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Abstract. This article deals with the solvability of the boundary-value problem for the
Navier-Stokes equations with a direction-dependent Navier type slip boundary condition in
a bounded domain. Such problems arise when steady flows of fluids in domains with rough
boundaries are approximated as flows in domains with smooth boundaries. It is proved
by means of the Galerkin method that the boundary-value problem has a unique weak
solution when the body force and the variability of the surface friction are sufficiently small
compared to the viscosity and the surface friction.
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1. Introduction

Several studies (see [5] for references, see also [4], [8]), which employ a variety of

assumptions and techniques, have shown that when the flow of a liquid in a domain

with a rough surface is approximated as a flow in a domain with a smooth surface,

the resulting “effective boundary condition” on the smooth surface is a generalization

of the Navier slip condition. We consider a boundary-value problem for the Navier-

Stokes equations with the anisotropic (direction-dependent) slip boundary condition

formulated in [5]:

(1.1) (Tn)τ = −F (·, |v|−1v)v + g on ∂Ω,

where ∂Ω is the impermeable boundary of the flow domain Ω ⊂ R3, T is the Cauchy

stress tensor, n is the outward unit normal, (Tn)τ = Tn−(n ·Tn)n is the tangential
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component of the traction, g is an applied surface traction, v is the velocity, and the

“friction coefficient” F is a given function defined on

S(∂Ω) = {(x,u) ∈ ∂Ω× R
3 : n(x) · u = 0, |u| = 1}.

We derive sufficient conditions for the existence and uniqueness of a weak solu-

tion of the resulting boundary-value problem (in Sections 5–6) and the existence of

an associated pressure field (in Section 7). The existence proof uses the Galerkin

method. For the boundary-value problem with the Stokes equations this approach

yields a stronger result (in Section 8) than that of [5] (wherein the Stokes equations

with a regularized version of slip condition (1.1) is considered).

2. Notation

The notation is the same as in [5]. The flow domain Ω is a bounded domain in R3

with a boundary ∂Ω of class C1,1. The outward unit normal to ∂Ω is denoted by n.

For 1 6 q 6 ∞, Lq(Ω) and Lq(∂Ω) are the standard Lebesgue spaces with the

norms ‖·‖q and ‖·‖q,∂Ω, respectively. When q = 2, the inner products of these spaces

are denoted by (·, ·) and (·, ·)∂Ω, respectively, and the norms are denoted by ‖·‖ and

‖·‖∂Ω, respectively. The norms (and inner products, when q = 2) in Lq(Ω)3 and

Lq(∂Ω)3 are denoted by the same symbols as in the scalar case.

For m ∈ N, Hm(Ω) = Wm,2(Ω) is the standard Sobolev space, with the inner

product (·, ·)m,2 and norm ‖·‖m,2, and Hm−1/2(∂Ω) is the corresponding space of

traces with the norm ‖·‖m−1/2,2,∂Ω (see [1]). The inner products and norms in

Hm(Ω)3 and Hm−1/2(∂Ω)3 are denoted by the same symbols as in the scalar case.

Furthermore,

U := {v ∈ H1(Ω)3 : v · n = 0 on ∂Ω},

V := {v ∈ U : div v = 0 in Ω},

where the boundary condition in the definition of U is understood in the sense of

traces. The linear spaces U and V are closed subspaces of H1(Ω)3 and thus Hilbert

spaces with the inner product (·, ·)1,2. Similarly, L
2
0(Ω) := {p ∈ L2(Ω): (p, 1) = 0}

is a Hilbert space with the inner product (·, ·).
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3. Problem formulation

Let F : S(∂Ω) → R be a function with the following properties:

(a) For all (x,u) ∈ S(∂Ω), F (·,u) is continuous at x in the sense that there is an

open ball B(x, r(x)) = {y ∈ R3 : |y − x| < r(x)} such that the function E(·,u)

defined by

(3.1) E(y,u) = F (y, |(n(y)× u)× n(y)|−1(n(y)× u)× n(y))

is continuous on ∂Ω ∩B(x, r(x)).

(b) F (x, ·) is uniformly Lipschitz continuous, i.e., there exists M0 > 0 such that for

all (x,u), (x,v) ∈ S(∂Ω),

(3.2) |F (x,u)− F (x,v)| 6 M0|u− v|.

(c) There exist constants 0 < FL < FU such that for all (x,u) ∈ S(∂Ω),

(3.3) FL 6 F (x,u) 6 FU .

R em a r k 3.1. Properties (a) and (c) ensure that H(v) ∈ L∞(∂Ω) for all v ∈ V ,

where H(v) is the function defined below in (3.6). The continuity of F (·,u) is not

necessary for this (it is sufficient that F (·,u) is measurable; see [2], Theorem 3.17) but

is a natural property, because the effective slip boundary condition (1.1) is assumed

to be the result of an averaging procedure (see [5]).

Regarding the definition of E, note that if τ (y,u) denotes the second argument

of F in (3.1), then τ (y,u) is a unit tangential vector at y and thus (y, τ (y,u)) ∈

S(∂Ω). Moreover, τ (x,u) = u since (x,u) ∈ S(∂Ω), and τ (·,u) is continuous at x

since n ∈ C0,1(∂Ω)3.

For every x ∈ ∂Ω, let τ (x) be a unit tangential vector at x and define the average

of F at x by

Fa(x) =
1

2π

∫ 2π

0

F (x, τ (x) cos θ + n(x)× τ (x) sin θ) dθ.

Let T (∂Ω) = {(x,v) ∈ ∂Ω× R3 : n(x) · v = 0} and define G : T (∂Ω) → R by

G(x, 0) = Fa(x), x ∈ ∂Ω;(3.4)

G(x,v) = F (x, |v|−1v), (x,v) ∈ T (∂Ω), v 6= 0.(3.5)

R em a r k 3.2. In the case of isotropic slip, the friction coefficient F is a function

of only x. Then definition (3.4)–(3.5) reduces to G(x,v) = Fa(x) = F (x) for all

(x,v) ∈ T (∂Ω). Moreover, if F is a constant function, we obtain Navier’s slip

condition. This special case will be considered in Section 9.
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Next, for every v ∈ V , define H(v) on ∂Ω by

(3.6) H(v)(x) = G(x, (γv)(x)), x ∈ ∂Ω,

where γ denotes the trace operator. The slip boundary condition (1.1) will be for-

mulated in terms of H .

Now consider the steady flow of an incompressible Newtonian fluid subject to

slip boundary condition (1.1). The Cauchy stress tensor is T = −pI + 2µD(v),

where µ is the viscosity (a positive constant), v is the velocity, p is the pressure and

D(v) = 1

2
(∇v + (∇v)⊤). Let f be the external body force per unit volume and let

g be an applied tangential surface traction such that

(3.7) f ∈ L2(Ω)3, g ∈ H1/2(∂Ω)3, g · n = 0 on ∂Ω.

Then we have the following boundary-value problem.

Problem 3.1. Find (v, p) ∈ H2(Ω)3 ×H1(Ω) such that

v · ∇v − µ∆v +∇p = f in Ω,(3.8)

div v = 0 in Ω,(3.9)

v · n = 0 on ∂Ω,(3.10)

(Tn)τ +H(v)v = g on ∂Ω.(3.11)

We derive and study a weak form of Problem 3.1. Suppose that (v, p) is a solution

of Problem 3.1. Then, by (3.8)–(3.9), v·∇v − div T = f in Ω. Thus (v·∇v −

div T,ψ) = (f ,ψ) for all ψ ∈ V . By applying Green’s formula, the properties of ψ,

the symmetry of D(v), and boundary conditions (3.10)–(3.11), one deduces that for

all ψ ∈ V ,

(3.12) a(v,ψ) + b(v,v,ψ) + (H(v)v,ψ)∂Ω = (f ,ψ) + (g,ψ)∂Ω,

where a(·, ·) is the bilinear form on (H1(Ω)3)2 defined by

a(v,w) = 2µ(D(v),D(w)),

and b(·, ·, ·) is the trilinear form on (H1(Ω)3)3 defined by

b(u,v,w) = (u·∇v,w).

The right-hand side of (3.12) defines a bounded linear functional on V . Thus, by

the Riesz representation theorem, there exists a unique h ∈ V such that (f ,w) +

(g,w)∂Ω = (h,w)1,2 for all w ∈ V . Moreover, by the Schwarz inequality and the

trace theorem, ‖h‖1,2 6 ‖f‖ + C(Ω)‖g‖∂Ω. Hence, for a given h ∈ V , we consider

the following weak form of Problem 3.1.
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Problem 3.2. Find v ∈ V such that for all ψ ∈ V ,

(3.13) a(v,ψ) + b(v,v,ψ) + (H(v)v,ψ)∂Ω = (h,ψ)1,2.

We call a solution v ∈ V of Problem 3.2 a weak solution of Problem 3.1.

4. Preliminaries

Let γ : H1(Ω) → H1/2(∂Ω) be the trace operator. Then γ : H1(Ω) → Lq(∂Ω) is

continuous for all q ∈ [1, 4] and compact for all q ∈ [1, 4). In particular, there is

a constant Ct = Ct(Ω) such that

(4.1) ‖v‖∂Ω 6
√

Ct‖v‖1,2 ∀v ∈ H1(Ω)3.

The bilinear form a(·, ·) is continuous on (H1(Ω)3)2, since

(4.2) |a(v,w)| 6 2µ‖∇v‖·‖∇w‖.

The imbedding H1(Ω) → Lq(Ω) is continuous for all q ∈ [1, 6] and compact for all

q ∈ [1, 6). The trilinear form b(·, ·, ·) is continuous on (H1(Ω)3)3, since it follows

from the generalized Hölder inequality and the imbedding H1(Ω) →֒ L4(Ω) that

(4.3) |b(u,v,w)| 6 ‖u‖4‖∇v‖·‖w‖4 6 Cb‖u‖1,2‖∇v‖·‖w‖1,2

for some constant Cb = Cb(Ω). Furthermore, it follows from Green’s formula that if

u ∈ V , then b(u,v,w) = −b(u,w,v) for all v,w ∈ H1(Ω)3. Thus

(4.4) b(u,v,v) = 0 ∀u ∈ V, v ∈ H1(Ω)3.

The following Korn type inequality (see [5], Lemma 1) is fundamental to the analysis

of Problem 3.2.

Lemma 4.1. Let Ω be a bounded domain in R3 with Lipschitz continuous bound-

ary ∂Ω and let Γ ⊂ ∂Ω with |Γ| > 0. Then there exist positive constants K1 and K2,

which depend at most on Ω and Γ, such that for all A,B > 0 and all v ∈ H1(Ω)3,

(4.5) A‖D(v)‖2 +B‖v‖2Γ > K1min{K2A,B}‖v‖21,2.
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The next lemma shows that although G(x, ·) is discontinuous at 0, the mapping

v 7→ G(x,v)v is uniformly Lipschitz continuous.

Lemma 4.2. For all (x,v) and (x,w) in T (∂Ω),

|G(x,v)v −G(x,w)w| 6 (FU + 2M0)|v −w|,(4.6)

|(G(x,v) −G(x,w))v| 6 max{FU − FL, 2M0}|v −w|.(4.7)

P r o o f. Let (x,v), (x,w) ∈ T (∂Ω).

(a) If v = 0 or w = 0, then

|G(x,v)v −G(x,w)w| 6 FU |v −w|

by (3.3)2. Assume that v 6= 0 and w 6= 0. Then, by (3.2),

(4.8) |F (x, |v|−1v)− F (x, |w|−1w)| 6 M0||v|
−1v − |w|−1w||

= M0|v|
−1|w|−1||w|(v −w) + (|w| − |v|)w|

6 2M0|v|
−1|v −w|.

Therefore,

|G(x,v)v −G(x,w)w| = |F (x, |v|−1v)v − F (x, |w|−1w)w|

6 |(F (x, |v|−1v)− F (x, |w|−1w))v| + |F (x, |w|−1w)(v −w)|

6 2M0|v −w|+ FU |v −w|

by (3.3) and (4.8). This proves (4.6).

(b) If v = 0, (4.7) holds trivially. If v 6= 0 and w = 0, then

|(G(x,v) −G(x,w))v| = |(F (x, |v|−1v)− Fa(x))v| 6 (FU − FL)|v −w|

by (3.3). If v 6= 0 and w 6= 0, then

|(G(x,v) −G(x,w))v| = |(F (x, |v|−1v)− F (x, |w|−1w))v| 6 2M0|v −w|

by (4.8). This proves (4.7). �

Lemma 4.3. Let m > 2. Then there exists an orthonormal sequence (ψn) in V

such that {ψn : n ∈ N} is a basis for V and ψn ∈ Hm(Ω)3 for all n ∈ N.
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P r o o f. Let u ∈ V . Then (u, ·)1,2 defines a bounded linear functional on Vm :=

Hm(Ω)3 ∩ V , which is a closed subspace of Hm(Ω)3 and thus a Hilbert space.

Thus, by the Riesz representation theorem, there exists a unique v ∈ Vm such that

(u,w)1,2 = (v,w)m,2 for all w ∈ Vm, and ‖v‖m,2 6 ‖u‖1,2. Define T : V → V

by T (u) = v. Then T is linear, self-adjoint, injective (since Vm is dense in V ) and

bounded. Moreover, T is compact since Hm(Ω) →֒→֒ H1(Ω). Hence, by a classical

result (see, e.g., [7], Theorem I.7.C), T has an orthonormal sequence (ψn) of eigen-

vectors, which is a basis for V , and the corresponding sequence of eigenvalues (λn)

converges to zero. For each n, (ψn,w)1,2 = λn(ψn,w)m,2 for all w ∈ Vm. Thus

λn 6= 0 (since Vm is dense in V ) and ψn = λ−1
n Tψn ∈ Vm. �

The following lemma, due to Miranda [6] (see also [3], Lemma IX.3.1), is equivalent

to Brouwer’s fixed point theorem.

Lemma 4.4. Let n ∈ N and let P : Rn → Rn be a continuous function such that

for some R > 0,

(4.9) P (ξ) · ξ > 0 ∀ ξ ∈ R
n with |ξ| = R.

Then there exists ξ⋆ ∈ Rn such that P (ξ⋆) = 0 and |ξ⋆| 6 R.

5. Uniqueness of a solution

For brevity, let

(5.1) K := K1 min{2K2µ, FL}, D := Ct max{FU − FL, 2M0}.

In essence, K represents the viscosity (internal friction) and surface friction of the

liquid and D represents the extent to which the surface friction varies with position

and direction.

Lemma 5.1. If v is a solution of Problem 3.2, then

(5.2) ‖v‖1,2 6 R := K−1‖h‖1,2.

P r o o f. If v is a solution of Problem 3.2, set ψ = v in (3.13). Then

K1 min{2K2µ, FL}‖v‖
2

1,2 6 a(v,v) + FL‖v‖
2

∂Ω

6 a(v,v) + (H(v)v,v)∂Ω = (h,v)1,2

6 ‖h‖1,2‖v‖1,2

by (4.5) and (3.3)1 and (4.4). �
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Theorem 5.1. Let K and D be as in (5.1) and suppose that D < K.

(a) If v is a solution of Problem 3.2 and

(5.3) ‖∇v‖2 < C−1

b (K −D),

then v is the only solution of Problem 3.2.

(b) If

(5.4) ‖h‖1,2 < C−1

b K(K −D),

then Problem 3.2 has at most one solution.

P r o o f. If h ≡ 0, then v ≡ 0 is a solution of Problem 3.2. Moreover, by esti-

mate (5.2), it is the only solution. If h is not identically zero, suppose that v ∈ V

and v ∈ V are solutions of Problem 3.2. Thus

a(v,ψ) + b(v,v,ψ) + (H(v)v,ψ)∂Ω = (h,ψ)1,2,(5.5)

a(v,ψ) + b(v, v,ψ) + (H(v)v,ψ)∂Ω = (h,ψ)1,2(5.6)

for all ψ ∈ V . Let ψ = v − v and subtract (5.6) from (5.5). This yields

(5.7) a(v − v,v − v) + I + J = 0,

where I = (v · ∇v − v · ∇v,v − v) and J = (H(v)v −H(v)v,v − v)∂Ω. Now,

I = ((v − v) · ∇v,v − v) + (v · ∇(v − v),v − v) = ((v − v) · ∇v,v − v)

by (4.4) and thus

(5.8) |I| 6 Cb‖∇v‖2‖v − v‖21,2

by (4.3). Furthermore,

J = ((H(v) −H(v))v,v − v)∂Ω + (H(v)(v − v),v − v)∂Ω

and by (4.7) and (4.1),

(5.9) |((H(v) −H(v))v,v − v)∂Ω| 6 max{FU − FL, 2M0}‖v − v‖2∂Ω

6 Ct max{FU − FL, 2M0}‖v − v‖21,2.

8



By applying (4.5) and (3.3)1, (5.7) and estimates (5.8)–(5.9) we obtain

K1 min{2K2µ, FL}‖v − v‖21,2 6 a(v − v,v − v) + FL‖v − v‖2∂Ω

6 a(v − v,v − v) + (H(v)(v − v),v − v)∂Ω

= −I − ((H(v) −H(v))v,v − v)∂Ω

6 (Cb‖∇v‖2 + Ct max{FU − FL, 2M0})‖v − v‖21,2.

Hence, if D < K and (5.3) holds, then v = v. By Lemma 5.1, a sufficient condition

for (5.3) is K−1‖h‖1,2 < C−1

b (K −D). �

6. Existence of a solution

Theorem 6.1. Problem 3.2 has a solution v ∈ V , which satisfies estimate (5.2).

P r o o f. By Lemma 4.3 there exists a sequence (ψn) in V ∩ H3(Ω)3 that is an

orthonormal basis for V . For each n ∈ N, let Sn := span {ψ1,ψ2, . . . ,ψn} and

consider the following problem:

Find vn =
n
∑

i=1

ξniψi ∈ Sn such that for k = 1, 2, . . . , n,

(6.1) a(vn,ψk) + b(vn,vn,ψk) + (H(vn)vn,ψk)∂Ω = (h,ψk)1,2.

This is an algebraic system in the unknown ξn = (ξn1, ξn2, . . . , ξnn) ∈ Rn.

Define P : Rn → Rn by P (ξ) = (P1(ξ), P2(ξ), . . . , Pn(ξ)) with

Pk(ξ) = a(v,ψk) + b(v,v,ψk) + (H(v)v,ψk)∂Ω − (h,ψk)1,2

for k = 1, 2, . . . , n, where v :=
n
∑

i=1

ξiψi if ξ = (ξ1, ξ2, . . . , ξn). Then, by the linearity

of Pk(ξ) in ψk, (4.4) and (3.3)1 and (4.5),

P (ξ) · ξ =

n
∑

k=1

Pk(ξ)ξk = a(v,v) + b(v,v,v) + (H(v)v,v)∂Ω − (h,v)1,2

> 2µ‖D(v)‖2 + FL‖v‖
2

∂Ω − ‖h‖1,2‖v‖1,2

> K‖v‖21,2 − ‖h‖1,2‖v‖1,2

with K as in (5.1). Moreover, ‖v‖1,2 = |ξ| because (ψn) is orthonormal in H1(Ω)3.

Thus

(6.2) P (ξ) · ξ > (K|ξ| − ‖h‖1,2)|ξ| = 0

for all ξ ∈ Rn with |ξ| = R = K−1‖h‖1,2.
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Next, let η, ξ ∈ Rn, let u :=
n
∑

i=1

ηiψi and let v :=
n
∑

i=1

ξiψi. Then, for k =

1, 2, . . . , n,

Pk(η)− Pk(ξ) = a(u− v,ψk) + b(u,u,ψk)− b(v,v,ψk)

+ (H(u)u −H(v)v,ψk)∂Ω.

By (4.2), |a(u− v,ψk)| 6 2µ‖u− v‖1,2‖ψk‖1,2 = 2µ|η − ξ|. By (4.3),

|b(u,u,ψk)− b(v,v,ψk)| 6 |b(u− v,u,ψk)|+ |b(v,u− v,ψk)|

6 Cb‖u− v‖1,2(‖u‖1,2 + ‖v‖1,2)‖ψk‖1,2

= Cb(|η|+ |ξ|)|η − ξ|.

By the Schwarz inequality, (4.6) and (4.1),

(6.3) |(H(u)u −H(v)v,ψk)∂Ω| 6 ‖H(u)u−H(v)v‖∂Ω‖ψk‖∂Ω

6 (FU + 2M0)‖u− v‖∂Ω‖ψk‖∂Ω

6 Ct(FU + 2M0)‖u− v‖1,2‖ψk‖1,2

= Ct(FU + 2M0)|η − ξ|.

These estimates imply that Pk is (locally Lipschitz) continuous. Thus by Lemma 4.4,

there exists ξn ∈ Rn such that P (ξn) = 0 and |ξn| 6 R. Therefore vn :=
n
∑

i=1

ξniψi is

a solution of problem (6.1) and ‖vn‖1,2 = |ξn| 6 R.

Now, since (vn) is bounded in the Hilbert space V , there exists v ∈ V and a sub-

sequence of (vn), again denoted by (vn), that converges weakly to v in V . Let k ∈ N.

Then, by (4.2), a(·,ψk) is a bounded linear functional on V and thus a(vn,ψk) →

a(v,ψk) as n → ∞. Furthermore, b(vn,vn,ψk) = b(vn − v,vn,ψk) + b(v,vn,ψk).

It follows from (4.3) and the imbedding H1(Ω) →֒→֒ L4(Ω) that

|b(vn − v,vn,ψk)| 6 R‖ψk‖4‖vn − v‖4 → 0 as n → ∞.

Moreover, by (4.3), b(v, ·,ψk) is a bounded linear functional on V . Hence,

lim
n→∞

b(vn,vn,ψk) = lim
n→∞

b(v,vn,ψk) = b(v,v,ψk).

Lastly, as in (6.3),

|(H(vn)vn,ψk)∂Ω − (H(v)v,ψk)∂Ω| 6 (FU + 2M0)‖vn − v‖∂Ω‖ψk‖∂Ω.

Thus lim
n→∞

(H(vn)vn,ψk)∂Ω = (H(v)v,ψk)∂Ω since H
1(Ω) →֒→֒ L2(∂Ω). It follows

from these limits and (6.1) that for every k ∈ N,

a(v,ψk) + b(v,v,ψk) + (H(v)v,ψk)∂Ω = (h,ψk)1,2.
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Each term in this equation is a bounded linear functional on V in ψk. Thus, since

span {ψn : n ∈ N} is dense in V , v satisfies (3.13) for all ψ ∈ V . Estimate (5.2)

holds because

‖v‖1,2 6 lim inf
n→∞

‖vn‖1,2 6 R

or by virtue of Lemma 5.1. �

R em a r k 6.1. (a) Theorem 6.1 does not require a restriction on D or ‖h‖1,2. It

is sufficient that K > 0.

(b) Some of the estimates in the proof of Theorem 6.1 can be derived differently,

for example by using the fact that ψk ∈ H3(Ω)3 →֒ C1(Ω)3.

(c) Theorems 5.1 and 6.1 hold for h ∈ H1(Ω)3 as well. Then ‖h‖1,2 in esti-

mate (5.2) can be replaced by ‖hV ‖1,2, where hV is the projection of h onto V .

The following corollary follows from Theorems 5.1 and 6.1.

Corollary 6.1. Let K and D be as in (5.1). If D < K and (5.4) holds, then

Problem 3.2 has a unique solution v ∈ V and the solution satisfies estimate (5.2).

7. Pressure

In the derivation of (3.13) from (3.8)–(3.11), the pressure gradient∇p is eliminated

by the application of Green’s formula:

(∇p,ψ) = (p,ψ · n)∂Ω − (p, div ψ) = 0 ∀ψ ∈ V.

The next theorem shows that each solution v of Problem 3.2 determines a corre-

sponding pressure field p. The proof is adapted from [3], Theorem III.5.3 and [3],

Lemma IX.1.2, which deal with the Navier-Stokes equations with the no-slip bound-

ary condition (v = 0 on ∂Ω).

Theorem 7.1. Suppose that v ∈ V is a solution of Problem 3.2. Then there

exists p ∈ L2
0(Ω), uniquely determined by v, such that for all ψ ∈ U ,

(7.1) a(v,ψ) + b(v,v,ψ) + (H(v)v,ψ)∂Ω − (p, div ψ) = (h,ψ)1,2.

Moreover,

(7.2) ‖p‖ 6 C(Ω)((Cb‖v‖1,2 + 2µ)‖v‖1,2 + ‖h‖1,2).
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P r o o f. By Green’s formula, div u ∈ L2
0(Ω) for all u ∈ U . Thus we can define an

operatorA : U → L2
0(Ω) byAu = div u. ThenA is linear and bounded, hence closed,

and kerA = V . Moreover, for every f ∈ L2
0(Ω) there exists u ∈ H1(Ω)3 such that

(7.3) div u = f in Ω, u = 0 on ∂Ω, ‖u‖1,2 6 Cd‖f‖

for some constant Cd = Cd(Ω) (see [3], Theorem III.3.1; Ω is bounded and has the

cone property). Thus R(A) = L2
0(Ω) is closed in L2

0(Ω).

Let A∗ : L2
0(Ω)

′ → U ′ be the adjoint of A, where the prime means dual space.

Then, by the Banach closed range theorem, V ⊥ = [kerA]⊥ = R(A∗), where ⊥ means

annihilator. Thus, if F ∈ U ′ and Fψ = 0 for all ψ ∈ V , there exists L ∈ L2
0(Ω)

′ such

that F = L ◦ A. Thus, by the Riesz representation theorem, there exists p ∈ L2
0(Ω)

such that

(7.4) Fψ = L(Aψ) = (p,Aψ) = (p, div ψ) ∀ψ ∈ U.

Now, if v ∈ V is a solution of Problem 3.2, consider the linear functional F on U

defined by

Fψ = a(v,ψ) + b(v,v,ψ) + (H(v)v,ψ)∂Ω − (h,ψ)1,2, ψ ∈ U.

Here F is bounded on U (by (3.3)2 and (4.1)–(4.3)) and F vanishes on V (by (3.13)).

Hence, there exists p ∈ L2
0(Ω) that satisfies (7.4), which gives (7.1). If p̂ ∈ L2

0(Ω) also

satisfies (7.4), then (p− p̂, div ψ) = 0 for all ψ ∈ U . Since A is surjective, there exists

ψ ∈ U with div ψ = p− p̂. Thus p− p̂ = 0. Hence, p is uniquely determined by v.

Lastly, let ψ be a solution of problem (7.3) with f = p. Then, by (7.1) and the

fact that ψ = 0 on ∂Ω,

‖p‖2 = a(v,ψ) + b(v,v,ψ)− (h,ψ)1,2.

Thus it follows from (3.3)2 and (4.1)–(4.3) and estimate (7.3)3 that

‖p‖2 6 Cd(2µ‖∇v‖+ Cb‖v‖1,2‖∇v‖+ ‖h‖1,2)‖p‖,

which implies estimate (7.2). �

8. Stokes problem

If (3.8) is replaced by the Stokes equations, the weak form of the boundary-value

problem is as follows:

Problem 8.1. Find v ∈ V such that for all ψ ∈ V ,

(8.1) a(v,ψ) + (H(v)v,ψ)∂Ω = (h,ψ)1,2.
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The arguments in Sections 5–7 then yield the following theorems.

Theorem 8.1. Let K and D be as in (5.1).

(a) Every solution v of Problem 8.1 satisfies estimate (5.2).

(b) If D < K, Problem 8.1 has at most one solution v.

Theorem 8.2. Problem 8.1 has a solution v ∈ V . Moreover, there exists p ∈

L2
0(Ω), uniquely determined by v, such that for all ψ ∈ U ,

(8.2) a(v,ψ) + (H(v)v,ψ)∂Ω − (p, div ψ) = (h,ψ)1,2.

In addition,

(8.3) ‖p‖ 6 C(Ω)(2µ‖v‖1,2 + ‖h‖1,2).

R em a r k 8.1. Problem 8.1 was considered in [5] by a different approach. In [5]

the function G is approximated by a smooth function to ensure that the mapping H

is Lipschitz continuous. The existence and uniqueness of solution is then proved by

the contraction mapping theorem. The present approach improves on this in two

respects. Lemma 4.2 shows that it is not necessary to regularize G and that H

does not have to be Lipschitz continuous. Furthermore, the existence proof by the

Galerkin method avoids the smallness condition on h required by the contraction

mapping theorem.

9. Navier slip

Consider the case of Navier slip, where F is a positive constant. Here

M0 = 0, FL = FU = F, K = K1 min{2K2µ, F}, D = 0.

Hence, Theorems 5.1–7.1 for the Navier-Stokes problem can be stated as follows.

Theorem 9.1. Problem 3.2 has at least one solution v ∈ V . If

(9.1) ‖∇v‖1,2 < C−1

b K or ‖h‖1,2 < C−1

b K2,

the solution is unique. Every solution satisfies estimate (5.2) and for every so-

lution there exists a unique p ∈ L2
0(Ω) that satisfies (7.1). Moreover, p satisfies

estimate (7.2).
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Theorems 8.1–8.2 for the Stokes problem reduce to the following result.

Theorem 9.2. Problem 8.1 has a unique solution v ∈ V and there exists a unique

p ∈ L2
0(Ω) that satisfies (8.2). Moreover, v satisfies estimate (5.2) and p satisfies

estimate (8.3).

R em a r k 9.1. The slip boundary condition (1.1) can be written as

v =
g − (Tn)τ

F
on ∂Ω.

Formally, this becomes the no-slip condition in the limit F → ∞. SinceK = 2K1K2µ

for all F > 2K2µ, estimate (5.2) and inequalities (9.1) are independent of F if

F > 2K2µ. Moreover, the constants in estimate (7.2) are independent of F . These

four inequalities are the same as those for the Navier-Stokes no-slip problem; see,

e.g., (IX.2.4), estimates (IX.3.5)–(IX.3.6) and (IX.3.22) in [3]. (There are slight

differences because the weak form of the no-slip problem is formulated in terms of

the bilinear form (∇v,∇w) instead of b(v,w) and analyzed by means of Poincaré’s

inequality instead of Korn’s inequality.) Hence, the Navier slip problem has the same

solvability properties as the corresponding no-slip problem if F > 2K2µ. This also

applies to the corresponding Stokes problems.
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