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The category of compactifications and its coreflections

Anthony W. Hager, Brian Wynne

Abstract. We define “the category of compactifications”, which is denoted CM,
and consider its family of coreflections, denoted corCM. We show that corCM

is a complete lattice with bottom the identity and top an interpretation of the
Čech–Stone β. A c ∈corCM implies the assignment to each locally compact,
noncompact Y a compactification minimum for membership in the “object-
range” of c. We describe the minimum proper compactifications of locally com-
pact, noncompact spaces, show that these generate the atoms in corCM (thus
corCM is not a set), show that any c ∈corCM not the identity is above an
atom, and that β is not the supremum of atoms.

Keywords: compactification; coreflection; atom in a lattice

Classification: 54B30, 54C10, 54D35, 06B23, 18A40

1. Introduction

The coreflections (and reflections) of various categories of topological spaces

have been much studied (just for example, [9], [12, Chapter 9]). We introduce

here a category CM of compactifications and show that the collection corCM

of its coreflections is a proper class, though the only one previously known is the

famous Čech–Stone β. Moreover, we show that corCM possesses the structure

of a complete lattice and we characterize its atoms.

While the present paper is about compactification theory, it is representative

of more general ideas applicable, and under study by the authors, in a variety of

situations. Most closely related concerns covers of compact spaces (a subject with

considerable history, e.g. [5], [6], [12]): our paper [8] gives a characterization of the

atoms in the lattice of “covering operators”. But also, “dually” (the arrows go in

the opposite direction), we are considering, first, in a forthcoming paper, lattice-

ordered groups and rings, where the focus is on “essential extension operators”,

another subject with considerable history, see [2], and the atoms in that lattice.

Further, we are developing these ideas in rather general categories in another

forthcoming paper. Some comment on all this appears in more detail in Section 7

here, and in yet more detail in Section 5 of [8].
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Turning back to the present paper, here is an outline of the contents.

Section 2: The complete lattice C(Y ) of compactifications of the locally com-

pact Y . A standard discussion after [4], then with some novelty, the atoms and

strong atoms therein. In particular, K is the strong atom in C(Y ) if and only if

|K − Y | = 2 and K = βY .

Section 3: The category CM. This has objects (X,M) with X compact Haus-

dorff and M a closed nowhere dense subset of X , i.e., X ∈ C(X −M); and maps

the (X,M)
f
←− (Z,N) which express X −M = Z −N ≡ Y and X ≤ Z in C(Y ).

Section 4: corCM, the coreflections in CM. Here “coreflection” takes the

standard categorical meaning, see [10]. The Čech–Stone β is one (the only one

we knew of prior to the present paper). It is shown that corCM is a complete

lattice, with β the top.

Section 5: Atoms in corCM. These are determined as generated one-to-one

from the strong atoms from Section 2. There are (obviously) so many of the latter

that we see that corCM is a proper class.

Section 6: Atoms below c ∈ corCM. Using Section 5, it follows that for every

c > Id in corCM, there is an atom a ≤ c, and via more detail from Section 5,

β is not the supremum of all atoms (raising questions such as “What can be said

about the latter?”).

Section 7: Remarks. Mostly the present paper vs. [8].

2. Compactifications of a locally compact space

We first sketch out the basics, more or less borrowing from [4], then identify

the atoms and strong atoms in the lattice C(Y ) of compactifications of the locally

compact Y , the latter being crucial to the sequel.

Comp denotes the category of compact Hausdorff spaces with continuous

maps. For Y Tychonoff (locally compact or not), a compactification of Y is

a Y
f
−→ fY , fY ∈ Comp and f a dense embedding of Y in fY , and C(Y ) is

a family of these. One usually writes (fY, f) ∈ C(Y ).

In addition, C(Y ) is ordered as: (fY, f) ≤ (gY, g) means there is continuous

fY
h
←− gY with hg = f , and they are equivalent if the h is a homeomorphism; that

occurs if and only if (fY, f) ≤ (gY, g) and (gY, g) ≤ (fY, f). Reducing C(Y ) by

this equivalence creates a set (instead of a proper class). Then C(Y ) will usually

denote this set, with Y
f
−→ fY constructed as f(y) = y (all compactifications

contain Y ). When we do this, we will drop the f and just write “K ∈ C(Y )”,

meaning K ∈ Comp and K contains Y densely. If K,L ∈ C(Y ), then K ≤ L

means the corresponding pairs obey that relation in C(Y ), and K < L means

K ≤ L and L � K.
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Proposition 2.1. Then (C(Y ),≤) is a complete upper semi-lattice with top the

Čech–Stone (βY, β).

In addition, (C(Y ),≤) is a lattice (which is complete) if and only if Y is locally

compact, and then the bottom of the lattice is the one-point compactification

of Y , denoted Ẏ = Y ∪ {∞}.

If (L,≤) is any lattice with bottom 0 and top 1, an atom in L is an a > 0 for

which 0 ≤ x ≤ a implies x = 0 or x = a. G. Birkhoff in [1] states the definition

of a strictly meet irreducible element m ∈ L as the minimum in {x ∈ L : 0 < x};

we call such m the strong atom of L. Such m may not exist; if it does it is unique,

and the unique atom; not every atom is strong.

Henceforth, C(Y ) refers to the complete lattice of compactifications for Y lo-

cally compact and not compact. We now describe the atoms and strong atoms in

C(Y ) (apparently novel here).

Lemma 2.2. Suppose K ∈ C(Y ). Then Ẏ ≤ K, which we express as Ẏ
ϕ
←− K.

If p 6= q in K and ϕ(p) = ϕ(q) (thus p, q /∈ Y ), let Kpq

ϕpq

←−− K denote the

continuous quotient map which identifies only p and q. Then, Kpq ∈ C(Y ) and

Kpq < K.

Proof: Routine. �

Proposition 2.3. (a) We have that A is an atom in C(Y ) if and only if

|A− Y | = 2.

(b) For some Y there are such A, and other Y not. Sometimes such A is the

unique atom, and sometimes not.

Proof: (a) If K ∈ C(Y ) has |K−Y | ≥ 3, then Lemma 2.2 shows some p, q yield

Ẏ < Kpq < K, so K is not an atom.

If |A− 2| = 2, then Lemma 2.2 shows Ẏ is unique for Ẏ < A, so A is an atom.

(b) For example, Y = R (the real line) has unique A = {−∞} ∪ R ∪ {∞} and
Y = R× R has no A. Furthermore, Y = N has many A with |A− N| = 2 (write

N = N1 ∪N2 disjoint with each Ni infinite, and let A = Ṅ1 ∪ Ṅ2 disjointly). See

[11] for more about 2-point compactifications. �

Here is a construction, notation, and terminology which will persist throughout

the paper.

Let X be any Tychonoff space for which there are p 6= q in βX − X . (If

there are no such p, q, i.e., |βX − X | ≤ 1, then X is called almost-compact.

See [5].) Then, Y = βX − {p, q} is locally compact, and in the notation of

Lemma 2.2 and Proposition 2.3, (βX)pq = Ẏ . Then, βX = βY is the unique

2-point compactification of Y , and we have Ẏ
γ
←− Ÿ = βY (here γ is the obvious

ϕpq from Lemma 2.2). We call such a construct a “γ”.
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Note that, for many X there are many resulting γ’s, and there is a proper

class of X ’s yielding γ’s which are very different (in the terminology introduced

in Section 3 below, “not isomorphic in CM”).

We call L ∈ C(Y ) proper just in case Ẏ < L in C(Y ). Now, for general

noncompact locally compact Y , there is the possibility of a minimum proper

compactification: a properK ∈ C(Y ) such that K ≤ L for every proper L ∈ C(Y ).

Theorem 2.4. Suppose K ∈ C(Y ). These are equivalent.

(a) K is the strong atom in C(Y ).

(b) K is the minimum proper compactification of Y .

(c) |K − Y | = 2 and K = βY .

When these obtain, we express Ẏ ← K as Ẏ
γ
←− Ÿ = βY , per previous remarks.

Proof: It is evident that minimum proper compactifications and strong atoms

are the same, so (a) ⇔ (b). And, it is evident that (c) ⇒ (b), since C(Y ) =

{Ẏ , βY } when (c) holds.

We show (b) ⇒ (c). Suppose (b) holds. We shall use Lemma 2.2 and its

notation.

First, |K − Y | = 2: if there are distinct p, q, r ∈ K − Y , then Kpq is proper

and Kpq < K.

Now write K = Y ∪ {q1, q2}, and suppose L ∈ C(Y ) is proper. Then K ≤ L

by (b), and the situation is expressed as

Ẏ K = Y ∪ {q1, q2}oo

L

ϕ

OO

ϕ

88q
q

q
q

q
q

from which we see that L−Y = ϕ−1({∞}) has only two points: if not, then there

are different p, q, r ∈ ϕ−1({∞}) with ϕ(p) = ϕ(q) = q1 and ϕ(r) = q2. But then

K � Lpr, contradicting (b).

Applying the preceding to L = βY , the natural map K ← βY must be one-

to-one, i.e. βY = K. �

3. The category CM of compactifications

Definition 3.1. The category CM has

Objects: (X,M) with X ∈ Comp and M a closed nowhere dense subset of X

(X ∈ C(X −M)), and
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Morphisms (called compactification maps): (X,M)
f
←− (Y,N), where X

f
←− Y

is a continuous surjection with f−1(M) = N , and f restricted to Y −N is a home-

omorphism onto X −M (so X ≤ Y is witnessed by f in C(X −M)).

We sometimes write “f ∈ CM” to indicate that f is a CM-morphism.

Proposition 3.2. If f, g ∈ CM, then fg ∈ CM if fg is defined.

We have that CM is a category with identity morphisms the (X,M)
id
←−

(X,M) given by id(x) = x for every x ∈ X .

Proof: Evident. �

Proposition 3.3. Suppose (X,M) and (Y,N) are in CM, and X
h
←− Y is

a function. These are equivalent.

(a) h is a homeomorphism with h−1(M) = N .

(b) (X,M)
h
←− (Y,N) is an isomorphism in CM.

(c) The restriction X − M
h◦

←−− Y − N of h is a homeomorphism, and h

witnesses the equivalence of X,Y in C(X −M).

Proof: (a) ⇔ (c) is immediate from the definition of equivalent compactifica-

tions.

(a) ⇒ (b) Assuming (a), then (X,M)
h
←− (Y,N) is in CM, and clearly

(X,M)
h−1

−−→ (Y,N) satisfies (a) also. Thus h−1 ∈ CM. Thus (b).

(b) ⇒ (a) Then h is invertible in CM and (a) follows. �

The following will be used later to establish the uniqueness of certain maps.

Proposition 3.4. Every map in CM is CM-epic and CM-monic.

Proof: Epic (or monic) have the categorical meaning of right (left, respectively)

cancellable, see [10].

Every map in CM is a surjection, thus Sets-epic and therefore CM-epic.

Now consider

(Z, P ) (X,M)
m

oo (Y,N)
foo
g

oo

in CM with mf = mg. With (·)◦ denoting restriction as in 3.3 (c), and noting

m◦f◦ = (mf)◦ = (mg)◦ = m◦g◦, all these (·)◦ are homeomorphisms. In particu-

lar, m◦ is, thus, one-to-one, thus Sets-monic, so m◦f◦ = m◦g◦ implies f◦ = g◦.

Then, f and g are continuous extensions of the same map, whence f = g. �

Remarks 3.5. (a) (X,M)
f
←− (Y,N) in CM implies X

f
←− Y is a cover per [8],

and in the category of compact spaces with only covers as maps, all maps are

monic, see [6], so Proposition 3.4 follows. The proof above is simpler.
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(b) We are not clear on what it means for

(X,M) (Y,N)
foo
g

oo

in CM. This does not imply f = g: Given (X,M)
f
←− (Y,N), suppose Y

h
←− Y is

a homeomorphism that is not the identity with h(Y −N) = Y −N . If g = fh, then

f 6= g (but still, (Y,N) and (Y, h−1N) correspond to equivalent compactifications

of X −M).

4. Coreflections in CM

A subcategory A of a category B is coreflective if the inclusion functor A→ B

has the right adjoint A
a
←− B. Then a is called the coreflection of B onto A.

This means: for every B-object B, there is B
aB←−− aB such that whenever A is an

A-object and B
f
←− A, there is a unique aB

f̄
←− A such that aB f̄ = f , as

B aB
aBoo

A

f

OO

f̄

>>⑤
⑤

⑤
⑤

If all aB are monic, then A is called monocoreflective.

The topic of this paper is coreflections in CM, which is a peculiar category.

We first note the situation in the related but less peculiar categories of Tychonoff

spaces with continuous maps (Tych) and compact Hausdorff spaces with con-

tinuous maps (Comp). By virtue of their completeness properties in each case,

monocoreflective means closed under coproducts and quotients.

Tych has many monocoreflective subcategories, e.g., discrete spaces, P -spaces,

and Tych itself, while Comp has only Comp (easily seen).

See [9] and [10] for elaboration on the above remarks.

CM has no apparent completeness properties, and all maps are monic. One

may think of a coreflection a with range A in CM as an assignment to each

(X,M) of a (X,M) ← a(X,M) which is the minimum preimage with domain

in A (which means minimum in the order in C(X −M)).

Let corCM be the class of coreflection functors in CM, and for a ∈ corCM,

let

fix(a) = {(X,M) : (X,M)
a(X,M)
←−−−− a(X,M) is a CM-isomorphism}

(this is the object range of a, i.e., the associated coreflective subcategory). Note

that fix(a) is closed under isomorphic copies: if (X,M) ∈ fix(a) and (X,M) ←
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(Y,N) is a CM-isomorphism, then (Y,N) ∈ fix(a). The class corCM is ordered

“pointwise” as: a ≤ b means that for every (X,M) there is a(X,M)
f
←− b(X,M)

with a(X,M)f = b(X,M); a ≤ b if and only if fix(a) ⊇ fix(b).

Evidently, Id ≤ a for every a (“Id” is (X,M) 7→ (X,M)
id
←− (X,M), this latter

id being id(x) = x for all x ∈ X). That is, Id is the bottom of corCM. We turn

to the top. There the Čech–Stone β emerges, and we assume knowledge, see [5],

[4], inter alia.

Call (K,N) maximal if (K,M)
f
←− (X,M) in CM implies f is a CM-isomor-

phism (i.e., K
f
←− X is a homeomorphism).

Proposition 4.1. We have that (X,N) is maximal if and only if X − N is

C∗-embedded in X , i.e., X = β(X −N) and N = β(X −N)− (X −N).

For every (X,M), there is (X,M)
f
←− (K,N) with (K,N) maximal, namely,

K = β(X −M) with N = β(X −M) − (X −M), f witnessing β as maximum

compactification.

Proof: Properties of β, especially that βZ is the maximum compactification

of Z in Tych. �

Proposition 4.1 defines a function (X,M) 7→ (X,M)
f
←− β(X,M), and describes

fix(β).

Theorem 4.2. (a) We have β ∈ corCM, and

(b) a ≤ β for every a ∈ corCM.

Proof: (a) To see this, just check the items in the definition of coreflection given

above.

(b) For every (X,M), a(X,M) is a compactification of X −M , and β(X,M)

is the maximum such. �

We say that a family F of CM-objects has a common CM-lower bound just in

case there is a locally compact not compact Z such that X−M is homeomorphic

to Z whenever (X,M) ∈ F . Then, X ∈ C(Z) whenever (X,M) ∈ F , so Y =
∧

{X : (X,M) ∈ F} exists in the complete lattice C(Z) and we write
∧

F for

the CM-object (Y, Y − Z). Note that for every (X,M) ∈ F , there is a map
∧

F ← (X,M) in CM (i.e., the map witnessing Y ≤ X in C(Z)).

Consider the following property that a collectionB of CM-objects might enjoy.

Property 4.3. B is closed under isomorphic copies and for every family F ⊆ B,

if F has a common CM-lower bound, then
∧

F ∈ B.

Here is a characterization of sorts of the classes fix(a) for a ∈ corCM.
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Theorem 4.4. (a) If b ∈ corCM, then fix(b) has Property 4.3.

(b) If B is a collection of CM-objects that has Property 4.3, then there is

b ∈ corCM with fix(b) = B.

Proof: (a) Suppose b ∈ corCM. Then, as was mentioned earlier, fix(b) is closed

under isomorphic copies. Suppose F = {(Xi,Mi)}i∈I ⊆ fix(b) has a common

CM-lower bound. Then, one obtains (Y,N)
li←− (Xi,Mi) in CM for every i ∈ I,

where (Y,N) =
∧

F . Let b(Y,N) = (Y ′, N ′) and note that b(Y,N) witnesses

Y ≤ Y ′ in C(Z). Applying the universal property for b yields

(Y,N) b(Y,N) = (Y ′, N ′)
b(Y,N)oo

(Xi,Mi) ∈ fix(b)

li

OO 44❥❥❥❥❥❥❥❥

showing Y ′ ≤ Xi in C(Z) for all i ∈ I. But Y is the greatest lower bound of

the Xi’s, so Y ′ ≤ Y and hence Y and Y ′ are equivalent in C(Z). Thus, using

Proposition 3.3, b(Y,N) is a CM-isomorphism, i.e., (Y,N) ∈ fix(b).

(b) Suppose B has Property 4.3, let (X,M) be given, and define b(X,M) =
∧

F = (Y, Y − Z), where Z = X −M and F is the family of (W,L) ∈ B such

that W − L is homeomorphic to Z and X ≤ W in C(Z) (here Z witnesses that

F has a common CM-lower bound); the map b(X,M) is taken to be the one that

witnesses X ≤ Y in C(Z). Since B obeys Property 4.3, we know b(X,M) ∈ B.

Moreover, we have fix(b) = B. For the required universal mapping property:

(X,M) b(X,M)oo

(W,L) ∈ B

f

OO

f̄

77♦
♦

♦
♦

♦
♦

because f means (W,L) ∈ F , and b(X,M) =
∧

F , so f̄ exists by definition. �

Corollary 4.5. corCM is a complete lattice, with bottom Id and top β, see

Proposition 4.2.

Proof: Consider the oppositely ordered family {fix(b) : b ∈ corCM}. Using

Theorem 4.4 for a subfamily {bj}J of corCM, each Bj = fix(bj) having Prop-

erty 4.3, one checks that
⋂

J Bj retains Property 4.3.

This gives
∧

J Bj , thus dually
∨

J bj , in corCM. �

Remarks 4.6. (a) A “direct” construction of c ≡
∨

J bj could proceed as follows.



The category of compactifications and its coreflections 373

Given (X,M) and writing bj(X,M) = (Yj , Nj), one sees that Yj ≤ βX in

C(X −M) for all j ∈ J , see Theorem 4.2, so one may use
∨

J Yj in the complete

lattice C(X −M) to define c(X,M).

(b) Distinctly related to Theorem 4.4 and Corollary 4.5 are (1) [12, 8.4 (f), (t)],

which concerns covers of spaces (the connection discussed further below in Sec-

tion 7), and (2) [7, 2.4], which concerns a dual situation of hull operators in a class

of lattice-ordered groups.

(c) A consequence, or interpretation, of the development here is: if B = fix(b)

for b ∈ corCM, and Z is any locally compact not compact space, then in the

complete lattice C(Z), there is the least compactification lying in B, namely

b(Ż, {∞}) (Ż = Z ∪ {∞}, the one-point compactification).

5. Atoms in the coreflections

Recall from Section 2 the minimum proper compactification of some locally

compact not compact Y , which are the Ẏ
γ
←− Ÿ = βY , which we call a “γ”.

One more piece of notation: for any (X,M), we write [(X,M)] for the class of

CM-objects isomorphic to (X,M).

Theorem 5.1. For every Ẏ
γ
←− Ÿ = βY , there is a corresponding a(γ) ∈ corCM

given by

(X,M)
a(γ)(X,M)
←−−−−−− a(γ)(X,M)

=

{

(Ẏ , {∞})
γ
←− (Ÿ , Ÿ − Y ) if (X,M) = (Ẏ , {∞}),

(X,M)
id
←− (X,M) if (X,M) 6= (Ẏ , {∞}),

(where “=” means “CM-isomorphic to”) with

fix(a(γ)) = |CM | − [(Ẏ , {∞})].

Proof: Using Theorem 2.4, it is simple to check

(i) the universal mapping property: for every (X,M), and every (X,M)
f
←−

(Z,N) ∈ fix(a(γ)), there exists f̄ (unique by Proposition 3.4) making the

diagram

(X,M) a(γ)(X,M)oo

(Z,N)

f

OO

f̄

88q
q

q
q

q

commute.
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(ii) a(γ)(X,M) ∈ fix(a(γ)) for every (X,M) (since Ẏ and Ÿ are not homeo-

morphic).

(iii) fix(a(γ)) = |CM | − [(Ẏ , {∞})].

�

Theorem 5.2. Suppose a ∈ corCM.

(a) Then a is an atom in corCM if and only if there exists a unique (up to

CM-isomorphism) (Z,M) /∈ fix(a).

(b) When (a) occurs, then

◦ a(Z,M) corresponds to the minimum proper compactification in

C(Z −M), thus a(Z,M) corresponds to a γ (per remark after Theo-

rem 2.4), and

◦ a = a(γ) (per [10], this = means “naturally equivalent”).

Proof: (a) For necessity, we prove the contrapositive. Assume that (Z1,M1) 6=

(Z2,M2) are not in fix(a). If Z1−M1 is homeomorphic to Z2−M2, then Z1 and Z2

cannot be equivalent in C(Z1 −M1), so at least one “≤” fails, say Z2 � Z1.

Suppose c ∈ corCM is given by

(Y,N)
c(Y,N)
−−−−→ c(Y,N)

=

{

(Y,N)
id
←− (Y,N) if Y −N ∼= Z1 −M1 and Y ≤ Z1,

(Y,N)
a(Y,N)
←−−−− a(Y,N) if not,

where “∼=” means “homeomorphic”. If so, then (Z2,M2) /∈ fix(c) because either

Z1−M1 6∼= Z2−M2 or Z2 � Z1 in C(Z1−M1), and therefore c(Z2,M2) = a(Z2,M2),

which is not a CM-isomorphism by hypothesis. It is clear that (Z1,M1) ∈ fix(c)

and c ≤ a “pointwise”. Thus Id < c < a, and a is not an atom.

To complete the proof of necessity, we must verify that c ∈ corCM. This can

be done using Property 4.3, but we proceed directly.

First note that, from the definition, (Y,N) ∈ fix(c) if and only if either

(i) Y −N ∼= Z1 −M1 and Y ≤ Z1, or

(ii) (Y,N) ∈ fix(a).

Then c is idempotent, i.e., each c(Y,N) ∈ fix(c): In case (i), this is clear.

In case (ii), (Y,N) ∈ fix(a), and since c ≤ a, (Y,N) ∈ fix(c). This means

c(c(Y,N)) = c(Y,N) as desired.
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As for the universal property, consider

(Y,N) c(Y,N)
c(Y,N)oo

(X,L) = c(X,L)

h

OO

h̄

55❦❦❦❦❦❦❦❦

The cases for (X,L) are again:

(i) X − L ∼= Z1 − M1 and X ≤ Z1. Then Y ≤ Z1 (because of h), so

c(Y,N) = id, so h̄ = h.

(ii) Here (X,L) ∈ fix(a), c(Y,N) = a(Y,N), and c(Y,N) = a(Y,N), so h̄ exists

because a ∈ corCM.

Next, we prove sufficiency in (a). Suppose a ∈ corCM, and there exists

a unique (up to CM-isomorphism) (Z,M) /∈ fix(a), i.e., fix(a) = |CM | −

[(Z,M)]. We show that a is an atom.

Suppose c < a so fix(c) ) fix(a), i.e., there is (Y,N) ∈ fix(c) − fix(a). Then

(Y,N) /∈ fix(a), so (Y,N) = (Z,M). Therefore fix(c) = |CM |, c = Id, and a is

an atom.

(b) Now suppose a ∈ corCM is an atom and (Z,M) /∈ fix(a). Let a(Z,M) =

(Z ′,M ′). Then Z ′ ∈ C(Z −M) is proper because (Z,M) /∈ fix(a). Given proper

Y ∈ C(Z−M) and a map f witnessing Z ≤ Y in C(Z−M), let N = Y −(Z−M)

and consider
(Z,M) a(Z,M)

a(Z,M)oo

(Y,N)

f

OO

a(Y,N)
a(Y,N)

oo

f̄

OO✤
✤

✤

where (Z,M)
f
←− (Y,N) is not a CM-isomorphism (note f̄ exists because a ∈

corCM). Now (Y,N) 6= (Z,M), so (Y,N) ∈ fix(a) and a(Y,N) is a CM-

isomorphism. It follows that Z ′ ≤ Y in C(Z −M). Hence Z ′ is the minimum

proper compactification in C(Z −M). So a(Z,M) is a γ by Theorem 2.4.

Finally, a = a(γ) just because fix(a) = fix(a(γ)). �

6. Atoms below a coreflection

Theorem 6.1. If Id < c ∈ corCM, then there is a Ẏ
γ
←− Ÿ = βY with c ≥ a(γ).

Proof: Let Ẏ
γ
←− Ÿ = βY be given, and recall

fix(a(γ)) = |CM | − [(Ẏ , {∞})].

And recall that for every c, d ∈ corCM, c ≤ d if and only if fix(c) ⊇ fix(d).
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Then c � a(γ) for every γ if and only if Ẏ ∈ fix(c) for every Ẏ
γ
←− Ÿ = βY .

From [6, 9.1] ([8, 3.4]), we have the following, which holds for covers and

therefore for compactifications, stated in those terms with notation following

Lemma 2.2.

Property 6.2. Suppose (X,M)
f
←− (Y,N) is in CM. If (X,M)

h
←− (Z, P )

in CM has (Z, P )
dpq

←−− (Ypq, Ppq) for all p, q ∈ Y with f(p) = f(q), then h is

a CM-isomorphism.

Fix c ∈ corCM. Assume c � a(γ) for every γ. Take (X,M). To complete the

proof of Theorem 6.1, it suffices to show (X,M) ∈ fix(c). If (X,M) ∈ fix(β), then

we are done. So suppose (X,M)
β(X,M)
←−−−−− β(X,M) is not a CM-isomorphism.

We use Property 6.2, with (X,M)
β(X,M)
←−−−−− β(X,M) as (X,M)

f
←− (Y,N) and

(X,M)
c(X,M)
←−−−− c(X,M) as (X,M)

h
←− (Z, P ). Consider (here p, q are such that

β(X,M)(p) = β(X,M)(q))

(X,M) β(X,M)
β(X,M)oo

ϕpq

��
c(X,M)

c(X,M)

OO

β(X,M)pq
(2)

oo❴ ❴ ❴

(1)
ff▼
▼
▼
▼
▼

where ϕpq is as in Lemma 2.2 and (1) is the obvious map jpq such that β(X,M) =

jpqϕpq. Now, the map ϕpq is exactly a Ẏ
γ
←− Ÿ = βY , and therefore β(X,M)pq ∈

fix(c) since c � a(γ). Thus the map (2) exists because c ∈ corCM. Hence,

the hypotheses of Property 6.2 are satisfied, c(X,M) is a CM-isomorphism, and

(X,M) ∈ fix(c). �

The atoms of corCM are the a(γ)’s, β is the maximum coreflection, so β ≥

a(γ) for every γ. Thus β ≥
∨

γ a(γ). But

Theorem 6.3. We have β >
∨

γ a(γ).

Proof: For Γ a family of γ’s, c =
∨

Γ a(γ) is the coreflection for

⋂

Γ

fix(a(γ)) =
⋂

Γ

(|CM | − [(Ẏγ , {∞})]) = |CM | −
⋃

Γ

[(Ẏγ , {∞})].

So, to show β >
∨

γ a(γ) is exactly to show

fix(β) ( |CM | −
⋃

γ

[(Ẏγ , {∞})],

i.e., to find (X,M) 6= (Ẏγ , {∞}) for every γ and (X,M) is not any β(Z, P ). For

example, (X,M) = ([0, 1], {1}) works. �
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7. CM versus Comp#, etc.

The present paper resembles our paper [8] in thrust and some details, hardly

all. It is certainly not the case that the results of [8] imply or are implied by those

here. We comment a bit on the situation.

Recall that the category Comp# has |Comp#| = |Comp| (the same ob-

jects), but X
f
←− Y in Comp# means that f is a cover (continuous irreducible

surjection). If (X,M)
f
←− (Y,N) is in CM, then X

f
←− Y is a cover (follows from

[5], [4]), so CM may be viewed as a subcategory of Comp# (telling us little it

appears).

The paper [8] is about corComp#, and (inter alia) characterizes minimum

proper covers as the Ẏ
γ
←− Ÿ = βY with βY (thus Y ) extremally disconnected

(thus also a minimum proper compactification and a “γ” in the present context),

then shows (with proofs different, of necessity) that the similarly defined a(γ) are

the atoms in corComp#. So, the atoms in corComp# are some, hardly all, of

the atoms in corCM.

The similarity of minimum proper compactifications and minimum proper cov-

ers doubtless stems from the facts that in corCM (corComp#, respectively) the

top is β (the Gleason extremally disconnected cover operator, respectively). This

idea bodes well for generalization, which we are attempting in a paper in prepa-

ration.

The section [8, Section 4] resembles Section 6 of the present paper, but reflects

the considerable history of corComp# (though there is no prior history of its

atoms), while corCM has no history (save the Čech–Stone β) of which we are

aware (about atoms or not), in spite of the huge history of compactifications (just

for example, [5], [4], [3]).

We also draw attention to [8, Section 5], which discusses the relation of

corComp# to the study of hull operators in some categories of algebras, an

ongoing and complicated project.
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