D(x, y). The relevant estimates are given in the following

proposition.

1210



Proposition 2.3 (see [5]). For γ > −1, x, y ∈ Ω, there is a positive constant C

such that

|Rγ(x, y)| 6 C
1

D(x, y)n+γ
and

∣

∣

∣

∂Rγ(y, x)

∂y

∣

∣

∣
6 C

1

D(x, y)n+γ+1
.

Moreover, for some positive constant C

|Rγ(x, x)| > C
1

r(x)n+γ
.

In particular, for x = y we get that

(2.3) |Rγ(x, x)| ≍
1

r(x)n+γ
.

Also, notice that if δ ∈ (0, 1), then we have

(2.4) (1− δ)r(x) < r(y) < (1 + δ)r(x)

for x ∈ Ω and y ∈ Eδ(x). Now, we state and prove a weighted analogue of Lemma 2.3

of [4].

Lemma 2.4. There exists a δ0 ∈ (0, 1) such that |Rγ(x, y)| ≍ 1/r(x)n+γ for x ∈ Ω

and y ∈ Eδ0(x).

P r o o f. For y ∈ Eδ(x), 0 < δ < 1 we have

|Rγ(y, x)− Rγ(x, x)| 6 |y − x|max
{
∣

∣

∣

∂Rγ(y, x)

∂y

∣

∣

∣
: y ∈ Eδ(x)

}

6 Cδr(x)max
{ 1

D(x, y)n+γ+1
: y ∈ Eδ(x)

}

,

where we used Proposition 2.3. Note that D(x, y) = r(x) + r(y) + |x− y| > r(x) so

we have

(2.5) |Rγ(y, x)−Rγ(x, x)| 6
Cδ

r(x)n+γ .

Therefore, we can choose δ = δ0 > 0 such that, using the opposite triangle inequality

and (2.3), we have

|Rγ(y, x)| = |Rγ(x, x) − (Rγ(x, x)−Rγ(y, x))|

> |Rγ(x, x)| −
Cδ0

r(x)
n+γ >

C

r(x)n+γ
, y ∈ Eδ0(x).

The estimate from above is a consequence of Proposition 2.3 and (2.4). �
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The next proposition is about the sharp estimate for the integral mean of the

Bergman kernel. The unweighted version of this theorem is given in [8].

Proposition 2.5. For p > (n− 1)/(n+ γ), we have

Mp(Rγ(·, x), r) 6 C(r(x) + r)(n−1)/p−(n+γ)

and the exponent on the right-hand side is the best possible.

P r o o f. We have |Rγ(y, x)| 6 C/D(x, y)n+γ and |Rγ(x, x)| ≍ r(x)−(n+γ) for all

x, y ∈ Ω. Then, since p(n + γ) > n − 1, we can use Lemma 2.2 with s = p(n + γ)

to get

(2.6) Mp
p (Rγ(·, x), r) =

∫

Γr

|Rγ(y, x)|
p dσr(y)

6 C

∫

Γr

dσr(y)

D(x, y)p(n+γ)
6

C

(r(x) + r)p(n+γ)−(n−1)
.

Taking pth root we get the desired inequality. Let us prove that the exponent on

the right-hand side is the best possible.

We have |Rγ(y, x)| > C/r(x)n+γ for y ∈ Eδ(x) and some δ fixed from Lemma 2.4.

Now for x ∈ Γr we have

Mp
p (Rγ(·, x), r) >

∫

Γr∩Eδ(x)

|Rγ(y, x)|
p dσr(y)

>

∫

Γr∩Eδ(x)

C

r(x)p(n+γ)
dσr(y)

>
C

r(x)p(n+γ)−(n−1)
,

which means that the exponent is the best possible. �

The following lemma is about the norm estimation of a test function which will

be used in proving our main result.

Lemma 2.6. Let 1 < p, q < ∞, α > 0, α > 1/q − 1/p and γ = p(α − 1/q). Let,

for x ∈ Ω, a function fx : Ω → R be defined by

fx(y) =
Rγ(y, x)

Rγ(x, x)1−1/p+1/p(n+γ)−1/q(n+γ)
.

Then fx belongs to the function spaceB
p,q
α (Ω), and moreover, ‖fx‖

q
Bp,q

α
6 C, where C

is independent of x ∈ Ω.
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P r o o f. Notice that for 1 < p, q < ∞, n > 2 we have

1−
1

p
+

1

p(n+ γ)
−

1

q(n+ γ)
> 0.

From the definition of fx we see that fx ∈ h(Ω) and

|fx(y)|
p =

|Rγ(y, x)|p

|Rγ(x, x)|p−1+1/(n+γ)−p/q(n+γ)
.

Since p > 1, we have p > 1 − (γ + 1)/(n+ γ) = (n− 1)/(n+ γ) so we can use

Proposition 2.5 and the estimate (2.3) to conclude

Mp(fx, t) 6
Cr(x)n+γ−(n+γ)/p+1/p−1/q

(r(x) + t)n+γ−n/p+1/p

and

‖fx‖
q
Bp,q

α
6 C

∫ ε

0

Cr(x)(n+γ)q−(n+γ)q/p+q/p−1

(r(x) + t)(n+γ)q−qn/p+q/p
tβ dt 6 C,

where C is independent of x. �

We will need some more lemmas. The first one is about covering of Ω and essen-

tially comes from [13], and the second one can be found in [8].

Lemma 2.7 (see [13]). If 0 < δ < 1, then there exists a sequence {ak} in Ω

satisfying the following conditions:

(1) Ω =
∞
⋃

k=1

Eδ/3(ak).

(2) There exists a positive integerN such that every point in Ω belongs to at mostN

of the sets Eδ(ak).

Notice that ak → ∂Ω as k → ∞.

Lemma 2.8 (see [8]). If 0 < δ < 1, then there exists a positive integer N = N(δ)

such that for x ∈ Sk, k = 1, 2, . . .,

Eδ(x) ⊂
k+N
⋃

j=k−N

Sj ,

where Sj = ∅ if j 6 0.

Notice that N = 1 if δ is small enough.
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Let {ak} be a sequence from Lemma 2.7. Then we have for f ∈ h(Ω),

(2.7) r(ak)
γ max
x∈Eδ/3(ak)

|f(x)|pm(Eδ/3(ak)) 6 C

∫

Eδ(ak)

|f(y)|pr(y)γ dm(y),

where we used subharmonicity of |f |p and (2.4).

Now, we can prove our main theorem which relates Carleson type condition for

function space Bp,q
α (Ω) to the embedding of Bp,q

α (Ω) in Lp,q(Ω, dµ).

Theorem 2.9. Let 1 < p, q < ∞, α > 0, α > 1/q − 1/p, 0 < δ < 1 and let µ be

a Borel measure on Ω. Then the following conditions are equivalent.

(1) The measure µ satisfies a Carleson type condition

(2.8) µ(Eδ(x)) 6 Cr(x)n+γ , x ∈ Ω,

where γ = βp/q = p(α− 1/q).

(2) We have continuous embedding Bp,q
α (Ω) →֒ Lp,q(Ω, dµ).

P r o o f. Suppose Bp,q
α (Ω) →֒ Lp,q(Ω, dµ). Let us fix x ∈ Ω and choose the test

function

fx(y) =
Rγ(y, x)

Rγ(x, x)1−1/p+1/p(n+γ)−1/q(n+γ)
, y ∈ Ω,

from Lemma 2.6. By that lemma, there exists a constant C independent of x, such

that ‖fx‖
q
Bp,q

α
6 C. By Lemma 2.4, there exists a δ0 ∈ (0, 1) such that |Rγ(x, y)| ≍

1/r(x)n+γ for x ∈ Ω and y ∈ Eδ0(x). Also, we may assume that x ∈ Sk and we

use (2.4) and Lemma 2.8 to obtain

[µ(Eδ0 (x))

r(x)n+γ

]q/p

=

[
∫

Eδ0
(x)

r(x)−(n+γ) dµ(y)

]q/p

=

[
∫

Eδ0
(x)

r(x)−(n+γ)pr(x)(n+γ)pr(x)p/q−1r(x)1−p/qr(x)−(n+γ) dµ(y)

]q/p

≍

[
∫

Eδ0
(x)

|fx(y)|
pr(y)p/q−1 dµ(y)

]q/p

6 C

k+N
∑

j=k−N

[
∫

Sj

|fx(y)|
p dµ(y)

]q/p

2j(q/p−1)

6 C

∞
∑

j=1

[
∫

Sj

|fx(y)|
p dµ(y)

]q/p

2j(q/p−1) 6 C‖fx‖
q
Bp,q

α
6 C.
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Thus, µ(Eδ0 (x))/r(x)
n+γ is bounded by a constant, therefore, µ(Eδ(x))/r(x)

n+γ is

also bounded for all 0 < δ < 1 (see Corollary 3.3 from [4]) which means that (2.8)

holds.

Conversely, suppose µ satisfies the Carleson type condition (2.8). Without loss

of generality, we may assume that δ is small enough so that N = 1 in Lemma 2.8.

For j ∈ N, set Kj = {k ∈ N : Eδ/3(ak) ∩ Sj 6= ∅}, where {ak} is a sequence from

Lemma 2.7. Then Sj ⊂
⋃

k∈Kj

Eδ/3(ak), the last union we denote by Ej . We have

m(Eδ(x)) ≍ r(x)n. Using this together with (2.7), we obtain

‖f‖qLp,q(µ) =

∞
∑

j=1

[
∫

Sj

|f(x)|p dµ(x)

]q/p

2j(q/p−1)
6

∞
∑

j=1

[
∫

Ej

|f(y)|p dµ(y)

]q/p

2j(q/p−1)

6

∞
∑

j=1

[

∑

Kj

max
y∈Eδ/3(ak)

|f(y)|pµ(Eδ/3(ak))

]q/p

2j(q/p−1)

6 C
∞
∑

j=1

[

∑

Kj

max
y∈Eδ/3(ak)

|f(y)|pr(ak)
γm(Eδ/3(ak))

]q/p

2j(q/p−1)

6 C

∞
∑

j=1

[

∑

Kj

∫

Eδ(ak)

|f(y)|pr(y)γ dm(y)

]q/p

2j(q/p−1)

6 C
∞
∑

j=2

[
∫

{y∈Ω: rj+2<r(y)6rj−2}

|f(y)|p dmγ(y)

]q/p

2j(q/p−1)

6 C

∞
∑

j=1

[
∫

Sj

|f(y)|p dmγ(y)

]q/p

2j(q/p−1) ≍ ‖f‖q
Bp,q

α
,

where the last relation relies on Theorem 2.1 and the remark following it. �
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