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GENERALISED ATIYAH’S THEORY
OF PRINCIPAL CONNECTIONS

Jiří Nárožný

Abstract. This is a condensed report from the ongoing project aimed
on higher principal connections and their relation with higher differential
cohomology theories and generalised short exact sequences of L∞ algebroids.
A historical stem for our project is a paper from sir M. Atiyah who observed a
bijective correspondence between data for a horizontal distribution on a fibre
bundle and a set of sections for a certain splitting short exact sequence of Lie
algebroids, nowadays called the Atiyah sequence. In a meantime there was
developed quite firm understanding of the category theory and in the last two
decades also the higher category/topos theory. This conceptual framework
allows us to examine principal connections and higher principal connections
in a prism of differential cohomology theories. In this text we cover mostly
the motivational part of the project which resides in searching for a common
language of these two successful approaches to connections. From the reasons
of conciseness and compactness we have not included computations and several
lengthy proofs.

1. Higher connections and their presentation

In this chapter we establish a framework and motivate our further steps. The
chapter is considered to be detailed and provides an almost self-consistent transition
from a differential cohomology theory with the coefficient object [BG to a space of
morphisms so called Atiyah connections. Throughout the whole chapter we consider
a cohesive (∞, 1)-topos Sh(∞,1)(Mfd) of (∞, 1)-sheaves over an 1-site of smooth
finite-dimensional manifolds Mfd and its presentation given by an 1-category of
simplicial presheaves homCat(Mfdop, sSet) together with a local projective model
structure [11].

As a small reminder we start with recalling few basic facts and definitions. Our
terminology mostly coincides with the one used in [9].
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1.1. What is the playground. Warning: There are two conceptually different
objects which will be denoted very similarly. The symbol ∆ stands for the simplex
category [5] unlike the symbol ∆n which stands for the standard simplex as a
representable simplicial set, represented by [n] ∈∆.

Definition 1.1. A simplicial category is any category (strictly) enriched in the
closed monoidal category of simplicial sets sSet. We denote it as CatsSet.

Observation: There is a natural way how to turn the closed monoidal 1-category
sSet into a simplicial category by defining hom-objects to be internal hom-objects,
identity as a canonical morphism idX : ∆0 → homsSet(X,X) for all X ∈ sSet, and
the composition as a morphism of simplicial sets

µ : homsSet(X,Y )× homsSet(Y, Z)→ homsSet(X,Z)

which is defined in components by the prescription:

µn : (f, g) 7→ g ◦ (f × p1) ,
where f ∈ homsSet(X ×∆n, Y ), g ∈ homsSet(Y ×∆n, Z) and p1 : X ×∆n → ∆n

is the projection onto the first component. We call this natural simplicial enrichment.

In general we are able to do this sSet-enriching yoga with any category of
simplicial objects with values in a complete and cocomplete category C. An explicit
description of the sSet enrichment of homCat(Cop,Set) is given in [6], [20]. Moreover,
when we work with a model category homCat(Cop,Set)lp with a local projective
model structure (which we briefly introduce below) then a resulting simplicial
category is a combinatorial simplicial model category. This fact is one of the
cornerstones for the proof of a Proposition 1.6. Whenever the natural simplicial
enrichment of a category A exists we denote it A↑.

Further note that an internal hom-object between an arbitrary simplicial set (as
a source) and a Kan complex (as a target) is also a Kan complex1. Thus we may
take a full subcategory Kan of sSet consisting of Kan complexes and naturally en-
rich it over itself. The resulting simplicial category will be denoted simply as KanKan.

Remark. Whenever we use a term Kan complex we mean an (∞, 0)-category.

Definition 1.2. A coherent nerve N : CatsSet → sSet defined in [9] of the simplicial
category KanKan will be called ∞-cosmos2 and denoted S.

Remark. The simplicial set S is an (∞, 1)-category. It follows from properties of
the coherent nerve [9].

1This statement is rather standard, for its proof see for instance [7].
2The term∞-cosmos in its broader sense means any well-behaved (∞, 1)-category, in the strict

sense it is a (nerve of a) simplicial category of fibrant objects [24]. Note that the full subcategory
of Kan complexes is exactly the full subcategory of those simplicial objects which are fibrant with
respect to the Quillen model structure on sSet.
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Definition 1.3. Let us consider a simplicial set homsSet(Cop,S), where the sym-
bol C stands for an arbitrary (∞, 1)-site. This simplicial set will be called the
(∞, 1)-category of derived (∞, 1)-presheaves over C. Once we specify N(Mfd) := C,
where Mfd is the 1-site of smooth finite-dimensional manifolds with a Grothendieck
topology defined by differentiably good open covers we result with a simplicial set
called the (∞, 1)-category of (∞, 1)-prestacks over Mfd. If we restrict the attention
to the (∞, 1)-subcategory of (∞, 1)-prestacks which satisfy the descent condition
we end up with the (∞, 1)-category of (∞, 1)-stacks over Mfd which is often refer-
red to as the (∞, 1)-category of smooth ∞-groupoids. If we restrict our attention
even more and consider only differentiable (∞, 1)-stacks over Mfd we obtain a full
(∞, 1)-subcategory of Lie ∞-groupoids, denoted as Lie∞Grpd. These concepts can
be found in [12], [15], [21], [25].

Remark. There is a filtered sequence of full (∞, 1)-subtoposes coskn : Sh(n,1)(Mfd)
↪→ Sh(∞,1)(Mfd), where Sh(n,1)(Mfd) := homsSet(N(Mfd)op,Sn) and Sn is an
(n−1)-truncation of S 3. Since Sh(∞,1)(Mfd) is a presentable (∞, 1)-category we are
guaranteed (from [9]) that for each n ∈ N (called level) there exists a left adjoint
trn : Sh(∞,1)(Mfd)→ Sh(n−1,1)(Mfd) called n-truncation functor.

Remark. We call Sh(n,1)(Mfd) as (n, 1)-category of (n, 1)-sheaves over the site
Mfd.

Remark. The (∞, 1)-category of Lie ∞-groupoids is an interesting category for
us since it is presented by an 1-category of Kan simplicial manifolds KanMfd. In
the literature we may find n-truncated Kan simplicial manifold under the name
n-hypergroupoid [22].

Remark. It is a remarkable fact that almost all nice properties of the (∞, 1)-catego-
ry of smooth ∞-groupoids is summed up by the claim that it is (∞, 1)-topos
equipped with a differential cohesion [25].

When one considers an 1-categorical presentation of Sh(∞,1)(Mfd) by model
categories there is a reasonable candidate – simplicial presheaves over Mfd together
with a local projective model structure. In the next we say a couple of words on
that account.

Remark. Because the category Cat of locally small categories is closed monoidal
it naturally has the notion of an internal hom-space. This is nothing else than a
functor category. From this reason we can define the following.

Definition 1.4. The category of simplicial presheaves is a category homCat(Mfdop,
sSet). Because of the symmetrical monoidal product we can equally define it as
homCat(∆op,PSh(Mfd)).

This 1-category naturally offers two main model structures with their local
counterparts. For some technical reasons (computing homotopy colimits) it is

3We call a simplicial set Sk to be (k−1)-truncation of a simplicial set S if Sk ∼= coskk ◦trk(S).
It models (k− 1)-homotopy type and generalises the notion of (k− 1)-groupoid, meaning that all
categorial homotopy groups above k − 1 are zero.
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better to take a projective model structure or more precisely its left Bousfield
localization – the local projective model structure. Being equipped with this
structure it forms an example of a model topos [23]. We will denote this model
category as homCat(Mfdop, sSet)lp or equivalently sPSh(Mfd)lp.

Remark. Let us remark that homCat(Mfdop, sSet) is actually big enough to ac-
commodate either presheaves on smooth finite-dimensional manifolds or simplicial
manifolds. And of course, there is an embedding of the category of the smooth
finite-dimensional manifolds. For a better transparency let us pictorially sketch the
situation by the following commutative diagram:

(1)
Mfd homCat(Mfdop,Set)

homCat(∆op,Mfd) homCat(∆op, homCat(Mfdop,Set)),

←
↩

→c
←↩ →Y

←
↩→c

←↩ →
Y∆op

where Y is the standard Yoneda embedding functor, c is a constant simplicial
functor (also discussed below or in [3]) and Y∆op is a simplicial Yoneda functor
(computed degree-wise). Also note that we can’t use ordinary Yoneda for relating
the category homCat(∆op,Mfd) with the category homCat(∆op, homCat(Mfdop,Set))
because

Y : homCat(∆op,Mfd) ↪→ homCat
(
(homCat(∆op,Mfd)

)op
,Set)

and the categories
homCat

(
(homCat(∆op,Mfd)

)op
,Set) and homCat

(
∆op, homCat(Mfdop,Set)

)
are not equivalent.

Remark. There is a trivial symbolism dedicated for those categories in the litera-
ture. It reads sPSh(Mfd) := homCat(Mfdop, sSet), PSh(Mfd) := homCat(Mfdop,Set)
and sMfd := homCat(∆op,Mfd).

In the next we finally interrelate the (∞, 1)-category Sh(∞,1)(Mfd) with the
model category sPSh(Mfd)lp by means of a presentation.

Definition 1.5. We say that a model 1-category A presents an (∞, 1)-category
A if there is an (∞, 1)-equivalence

A ∼= N(Å↑) ,

where Å↑ is a full (∞, 1)-subcategory of fibrant-cofibant objects of A↑.

Proposition 1.6 (Lurie). The model 1-category homCat(Mfdop, sSet)lp presents
Sh(∞,1)(Mfd).

Proof. [9]. �

Proposition 1.7. Homotopy categories of an ∞-category and its model 1-category
presentation are equivalent categories, in our case there is an 1-categorical equiva-
lence

Ho
(
Sh(∞,1)(Mfd)

) ∼= Ho
(
homCat(Mfdop, sSet)lp

)
.
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Proof. [9]. �

Remark. For a notational reasons we will denote objects of (∞, 1)-categories and
their relevant counterparts in the model 1-categories the same.
Remark. Even though we work in one specific cohesive (∞, 1)-topos Sh(∞,1)(Mfd)
the following applies for an arbitrary cohesive (∞, 1)-topos H thus we stick to this
more general notation.
1.2. Higher parallel transport technology. According to a standard literature
[25]4 a higher flat connection can be seen as an element of the set π0homH(M, [BG)5

which can be due to the cohesive (∞, 1)-adjunction of (∞, 1)-endofunctors Π a [ :
H � H rephrased as being an element of the set π0homH(Π(M),BG).
Remark. At this point one should be careful what is meant by higher flat connec-
tion. Strictly speaking it is a datum given by a flat differential cohomology theory
unlike higher curved connections which are given by a differential cohomology
theory with coefficient object BGconn. But it still does not mean that k-truncated
theories of higher flat connections must have vanishing all curvature forms. It
is because for any (∞, 1)-functor ∇ : Π(M) → BG its k-truncation counterpart
∇k (given as coskk+1 ◦ trk+1(∇) as described above) exhibits a connection with
non-vanishing curvature (k + 1)-form since k-truncation of Π(M) is a smooth path
k-groupoid which encapsulates connections with this property. On the other hand
all lower curvature forms (sometimes called fake curvature forms) are automatically
trivial what is the distinctive property among all higher curved connections which
do not require vanishing of any curvature form. From now on adjectives higher and
flat will be systematically omitted for reasons of brevity because all connections in
this paper are higher and flat in the sense of this remark.

Note that every connection originates as a lift of a classifying morphism of some
G-principal bundle g : M → BG (where g ∈ π0homH(M,BG) and G is a 1-group
object in H) along a canonical morphism [BG→ BG. Pictorially:

M BG

[BG

←

→∇

← →g

←→

The next lemma deals with the question what statement is an appropriate
counterpart in the perspective of mentioned adjunction Π a [.
Lemma 1.8. Every connection is an extension of a classifying morphism of a
G-principal bundle g : M → BG along a morphism i : M → Π(M) which is defined
as the (∞, 1)-colimit applied on a simplicial morphism i : cM → Π(M), where
cM ∈ homsSet(N(∆op),H) is a constant simplicial diagram in H, Π(M) is a
simplicial diagram (degeneracies are not depicted)

. . . homH(∆2,M) homH(∆1,M) homH(∆0,M) ,←→

←→←→ ←→

←→

4Most of the terminology and notation used in this sub-chapter is defined here.
5We define π0homH(A,B) := homHo(H)(A,B).



246 J. NÁROŽNÝ

and for any n ∈ N (for n = 0 we define it as an identity morphism) we have a mor-
phism in : M ∼= homH(∆0,M) → homH(∆n,M) canonically given as
homH(Y(φn0 )×n,M), where the expression Y(φn0 ) : ∆n−1 →∆n is just the image
of the Yoneda functor applied on the zeroth coface map φn0 : [n− 1]→ [n].

Proof. The first and crucial observation (which is proved in [2]) says that the
morphism i : M → Π(M) is precisely a unit of the adjunction Π a [. The second
step is an application of unit/counit data from a cohesive quadruple of adjunct
functors. Will be showed in the upcoming paper. �

Remark. In case of Sh(∞,1)(Mfd) the space Π(M) is commonly known as the
∞-fundamental groupoid associated with the space M .

Corollary 1.9. Lemma 1.8 finds a common homotopy invariant which intertwines
with the mentioned (∞, 1)-adjunction. That is exactly the underlying principal
G-bundle associated with ∇.

1.3. Orthogonal factorisation systems. The previous subchapter establishes
a basic dictionary between the theory of higher parallel transport and the flat
differential cohomology theory approach to the connections on principal bundles.
In the next we steer closer to the parallel transport theory as to find a more subtle
data realizing Atiyah’s approach to connections [1]. It has shown that the major
role in tracking of the Atiyah’s legacy has one distinguished orthogonal factorisation
system in H, called the (−1)-connected – (−1)-truncated orthogonal factorisation
system.

Due to a general result (stated in [17] for instance) any morphism in H can be
factorised on n-connected morphism followed by n-truncated one for n ∈ N0,−1,−2.
For us the most relevant case will be n = −1. In this case we factorise any morphism
onto (∞, 1)-effective epimorphisms followed by (∞, 1)-monomorphisms.

Definition 1.10. For any morphism f : A→ B in H we can construct (∞, 1)-colimit
of the Čech nerve simplicial object Č(f) ∈ homsSet(N(∆)op,H) which is built as
an iterated sequence of (∞, 1)-pullbacks. In the first two degrees of this simplicial
diagram Čech nerve reads:

(2) . . . A×B A×B A A×B A A .←→

←→←→←→ ←→

←→←→ ←→

←→

We call this object 1-coimage6 of f : A→ B and denote it as coim1(f).

Remark. For a definition of the Čech nerve see [9].

This object is always furnished with two canonical morphisms.

Lemma 1.11. Let us have any morphism f : A → B in H. There is a mor-
phism f ′ : A → coim1(f) which is a morphism from colimiting cocone. It is al-
ways an (∞, 1)-effective epimorphism. There is another cocone on the simplicial

6Terminology says that morphisms factorise in this n-connected and n-truncated factorisation
system through (n+ 2)-coimage. Many authors use a different terminology and name these objects
as images, but we have not found it natural. Despite the both terms have distinct meaning in
general, distinguishing between them in our case does not matter since they are isomorphic in H.
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diagram above which is generated by f : A → B. It induces by the universal
property of (∞, 1)-colimits a morphism cf : coim1(f) → B. This morphism is a
(∞, 1)-monomorphism.

Proof. The statement is classical. For details look at [18]. �

Remark. Again, for the reason of brevity we call these morphisms simply as
effective epimorphisms and monomorphisms.

Let us list some useful properties of this factorisation system.

Lemma 1.12. Assume we have three morphisms f, g, h ∈ H which satisfy h = f ◦g
(in the homotopy category Ho(H)). Then there are some relations between them:
• If f and g are effective epimorphisms then h is an effective epimorphisms.
• If f and g are monomorphisms then h is a monomorphism.
• If h is an effective epimorphism then f is an effective epimorphism.
• If h and f are monomorphisms then g is a monomorphism.

Proof. [9]. �

Lemma 1.13. The intersection of the effective epimorphisms class with the mo-
nomorphisms class is exactly the class of isomorphisms.

Proof. [19]. �

Lemma 1.14. The factorisation system described above is orthogonal. In detail,
for any effective epimorphism f : A � C and any monomorphism g : B ↪→ D in H
the mapping space (defined in [9]) MapHA//D (B,C) is a contractible simplicial set.

Proof. [9]. �

Remark. It basically says that the space of anti-diagonal arrows h : C → B (which
is a simplicial set) in the commutative diagram (in Ho(H))

(3)
A B

C D

←→f

←→

←→ g

←→

← →
h

which make the triangles commute (in Ho(H)) is homotopy equivalent to the
terminal object.

Corollary 1.15. Let us have any morphism f : A→ B in H. There is up to an
isomorphism only one triple (C, a, b) where a : A→ C is an effective epimorphism
and b : C → B is a monomorphism such that f = b ◦ a in Ho(H).

Proof. Assume we have two such triples (C1, a1, b1) and (C2, a2, b2). From the
lifting property we get a unique morphism d : C1 → C2. From the Lemma 1.12 we
might deduce that d has to be an effective epimorphism and also a monomorphism.
From the Lemma 1.13 we know that it has to be an isomorphism. �
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After this short discussion about some general properties of (−1)-connected –
(−1)-truncated orthogonal factorisation system in H we may apply the knowledge
to our subject of concern.

Let us have morphism ∇ : Π(M)→ BG and suppose that its underlying prin-
cipal G-bundle is given by g : M → BG, meaning that we have g = ∇ ◦ i in
Ho(Sh(∞,1)(Mfd)). Then we have a sequence

M Π(M) BG←→i ←→∇

which can be due to the orthogonal factorisation technology decomposed as follows:

(4)

M Π(M) BG

coim1(i) coim1(∇)

coim1(g)

← →i

←

� ←

�

← →∇

←�

←↩ → ←↩ →

←↩ →

Now we can draw the picture comparing factorisations of two different ∇1,∇2 :
Π(M)→ BG which are above the same g : M → BG

coim1(g)

coim1(i) coim1(∇1)

M Π(M) BG

coim1(i) coim1(∇2)

coim1(g)

←↩
→

←↩
→

← �

←↩ →

← →i

←

�

← � ← �

←

�

← →∇1← →∇2

←

�

←↩
→ ←↩

→

←↩
→

Due to the Corollary 1.15 we can easily see that any two ∇1,∇2 : Π(M)→ BG
which are above the same g : M → BG give birth to the diagram

(5)
coim1(g) coim1(∇1)

coim1(∇2) BG

←
↩→

←↩ →
←
↩→c∇1

←↩ →c∇2

which commutes in Ho(Sh(∞,1)(Mfd)).

With this knowledge we can define a keynote of this paper – the generalised
Atiyah space.
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Definition 1.16 (Generalised Atiyah space). Let us have a classifying morphism
g : M → BG for a principal G-bundle and consider all morphisms ∇ : Π(M) →
BG which satisfy g = ∇ ◦ i in the homotopy category Ho(Sh(∞,1)(Mfd)). Any
factorisation for g and ∇ produces a monomorphism coim1(g) ↪→ coim1(∇) as we
have seen on the diagram (5). All such monomorphisms form a diagram (or better
say – its coherent nerve), let us denote the diagram D. If we present this diagram in
the model 1-topos homCat(Mfdop, sSet)lp we get an object in homCat(Mfdop, sSet)Dlp
with fibrant-cofibrant vertices. Finally we take a wide local 7 homotopy-pushout on
this and call the colimiting cocone as the generalised Atiyah space associated to g.
We will denote the colimiting object as At(g).
Remark. For the construction and another motivation behind considering coim1(g)
space (called higher Atiyah groupoid therein) see [13]. In a different perspective
but also considering the object coim1(g) there is given in [4] a construction of an
Atiyah sequence from integrated Kostant-Souriau ∞-group extensions.

The construction described above has indeed several important properties which
are shown in the next.
Lemma 1.17. For each choice of a classifying morphism g : M → BG we have
canonically given pair of morphisms

coim1(g) At(g) BG.←→αg ←→

Composition of these (in Ho(Sh(∞,1)(Mfd)) ) gives a monomorphism cg : coim1(g) ↪→
BG coming from a factorisation of g : M → BG.
Proof. The first morphism is simply given by a composition (a morphism α∇ is
mono due to the stability of monomorphisms under pushouts in H)

coim1(g) coim1(∇) At(g)←↩ → ←↩ →α∇

for an arbitrary∇ over g, which is well defined since the wide local homotopy-pushout
square commutes (in Ho(Sh(∞,1)(Mfd))) directly from the definition. Because of
the universal property of local homotopy-pushout and because of homotopical
commutativity of (the wide version of) the diagram (5) we get a unique (in
Ho(Sh(∞,1)(Mfd))) morphism cAt(g) : At(g)→ BG. The second part of this lemma
is an easy consequence of commutativity of diagrams. �

Lemma 1.18. Every ∇ : Π(M)→ BG over g : M → BG uniquely (in Ho(Sh(∞,1)
(Mfd)) ) factorises through At(g).
Proof. Suppose we are given any ∇ : Π(M) → BG over g : M → BG. When we
factorise it ∇ = c∇ ◦ ∇′ and make a substitution for c∇ coming from the equality
c∇ = cAt(g)◦α∇, where α∇ : coim1(∇)→ At(g) is the morphism from the colimiting
cocone of the generalised Atiyah space, we immediately observe that ∇ = cAt(g)◦∇g,
where ∇g : Π(M)→ At(g) is the desired morphism. �

7There are always two in general non-equivalent definitions of homotopy universal constructions,
for our purposes we use the local one. However, both constructions (local and global) on diagrams
with fibrant-cofibrant vertices give the same answer up to a weak equivalence. [14]
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Definition 1.19. We call such morphisms ∇g : Π(M)→ At(g) (viewed as elements
of Ho(Sh(∞,1)(Mfd))) as the Atiyah connections associated to g : M → BG.

As we will state in the next there is a necessary and at the same time sufficient
condition for all Atiyah connections to encode some flat connection over g.

Lemma 1.20. Every morphism ∇g : Π(M) → At(g) which originates from the
factorisation of some ∇ : Π(M)→ BG over g : M → BG makes the diagram

(6)
M At(g)

Π(M)

←

→
i

← →αg◦g′

← →

commute in Ho(Sh(∞,1)(Mfd)) and every morphism f : Π(M)→ At(g) rendering the
diagram above commutative in Ho(Sh(∞,1)(Mfd)) is an Atiyah connection associated
to g : M → BG.

Proof. Will be showed in the upcoming paper. �

Definition 1.21. We call the property above as the section property of the Atiyah
connections.

Remark. There is a paper in preparation where we discuss how exactly this pro-
perty is equivalent to the splitting of a generalised Atiyah sequence of L∞-algebroids.

2. On the construction of a generalised Atiyah sequence

Due to the additional structure – a quadruple of adjoint (∞, 1)-functors between
Sh(∞,1)(Mfd) and Ŝh(∞,1)(Mfd), the (∞, 1)-topos of formal smooth ∞-groupoids,
which is called a differential cohesive structure [25] we are allowed to speak about a
relationship between constructions in Sh(∞,1)(Mfd) and its infinitesimal neighbou-
rhood. More specifically we recall a presentation of the higher Lie differentiation
functor – the one-jet functor as defined in [26] and apply its derived version on
Atiyah connections ∇g : Π(M) → At(g) viewed as elements of a certain hom-set
in the homotopy category Ho(sPSh(Mfd)lp). This is the route which might lead us
to the desired correspondence between higher differential cohomology theory with
the flat coefficient object [BG and the space of sections of the generalised Atiyah
sequence.

2.1. Introduction of a derived one-jet functor. For a recollection of an
NQMfd, an 1-category of differential non-negatively graded manifolds we refer
the reader to [8]. As explained, for instance, in [16] the category NQMfd is a full
subcategory of dgcAlgopR the opposite category of cochain dg-algebras over R. There
(Ibid.) is also explained how to view NQMfd as a subcategory of sPSh(Mfdsynth) of
simplicial presheaves over formal smooth manifolds Mfdsynth. For the definition and
further discussion of formal manifolds see [25].
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Remark. Note that sPSh(Mfdsynth) has analogously to sPSh(Mfd) its own local
projective model structure. Then one less trivial observation is that the presentation
of this model category is weakly equivalent to Ŝh(∞,1)(Mfd).

Now let us invite the one-jet functor!

Remark. Even though this functor can be extended to the category of all simplicial
manifolds we do well without this generality and focus on (finitely truncated) Kan
simplicial manifolds only.

Theorem 2.1 (Ševera ’06). Let us have K (finitely truncated) Kan simplicial
manifold. Then the functor homKanMfdfin

Z2
(hocolim Č(•),K ) : SSMop → Set is a re-

presentable presheaf on the category SSM of surjective submersions Y → X in
SMfd.

Remark. The symbol Č(Y → X) means nothing but the Čech simplicial resolution
of the morphism Y → X as we know it from the previous chapter. Under the
symbol SMfd we understand a category of Z2-graded finite-dimensional smooth
manifolds. The symbol KanMfdfin

Z2
stands for the category of finitely truncated

Kan simplical Z2-graded smooth manifolds. And K can be seen as an object of
KanMfdfin

Z2
under the embedding KanMfdfin ↪→ KanMfdfin

Z2
.

Observation (Ševera): If we moreover restrict this functor on the subcategory SSM1
of surjective submersions of type R0|1 × X → X (the projection on the second
component), it is representable as the presheaf on SMfd.

Remark. This observation is enough for getting a structure of NQ manifold.
Indeed, we may restore a homological vector field and extend a Z2-gradation to an
N0-gradation as follows. We observe that this representative is naturally furnished
with an action of a monoid hom(R0|1,R0|1). Then two generating fundamental vector
fields of this action provide the data. Hence, as a result we obtain a super-smooth
(finite-dimensional) manifold furnished with some homological vector field (giving
the bracket structure) and some Euler vector field (defining N0-gradation), in other
words NQ manifold in its standard definition. This is the NQ manifold which we
associate with the Kan simplicial manifold K when we take the one-jet of K .

Definition 2.2. The functor J1 : KanMfdfin → NQMfd described above8 will be
called one-jet functor.

Remark. We stress that we are working with finitely truncated Kan simplicial
manifolds by decorating KanMfd with a superscript fin.

For both categories we know their relation to the respective model categories,
namely due to the sequence KanMfdfin ↪→ sMfd→ sPSh(Mfd)lp (from the diagram
(1)) and NQMfd→ sPSh(Mfdsynth)lp. These are faithful (but not full) functors. Let
us assign fibrancy and cofibrancy property to objects of KanMfdfin and NQMfd

8An action on morphisms is fixed by functoriality of homKanMfdfin
Z2

(hocolim Č(•),K ).
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which are in the image of these functors also fibrant and cofibrant objects. Moreover
assign for all pairs of parallel morphisms a property of being homotopic whenever
they are so in the image of these functors. Now we are prepared for the following:

Lemma 2.3. The one-jet functor J1 : KanMfdfin → NQMfd preserves fibrant ob-
jects, cofibrant objects and the homotopic relation on the pairs of parallel morphisms.

Remark. Let us denote the full subcategory of the homotopy category
Ho(sPSh(Mfd)lp) on objects of KanMfdfin as Ho(KanMfdfin) and the full subca-
tegory of the homotopy category Ho(sPSh(Mfdsynth)lp) on objects of NQMfd as
Ho(NQMfd).

Definition 2.4. Let us consider a functor Ho(J1) : Ho(KanMfdfin)→ Ho(NQMfd)
defined as a map Ho(J1) : X 7→ J1(X) on objects and as a map Ho(J1) : Ho(f) 7→
Ho(J1(f)) on morphisms of Ho(KanMfdfin). We call this functor a derived one-jet
functor.

Remark. This definition is well posed due to the Lemma 2.3.

2.2. Notion of a generalised Atiyah sequence.

Definition 2.5. A short exact sequence in the category NQMfd is a functor S : B →
NQMfd from a short sequence diagram category B such that the homotopy functor
Ho(S) : B → Ho(NQMfd) is an ordinary (1-categorical) short exact sequence.

Remark. The homotopy functor above is again defined simply as a map Ho(S) :
X 7→ S(X) on objects and as a map Ho(S) : f 7→ Ho(S(f)) on morphisms.

Remark. For a notational reason we denote objects and morphisms (besides
identities and compositions) in the short sequence diagram category B as

A B C D E

←→a ←→b ←→c ←→d

This concept is naturally accompanied with the notion of a section.

Definition 2.6. A (right) section of a short exact sequence S : B → NQMfd is a
morphism φ : B(E)→ B(D) such that Ho(S(d) ◦ φ) = idHo(B(E)).

Remark. All our sections will be right sections hence we will drop this adjective.

Now we can define the main subject of this chapter – a generalised Atiyah
sequence.

Definition 2.7. A generalised Atiyah sequence associated with g : M → BG is
a short exact sequence in the category NQMfd whose set of sections bijectively
corresponds to the set of Atiyah connections for g : M → BG.

Under certain circumstances there is a relatively simple way how to search
for a generalised Atiyah sequence. Even though we spoil the full generality the
remaining case still enjoy a decent favour of theoretical and mathematical physicists.

These two extra assumptions are stated and justified by the following two
lemmas.
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Lemma 2.8. If M is a n-connected smooth finite-dimensional manifold then

trnΠ(M) ∼= ∗
in Ho(Sh(n,1)(Mfd)).
Proof. It suffices to show trnΠ(M) ∼= coim1(M → ∗), because we know (as
discussed in [25] for instance) that coim1(M → ∗) ∼= ∗ in Ho(Sh(n,1)(Mfd)). Details
are omitted in this paper. �

Remark. Let us facilitate the notation and write Π(M,n) instead of trnΠ(M) for
the (n− 1)-truncation of Π(M). Moreover we denote (n− 1)-truncated objects in
Sh(∞,1)(Mfd) and their images under the application of trn by the same symbol.
Lemma 2.9. If a classifying space BG is n-coskeletal, then

π0homSh(∞,1)(Mfd)(Π(M),BG) ∼= π0homSh(n,1)(Mfd)(Π(M,n),BG) .
Proof. This is verified immediately when one considers the adjunction trn a coskn
and the fact that the adjunction unit9 X → coskn ◦ trn(X) is an isomorphism in
homotopy category for X being n-coskeletal. �

Remark. It is the matter of fact that BG is an n-coskeletal object in H whenever
G is an (n− 1)-group object in H.

As a direct consequence of 2.8 and 2.9 we have:
Corollary 2.10. If M is an n-connected smooth finite-dimensional manifold and
BG is an n-coskeletal classifying space then the generalised Atiyah space At(g) is
isomorphic to coim1(g) in the homotopy category Ho(Sh(n,1)(Mfd)).
Proof. Due to the Lemma 2.9 we know this is sufficient for the conclusion in the
homotopy category Ho(Sh(∞,1)(Mfd)) to work in Ho(Sh(n,1)(Mfd)) so we further pro-
ceed in Ho(Sh(n,1)(Mfd)). Because for any non-empty object M ∈ Sh(∞,1)(Mfd) the
terminal morphism is an effective epimorphism, we have that the (n− 1)-truncated
unit in : M → Π(M,n) is an effective epimorphism. From the decomposition
diagram (4) it then immediately follows that coim(g) ↪→ coim(∇) is actual iso in
Ho(Sh(n,1)(Mfd)). And from the very definition of At(g) we can conclude that (αg)n
is an isomorphism in the homotopy category Ho(Sh(n,1)(Mfd)). �

All these imply one important statement:
Corollary 2.11. If M is an n-connected smooth finite-dimensional manifold and
BG is n-coskeletal then the section property 1.20 implies commutativity of this
triangle

(7)
TM Ho(J1)coim1(g)

TM

←

→
∼

← →Ho(J1)∇g

←�

Ho(J1)χ

where TM is a tangent Lie algebroid associated to M .

9See [27] for details.
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Proof. The proof resides in a computation of the derived one-jet of a groupoid
object equivalently described10 by an effective epimorphism M � ∗. Details are
omitted in this paper. �

From this argumentation we immediately see that any short exact sequence
which in the homotopy category Ho(NQMfd) looks as

0 Ho(J1) ker(χ) Ho(J1)coim1(g) TM 0←→ ←→ ←→Ho(J1)χ ←→

is a potential candidate for a generalised Atiyah sequence associated to g : M → BG
because sections of such short exact sequence (as defined in 2.6) exactly corresponds
to commutative triangles (7) and thus to one-jets of Atiyah connections.

However, to get a proper (that is bijective) dictionary between Atiyah connections
and sections of such short exact sequence there is needed further investigation.

2.3. Further work. This last subsection comprises a conjecture which is being
currently investigated and lacks of full proof yet. It rather shows directions of our
further research and anticipates those steps which would lead us to the desired
outcomes of this project.

Even though the triangle (6) represents necessary and sufficient condition, its
derived one-jet counterpart of their associated groupoids (7) serves only as a
necessary requirement11. It ensure us that the following conjecture is at least well
posed.

Conjecture 2.12. If M is a n-connected smooth finite-dimensional manifold and
BG is n-coskeletal then the derived one-jet provides a bijection

B : hom@
Ho(Sh(∞,1)(Mfd))(Π(M),At(g))→ hom∆

Ho(NQMfd)(TM,Ho(J1)coim1(g)) .

Remark. The symbol @ above hom indicates that we take only a subset consisting
of Atiyah connections, similarly ∆ above hom indicates that we take a subset
consisting of morphisms which make the triangle (7) commute.

Remark. This conjecture would be solved with tools of a homotopy higher Lie
theory which is still under current development and thus might take a longer time
till being answered.

As we can anticipate despite being hard to prove this conjecture 2.12 gives the
key for finding a bridge between the higher differential cohomology theory with
the coefficient object [BG and generalised Atiyah sequences since (as we already
know from the previous chapter):

π0hom(g)
Sh(∞,1)(Mfd)

(
Π(M),BG

) ∼= hom@
Ho(Sh(∞,1)(Mfd))

(
Π(M),At(g)

)
,

where the symbol (g) above hom means that we consider only connections over g.

10In any (∞, 1)-topos every groupoid object is effective which means that Grpd(H) ∼= H∆1
eff−epi.

11This is because commutative squares are sent to commutative squares by functors.
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