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Abstract. We determine when an element in a noncommutative ring is the sum of an
idempotent and a radical element that commute. We prove that a 2 × 2 matrix A over
a projective-free ring R is strongly J-clean if and only if A ∈ J(M2(R)), or I2 − A ∈

J(M2(R)), or A is similar to
(

0 λ

1 µ

)

, where λ ∈ J(R), µ ∈ 1 + J(R), and the equation

x2 − xµ − λ = 0 has a root in J(R) and a root in 1 + J(R). We further prove that
f(x) ∈ R[[x]] is strongly J-clean if f(0) ∈ R be optimally J-clean.

Keywords: idempotent matrix; nilpotent matrix; projective-free ring; quadratic equation;
power series

MSC 2020 : 15A09, 16E50, 16U60

1. Introduction

Let R be an associative ring with identity. An element a ∈ R is called strongly

J-clean if a is the sum of an idempotent and a radical element that commute. Every

strongly J-clean element is clean, i.e., it is the sum of an idempotent and a unit,

see [1], [5], [6], [10], [11], [12]. But the converse is not true. It is of interest to inves-

tigate when an element in a ring is strongly J-clean. Recently, strong J-cleanness

in a commutative ring has been studied by many authors, see [2], [3], [4], [9]. The

motivation of this paper is to explore when an element in a noncommutative ring is

the sum of idempotent and radical element that commute.

A ring R is a projective-free ring if every generated projective right R-module

is free. For instance, every local ring and every principal ideal ring (may not be
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commutative) is projective-free. In Section 2, we investigate strongly J-clean ma-

trices over a noncommutative projective-free rings. For a projective-free ring R,

we prove that A ∈ M2(R) is strongly J-clean if and only if A ∈ J(M2(R)), or

I2 − A ∈ J(M2(R)), or A is similar to
(

0 λ

1 µ

)

, where λ ∈ J(R), µ ∈ 1 + J(R), and

the equation x2 − xµ− λ = 0 has a root in J(R) and a root in 1 + J(R).

In Section 3, we are concerned on strongly J-clean power series over a noncommu-

tative rings. If f(0) ∈ R is optimally J-clean, we prove that f(x) ∈ R[[x]] is strongly

J-clean. This provides new kind of ring elements which can be written as the sum

of an idempotent and a radical element.

Throughout, all rings are associative with identity. The symbol Mn(R) denotes

the ring of all n×nmatrices over R and GLn(R) stands for the n-dimensional general

linear group of R. Let M be a right module, end(M) and aut(M) stand for the ring

of endomorphism and automorphism of M , respectively. Let R[[x]] denote the ring

of power series over R. We always use [a, b] to denote the commutator ab − ba for

any a, b ∈ R.

2. Strongly J-clean matrices

In this section, we characterize a strongly J-clean matrix over projective-free rings

in terms of the solvability of the quadratic equation.

Theorem 2.1. Let R be projective-free. Then A ∈ M2(R) is strongly J-clean if

and only if A ∈ J(M2(R)) or I2 −A ∈ J(M2(R)) or A is similar to a matrix
(

α 0

0 β

)

,

where α ∈ 1 + J(R), β ∈ J(R).

P r o o f. ⇐ If A ∈ J(M2(R)), then A = 0 + A is strongly J-clean. If I2 − A ∈

J(M2(R)), then A = I2 + (A − I2) is strongly J-clean. If A is similar to a matrix
(

α 0

0 β

)

, where α ∈ 1 + J(R), β ∈ J(R), then there exists some U ∈ GL2(R) such

that

A = U−1

(

1 0

0 0

)

U + U−1

(

α− 1 0

0 β

)

U is stroongly J-clean.

⇒ By hypothesis, there exists an idempotent E ∈ M2(R) andW ∈ J(M2(R)) such

that A = E+W with EW = WE. Suppose that A and I2−A are not in J(M2(R)).

Since R is projective-free, there exists U ∈ GL2(R) such that UEU−1 = diag(1, 0).

Hence, UAU−1 =
(

1 0

0 0

)

+ UWU−1. Set V = (vij) := UWU−1. Then
(

1 0

0 0

)

V =

V
(

1 0

0 0

)

, whence, v12 = v21 = 0 and v11, v22 ∈ J(R). Therefore, A is similar to
(

1+v11 0

0 v22

)

, which completes the proof. �
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Lemma 2.2 ([4], Theorem 2.1). Let E = end(RM) and let α ∈ E. Then the

following statements are equivalent:

(1) α is strongly J-clean in E.

(2) M = P ⊕ Q, where P and Q are α-invariant, and α|P ∈ J(end(P )) and

(1M − α)|Q ∈ J(end(Q)).

Lemma 2.3. Let R be projective-free and let A ∈ M2(R) be strongly J-clean.

Then A ∈ J(M2(R)) or I2 −A ∈ J(M2(R)) or A is similar to a matrix
(

0 λ

1 µ

)

, where

λ ∈ J(R), µ ∈ 1 + J(R).

P r o o f. Suppose that A, I2 −A 6∈ J(M2(R)). By virtue of Theorem 2.1, we have

P ∈ GL2(R) such that PAP−1 =
(

1+α 0

0 β

)

, where α, β ∈ J(R). Thus, we check that

UAU−1 =

(

0 −(1 + α)(1 + α− β)−1β(1 + α− β)

1 (1 + α− β)−1β(1 + α− β) + (1 + α)

)

,

where

U =

(

1 −1− α

0 1

)(

1 −1− α

0 1

)(

1 0

0 (1 + α− β)−1

)(

1 0

1 1

)

.

Set λ = −(1+α)(1+α−β)−1β(1+α−β) and µ = (1+α−β)−1β(1+α−β)+(1+α).

Then λ ∈ J(R) and µ ∈ 1 + J(R), as desired. �

Many authors studied strongly clean matrices over a ring, see [6], [7], [8]. This

inspires us to investigate strongly J-clean matrices over a projective-free ring. We

are ready to prove:

Theorem 2.4. Let R be projective-free. Then A ∈ M2(R) is strongly J-clean if

and only if

(1) A ∈ J(M2(R)), or

(2) I2 −A ∈ J(M2(R)), or

(3) A is similar to
(

0 λ

1 µ

)

, where λ ∈ J(R), µ ∈ 1+J(R), and the equation x2−xµ−

λ = 0 has a root in J(R) and a root in 1 + J(R).

P r o o f. Suppose that A ∈ M2(R) is strongly J-clean, and that A, I2 − A 6∈

J(M2(R)). It follows by Lemma 2.3 that A is similar to the matrix B =
(

0 λ

1 µ

)

,

where λ ∈ J(R), µ ∈ 1 + J(R). Hence, B ∈ M2(R) is strongly J-clean. In view

of Lemma 2.2, we have 2R = C ⊕ D, where (I2 − B)|C ∈ J(end(C)) and B|D ∈

J(end(D)). Thus, B|C ∈ aut(C) and (I2−B)|D ∈ aut(D). Since R is projective-free,
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C andD are free. As B, I2−B 6∈ J(M2(R)), we see that C,D ∼= R. Assume that (a, b)

and (c, d) are bases of C and D, respectively. Then C = R(a, b), D = R(c, d). Then

R(a, b)

(

0 λ

1 µ

)

= R(a, b).

Set R = R/J(R). Then

R(ā, b̄) ⊆ R(1̄, 1̄).

Similarly,

R(c̄, d̄) ⊆ R(1̄, 0̄).

Write (ā, b̄) = s(1̄, 1̄) and (c̄, d̄) = t(1̄, 0̄). Then

(1̄, 1̄) = z(ā, b̄) + z′(c̄, d̄) = zs(1̄, 1̄) + z′t(1̄, 0̄).

This implies that 1 − zs ∈ J(R), and so s ∈ R is left invertible. Hence, s ∈ U(R),

as R is directly finite. Clearly, a − s, b − s ∈ J(R), and so 1 − a−1b ∈ J(R).

C = R(a, b) = R(1, α), where α = a−1b ∈ 1 + J(R). Analogously, D = R(1, β),

where β = c−1d ∈ J(R). As C is B-invariant, we see that

(1, α)

(

0 λ

1 µ

)

= r(1, α)

for some r ∈ R. It follows that α = r and λ+αµ = rα, and therefore α2−αµ−λ = 0,

i.e., x2 − xµ − λ = 0 has a root α ∈ 1 + J(R). Likewise, this equation has a root

β ∈ J(R), as desired.

Conversely, if (1) or (2) holds, then A ∈ M2(R) is strongly J-clean, and so we

assume (3) holds. As strong J-cleanness is invariant under similarity, we will suffice

to check if B =
(

0 λ

1 µ

)

is strongly J-clean. By hypothesis, the equation x2−xµ−λ = 0

has roots c ∈ J(R) and d ∈ 1 + J(R). Then c2 − cµ − λ = 0 and d2 − dµ − λ = 0.

Choose C = R(1, c) and D = R(1, d). Since

(1, c)

(

0 λ

1 µ

)

= c(1, c) ∈ C,

where C is B-invariant. Similarly, D is B-invariant. If r(1, c) = s(1, d) ∈ C ∩ D,

then r = s and rc = sd; hence, r(c − d) = 0. Since c − d ∈ U(R), we get r = 0.

Thus, C ∩D = 0. Let (a, b) ∈ 2R. Choose s = (b− ac)(d− c)−1 and r = a− s. Then

(a, b) = r(1, c) + s(1, d) ∈ C ⊕D. Hence, 2R = C ⊕D. Let γ ∈ end(C). Then

1C −B|Cγ : C → C; r(1, c) 7→ r(1, c)− rc(1, c)γ.
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Write (1, c)γ = b(1, c) for a, b ∈ R. If (r(1, c))(1C − B|Cγ) = 0, then r(1, c) −

rcb(1, c) = 0, hence, r(1 − cb)(1, c) = 0. It follows from c ∈ J(R) that r = 0, and so

r(1, c) = 0. Thus, 1C −B|Cγ is monomorphic. For any r(1, c) ∈ C we see that

(r(1 − cb)−1(1, c))(r(1, c))(1C −B|Cγ) = r(1, c).

This implies that 1C − B|Cγ is epimorphic. As a result, 1C − B|Cγ is isomorphic.

We infer that B|C ∈ J(end(C)). Similarly, (I2 − B)|D ∈ J(end(D)). In light of

Lemma 2.3, B ∈ M2(R) is strongly J-clean. �

AmatrixA∈M2(R) is cyclic if there exists a column α such that (α,Aα)∈GL2(R).

Corollary 2.5. Let R be a commutative projective-free ring, and let A ∈ M2(R).

Then A is strongly J-clean if and only if

(1) A ∈ J(M2(R)), or

(2) I2 −A ∈ J(M2(R)), or

(3) A is cyclic and x2 − tr(A)x + det(A) = 0 has a root in J(R) and a root in

1 + J(R).

P r o o f. Suppose that A is strongly J-clean. If A, I2 − A 6∈ J(M2(R)), then A is

similar to
(

0 λ

1 µ

)

, where λ ∈ J(R), µ ∈ 1+J(R), and the equation x2−xµ−λ = 0 has

a root in J(R) and a root in 1+ J(R), by Theorem 2.4. In view of [3], Lemma 7.4.6,

A is cyclic. As R is commutative, we see that tr(A) = µ and det(A) = −λ, and so

x2 − tr(A)x + det(A) = 0 has a root in J(R) and a root in 1 + J(R).

Conversely, if A ∈ J(M2(R)) or I2 − A ∈ J(M2(R)), then A is strongly J-clean.

We now assume that A is cyclic and x2 − tr(A)x+ det(A) = 0 has a root α in J(R)

and a root β in 1+J(R). In view of [3], Lemma 7.4.6, A is isomorphic to a companion

matrix
(

0 λ

1 µ

)

. This shows that µ = tr(A) and det(A) = −λ. Since

α2 − tr(A)α+ det(A) = 0 and β2 − tr(A)β + det(A) = 0,

we get tr(A) = α + β and det(A) = αβ. Hence, µ = α + β ∈ 1 + J(R) and

λ = −αβ ∈ J(R). Therefore, we complete the proof, by Theorem 2.4. �

3. Power series over rings

This section is concerned on strongly J-clean decompositions in power series rings.

An element a ∈ R is optimally J-clean provided that there exists an idempotent

e ∈ R such that a− e ∈ J(R) and ae = ea, and that for any b ∈ R there exists c ∈ R

such that [a, c] = [e, b]. We now derive:
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Lemma 3.1. Let R be a ring and let a ∈ R. Then the following statements are

equivalent:

(1) a ∈ R is optimally J-clean.

(2) There exists an idempotent e ∈ R such that a−e ∈ J(R) and ae = ea, and that

for any b ∈ R there exists c ∈ eR(1− e) + (1− e)Re such that [a, c] + [e, b] = 0.

P r o o f. (1) ⇒ (2) Since a ∈ R is optimally J-clean, there exists an idempotent

e ∈ R such that a− e ∈ J(R) and ae = ea, and that for any b ∈ R there exists c ∈ R

such that [a, c] = [e, b]. It is easy to check that

[a, ec(1− e) + (1− e)ce]= [a, ec(1− e)] + [a, (1− e)ce]= e[a, c](1− e) + (1− e)[a, c]e

=e[e, b](1− e) + (1− e)[e, b]e=[e, b],

and therefore [a,−ec(1− e)− (1− e)ce] + [e, b] = 0.

(2) ⇒ (1) There exists an idempotent e ∈ R such that a− e ∈ J(R) and ae = ea,

and that for any b ∈ R there exists c ∈ eR(1−e)+(1−e)Re such that [a, c]+[e, b] = 0.

Choose c′ = −c. Then [a, c′] = [e, b], as required. �

Lemma 3.2 ([10], Lemma 3.2.1). Let R be a ring and let n > 2. If e0 = e20 ∈ R

and ek(1− e0) =
k−1
∑

i=0

eiek−i (0 < k < n), then

e0

(n−1
∑

i=1

eien−i

)

=

(n−1
∑

i=1

eien−i

)

e0.

Lemma 3.3 ([10], Theorem 3.2.2). Let R be a ring and let n > 2. If e0 = e20 ∈ R,

ek(1 − e0) =
k−1
∑

i=0

eiek−i and [r0, ek] + [r1, ek−1] + . . .+ [rk, e0] = 0 for all 0 < k < n,

then
[

r0,

n−1
∑

i=1

eien−i

]

= (1− e0)

(n−1
∑

i=1

[ei, rn−i]

)

−

(n−1
∑

i=1

[ei, rn−i]

)

e0.

In [10], Shifflet studied strongly clean power series by means of the optimally clean

condition. We now extend Theorem 3.2.2 of [10] to strongly J-clean power series and

come now to the main result of this section.

Theorem 3.4. Let R be a ring and let f(x) ∈ R[[x]]. If f(0) ∈ R is optimally

J-clean, then f(x) ∈ R[[x]] is strongly J-clean.
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P r o o f. Write f(x) =
∞
∑

i=0

rix
i. Then we can find an idempotent e0 such that

r0 = e0+(r0−e0) is an optimally J-clean decomposition of r0. In view of Lemma 3.1,

there exists some e1 ∈ (1 − e0)Re0 + e0R(1 − e0) such that [r0, e1] + [e0, r1] = 0.

Clearly, e1 = e0e1+e1e0. We shall prove that there exist e2, . . . , ek, . . . ∈ R such that

ek = e0ek + e1ek−1 + . . .+ eke0 and [r0, ek] + [r1, ek−1] + . . .+ [rk, e0] = 0.

Assume that this is true for all 1 6 k 6 n − 1. Set fn = (1 − 2e0)(e1en−1 +

e2en−2 + . . . + en−1e1) and sn = rn + [e0, [e1, rn−1] + [e2, rn−2] + . . . + [en−1, r1]].

By virtue of Lemma 3.1, we have some gn ∈ (1 − e0)Re0 + e0R(1 − e0) such

that [r0, gn] = [e0, sn]. Let en = fn + gn. In light of Lemma 3.2, analogously to

Theorem 3.2.2 of [10], we obtain

n−1
∑

i=1

eien−i = (1 − e0)en − ene0.

Thus, en =
n
∑

i=1

eien−i. Furthermore,

[r0, fn] =

[

r0, (1− e0)

(n−1
∑

i=1

eien−i

)]

−

[

r0,

(n−1
∑

i=1

eien−i

)

e0

]

= (1− e0)

[

r0,

(n−1
∑

i=1

eien−i

)]

(1− e0)− e0

[

r0,

(n−1
∑

i=1

eien−i

)]

e0.

By using Lemma 3.3, we have

[

r0,

n−1
∑

i=1

eien−i

]

= (1− e0)

(n−1
∑

i=1

[ei, rn−i]

)

−

(n−1
∑

i=1

[ei, rn−i]

)

e0,

and then

[r0, fn] = (1− e0)

(n−1
∑

i=1

[ei, rn−i]

)

(1− e0) + e0

(n−1
∑

i=1

[ei, rn−i]

)

e0.

Moreover,

[r0, gn] = [e0, sn] = [e0, rn] +

[

e0,

[

e0,

n−1
∑

i=1

[ei, rn−i]

]]

= [e0, rn] + e0

(n−1
∑

i=1

[ei, rn−i]

)

(1 − e0) + (1 − e0)

(n−1
∑

i=1

[ei, rn−i]

)

e0.
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Thus, we have

[r0, en] = [r0, fn] + [r0, gn]

= [e0, rn] + e0

(n−1
∑

i=1

[ei, rn−i]

)

(1− e0) + (1 − e0)

(n−1
∑

i=1

[ei, rn−i]

)

e0

+ (1 − e0)

(n−1
∑

i=1

[ei, rn−i]

)

(1− e0) + e0

(n−1
∑

i=1

[ei, rn−i]

)

(1− e0)

=

n−1
∑

i=0

[ei, rn−i],

hence,
n
∑

i=0

[ri, en−i] = 0. By induction, the claim is true. Thus,
∞
∑

i=0

eix
i =

( ∞
∑

i=0

eix
i
)2

∈ R[[x]] and f(x)
( ∞
∑

i=0

eix
i
)

=
( ∞
∑

i=0

eix
i
)

f(x). Since f(0)− e(0) ∈ J(R),

we see that f(x) −
∞
∑

i=0

eix
i ∈ J(R[[x]]). Therefore, f(x) ∈ R[[x]] is strongly J-clean,

as asserted. �

Corollary 3.5. Let R be an abelian ring and let f(x) ∈ R[[x]]. If f(0) ∈ R is

strongly J-clean, then f(x) ∈ R[[x]] is strongly J-clean.

P r o o f. Suppose f(0) ∈ R is strongly J-clean. Then there exists an idempotent

e ∈ R such that f(0) − e ∈ J(R) and f(0)e = ef(0). For any b ∈ R, we choose

c = 0 ∈ eR(1− e) + (1− e)Re. Then [f(0), c] + [e, b] = 0, hence, f(0) is J-optimally

clean. Therefore, f(x) ∈ R[[x]] is strongly J-clean in terms of Theorem 3.4. �

Corollary 3.6. Let R be a ring and let f(x) ∈ R[[x]]. Then the following state-

ments are equivalent:

(1) f(0) ∈ R is optimally J-clean.

(2) f(x) ∈ R[[x]] is optimally J-clean.

P r o o f. (1) ⇒ (2) In view of Theorem 3.4, f(x) ∈ R[[x]] is strongly J-clean.

Hence, there exists an idempotent e(x) ∈ R[[x]] such that w(x) := f(x) − e(x) ∈

J(R[[x]]) and f(x)e(x) = e(x)f(x). Thus, f(x) = (1− e(x))+ (2e(x)− 1+w(x)). As

(2e(x)− 1)2 = 1, we see that (2e(x)− 1+w(x)) = (2e(x)− 1)(1+(2e(x)− 1)w(x)) ∈

U(R[[x]]). By virtue of [10], Theorem 3.3.2, f(x) ∈ R[[x]] is optimally clean. For any

b(x) ∈ R[[x]] there exists c(x) ∈ R[[x]] such that [f(x),−c(x)] = [1−e(x), b(x)]. This

implies that [f(x), c(x)] = [e(x), b(x)]. Therefore, f(x) ∈ R[[x]] is optimally J-clean,

as desired.

(2) ⇒ (1) This is obvious. �
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Example 3.7. Let Z(2) = {m/n : m,n ∈ Z, n 6= 0, (m,n) = 1, 2 ∤ n} and

A(x) =







∞
∑

n=0

xn
∞
∑

n=0

xn+1

−
∞
∑

n=0

1

3n+1
xn

∞
∑

n=0

2

3n+1
xn






∈ M2(Z(2)[[x]]).

Then A(x) ∈ M2(Z(2)[[x]]) is strongly J-clean.

P r o o f. Clearly, A(0) =
(

1 0

−
1

3

2

3

)

∈ M2(Z(2)). Since the characteristic equation

χA(0) = x2 − 5
3x + 2

3 has roots 1 and
2
3 , we see that A(0) is similar to C =

(

1 0

0 2

3

)

.

Let E = diag(1, 0). Then E2 = E, EC = CE and C − E =
(

0 0

0 2

3

)

∈ J(M2(Z(2))).

Let B = (bij) ∈ M2(Z(2)). Choose x1 = 3b12 and x2 = 3b21. Set X =
(

0 x1

x2 0

)

.

Then

[C,X ] =

(

0 b12

−b21 0

)

= [E,B].

Accordingly, C is optimally J-clean. Hence, A(0) ∈ M2(Z(2)) is J-optimally clean.

Therefore, A(x) ∈ M2(Z(2)[[x]]) is strongly J-clean by Theorem 3.4. �
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References

[1] D.D.Anderson, V. P.Camillo: Commutative rings whose elements are a sum of a unit
and idempotent. Commun. Algebra 30 (2002), 3327–3336. zbl MR doi

[2] N.Ashrafi, E. Nasibi: Strongly J-clean group rings. Proc. Rom. Acad., Ser. A, Math.
Phys. Tech. Sci. Inf. Sci. 14 (2013), 9–12. zbl MR

[3] H.Chen: Rings Related Stable Range Conditions. Series in Algebra 11. World Scientific,
Hackensack, 2011. zbl MR doi

[4] H.Chen: Strongly J-clean matrices over local rings. Commun. Algebra 40 (2012),
1352–1362. zbl MR doi

[5] P.V.Danchev, W.W.McGovern: Commutative weakly nil clean unital rings. J. Algebra
425 (2015), 410–422. zbl MR doi

[6] A. J. Diesl, T. J. Dorsey: Strongly clean matrices over arbitrary rings. J. Algebra 399
(2014), 854–869. zbl MR doi

[7] T. J. Dorsey: Cleanness and Strong Cleanness of Rings of Matrices: Ph.D. Thesis. Uni-
versity of California, Berkeley, 2006. MR

[8] L.Fan, X.Yang: A note on strongly clean matrix rings. Commun. Algebra 38 (2010),
799–806. zbl MR doi
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