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Abstract. The dynamical behaviour of a continuous time recurrent neural network model
with a special weight matrix is studied. The network contains several identical excitatory
neurons and a single inhibitory one. This special construction enables us to reduce the
dimension of the system and then fully characterize the local and global codimension-
one bifurcations. It is shown that besides saddle-node and Andronov-Hopf bifurcations,
homoclinic and cycle fold bifurcations may occur. These bifurcation curves divide the plane
of weight parameters into nine domains. The phase portraits belonging to these domains
are also characterized.
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1. Introduction

Neural networks have attracted a significant mathematical interest recently,

motivated both by machine learning applications and by brain activity models.

Mathematical problems related to this field range from discrete time deep neural

networks to continuous time dynamical system models in neuroscience. Modelling

brain activity has led to several questions concerning differential equations, see, e.g.,

the review paper [3]. Our work focuses on continuous time dynamical models of
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recurrent neural networks described by the Cowan-Wilson or Hopfield model that

are systems of non-linear ordinary differential equations for the firing rates of the

neurons, see, e.g., [7], Chapter 13, [16], Chapter 7, or [11], Section 6. Recurrent

neural networks can be effectively applied as autoassociative memory that can easily

store patterns and retrieve the stored data even from partial information and these

are often used for image and speech recognition. The flow of the information is not

obvious in these networks as the signals coming out from a neuron can get back to

itself via other neurons.

Dynamical systems theory enables us to analyse nonlinear systems of differential

equations including those models which are used in neuroscience and machine learn-

ing. It is often possible to classify the different behaviours of a model by studying

how its solutions change as some parameters are varied. For example, we can de-

termine the parameter values, for which the solution converges to a steady state or

oscillation appears that can be crucial from the point of view of applications.

In this paper we investigate the behaviour of a deterministic firing rate model of

neural networks in continuous time, often referred to as Hopfield or Cowan-Wilson

model [13], taking the form

(1.1) ẋ = Dx+Wy + I, yi = f(xi),

where x is the vector of membrane potentials and y is the vector of firing rates of

the neurons. The vector I denotes the external input and matrix D is a diagonal

matrix. This network can be represented as a directed graph, where the nodes are

the neurons and the edges are the connections between them. Each edge has a weight

describing the strength of the connection and matrix W contains these weights in

system (1.1). The function f is the increasing activation function [7].

Most results in the literature are about small networks and different special cases

of the Hopfield model. First, Hopfield showed that the dynamical system has an

energy function and proved that the solutions always converge to a steady state when

the weight matrix W is symmetric, i.e., wij = wji. First he proved it in discrete

time, where the state of the neurons was set to 1 or −1 [12], but he extended his

own results to continuous neural networks soon [13]. Beer and Ermentrout studied

small networks where f(x) = (1 + exp(−x))−1 was applied as activation function

and a bias term θi was introduced for each neuron [1], [6]. They gave examples

for the existence of periodic solutions and determined the behaviour of the model

as Ii and θi are varied. Later, Beer chose the θi values as bifurcation parameters and

approximated the bifurcation curves using hyperplanes. He estimated the probability

that a randomly selected point in the parameter space is in a given domain [2].

Larger networks have also been studied by Fasoli et al., where an algebraic activation
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function was applied [8], [9]. First they determined local and global bifurcations

in a network which contains four different weights and Ii and the weight of the

self-connection of inhibitory neurons were chosen as bifurcation parameters. They

also studied the behaviour of a fully homogeneous network with cubic topology,

where the neurons are purely excitatory. Understanding the dynamic behaviour of

populations of excitatory and inhibitory neurons has played a crucial role [4] for

years and is in the focus of very recent studies explaining animal behaviour at the

neuronal level [5].

While the previous results are mostly focused on the effect of the bias term θ and

the external input I, in our recent work we studied the dynamics of the Hopfield

model as some weights are varied [17]. We introduced a special case of the Hopfield

model, where the number of neurons is arbitrary, the network is fully connected and

the weight matrix W has a special structure. This enables us to derive analytical

results concerning the bifurcation curves. In this paper, we present the detailed

investigation of the local bifurcation curves and extend this by the numerical study

of the model to detect global bifurcations. We assume first that every signal coming

from a given neuron has the same weight, i.e., wij = wj for all i 6= j, and the neurons

are not connected to themselves directly, i.e., wii = 0 for all i. ThenW takes the form

W =











0 w2 . . . wn

w1 0 . . . wn

...
...
. . .

...

w1 w2 . . . 0











.

We also suppose that the neurons do not receive any external input and we

choose the matrix D to be the identity matrix. We apply the sigmoid function

f(x) = (1 + exp(a− bx))−1 as activation function. Then the ith equation of system

(1.1) takes the form

(1.2) ẋi = −xi +
n
∑

k=1

wkf(xk)− wif(xi).

The paper is structured as follows. In Section 2 we reduce the system to two

equations and then derive analytic formulas for the local bifurcation curves, i.e., the

saddle-node and Andronov-Hopf bifurcation curves. Then in Section 3 we determine

numerically the saddle homoclinic, saddle-node homoclinic and cycle fold bifurcation

curves. These five bifurcation curves divide the parameter plane into nine regions.

The phase portraits belonging to these parameter regions are determined in Section 4.

The results are summarized and further research directions are presented in the

concluding section.
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2. Local bifurcations

The starting point of our investigation is the case when all the weights are equal

and positive. This has already been studied and it turned out that with equal

positive weights, system (1.2) can be reduced to a lower dimensional system [17].

More precisely, the result is the following.

Theorem 2.1. If i and j are indices satisfying wi = wj > 0, then the function

t 7→ |xi(t) − xj(t)| is strictly decreasing and lim
t→∞

|xi(t) − xj(t)| = 0, i.e., xi equals

to xj in steady states and along periodic orbits.

We assume below that n− 1 neurons have the same positive weight denoted by w

and only one of them has a different weight denoted by w1, which can be negative as

well. System (1.2) can be reduced using Theorem 2.1 since n − 1 variables tend to

a common value, i.e., their asymptotic behaviour can be given by a single variable.

This can be formulated as follows.

Corollary 2.2. If there exists w > 0 such that w = wi for all i = 2, . . . , n and w1

is arbitrary, then it is enough to investigate the solutions of the system below to

describe the asymptotic behaviour of system (1.2),

ẋ1 = −x1 + (n− 1)wf(x2),(2.1)

ẋ2 = −x2 + w1f(x1) + (n− 2)wf(x2).(2.2)

The local bifurcations of this system can be investigated analytically. In order

to determine the saddle-node bifurcation curve we apply Sotomayor’s theorem [15].

First, let x∗ = (x∗
1
, x∗

2
) denote a steady state of system (2.1)–(2.2). Now we derive

a single equation for the equilibrium points given by system (2.1)–(2.2) with zeros

in the left-hand sides. Substituting

(2.3) x∗

1
= (n− 1)wf(x∗

2
)

from the first equation into the second, x∗
2
can be calculated from the single steady

state equation which takes the form

(2.4) −x2 + w1f((n− 1)wf(x2)) + (n− 2)wf(x2) = 0.

A parameter pair (w,w1) lies on the saddle-node curve if there exists a number x2 for

which equation (2.4) holds and the derivative of the right-hand side is also zero, i.e.,

(2.5) −1 + w1f
′((n− 1)wf(x2))wf

′(x2) + (n− 2)wf ′(x2) = 0,
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which ensures that the Jacobian matrix of system (2.1)–(2.2) has a single eigenvalue

λ = 0 at the bifurcation point. Equations (2.4) and (2.5) give a parametric represen-

tation of the saddle-node curve in the parameter plane (w,w1) parametrized by x2.

The parameter w1 can be expressed from equation (2.4) as

(2.6) w1 =
x2 − (n− 2)wf(x2)

f((n− 1)wf(x2))
,

and can be substituted into (2.5). Two transversality conditions also have to be

satisfied for the occurrence of saddle-node bifurcation. First, let F be the vector

of the right-hand side of system (2.1)–(2.2). Let w∗ denote a bifurcation point

when x∗ = (x∗
1
, x∗

2
) is an equilibrium of the system, where x∗

2
is implicitly given by

equation (2.4) in terms of w and w1 and x
∗
1
can be calculated from (2.3). Let q and r

be right and left eigenvectors of eigenvalue λ = 0:

(2.7) q =

[

(n− 1)wf ′(x2)

1

]

, r =

[

w1f
′(x2)

1

]

.

Then the first transversality condition r⊤[D2

xF (x∗, w∗)(q, q)] 6= 0 leads to

(2.8)

(n− 1)2w1f
′(x∗

2
)(−w1f

′(x∗

1
)2f ′′(x∗

2
) + f ′′(x∗

1
)f ′(x∗

2
)) + (n− 2)2f ′(x∗

1
)2f ′′(x∗

2
) 6= 0.

The other transversality condition is given by

(2.9) r⊤∂wF (x∗, w∗) 6= 0,

where

∂wF (x∗, w∗) =







−
∂x∗

1

∂w
+ (n− 1)f(x∗

2
) + (n− 1)wf ′(x∗

2
)
∂x∗

2

∂w

−
∂x∗

2

∂w
+ w1f

′(x∗
1
)
∂x∗

1

∂w
+ (n− 2)f(x∗

2
) + (n− 2)wf ′(x∗

2
)
∂x∗

2

∂w






.

Derivative ∂x∗
2
/∂w is used here, which is calculated from equation (2.4) by implicit

differentiation

∂x∗
2

∂w
= −

(n− 1)w1f
′((n− 1)wf(x∗

2
))f(x∗

2
) + (n− 2)f(x∗

2
)

−1 + (n− 1)ww1f ′((n− 1)wf(x∗
2
))f ′(x∗

2
) + (n− 2)wf ′(x∗

2
)
.

Transversality conditions can be formulated similarly when the weight w1 is chosen

as bifurcation parameter, which imply that

f ′′(x∗
2
)

f ′(x∗
1
)
+ (n− 1)wf ′′(x∗

1
)f ′(x∗

2
)
1− (n− 2)wf ′(x∗

2
)

f ′(x∗
1
)

6= 0,(2.10)

r⊤∂w1
F (x∗, w∗

1
) 6= 0(2.11)
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have to be fulfilled, where

∂w1
F (x∗, w∗

1
) =







−
∂x∗

1

∂w1

+ (n− 1)wf ′(x∗
2
)
∂x∗

2

∂w1

−
∂x∗

2

∂w1

+ f(x∗
1
) + w1f

′(x∗
1
)
∂x∗

1

∂w1

+ (n− 2)f ′(x∗
2
)
∂x∗

2

∂w1







and the derivative ∂x∗
2
/∂w1 is given by the implicit derivative of (2.4) with respect

to w1:

∂x∗
2

∂w1

=
f((n− 1)wf(x∗

2
))

−1 + (n− 1)ww1f ′((n− 1)wf(x∗
2
))f ′(x∗

2
) + (n− 2)wf ′(x∗

2
)
.

All of the transversality conditions can be checked numerically. Then the following

statement can be derived from these calculations.

Theorem 2.3. For a given value of x2 the corresponding point (or points) (w,w1)

of the saddle-node curve is given as follows. If transversality conditions (2.9)–(2.11)

are satisfied, then the first coordinate, w, is given implicitly by the equation

(2.12) −1+
x2 − (n− 2)wf(x2)

f((n− 1)wf(x2))
f ′((n−1)wf(x2))(n−1)wf ′(x2)+(n−2)wf ′(x2) = 0

and the second coordinate w1 is given explicitly by (2.6).

In the case of the Andronov-Hopf bifurcation curve, both coordinates can be ex-

pressed explicitly in terms of x2. The first equation of this bifurcation is again the

single steady state equation (2.4). The second one is that the trace of the Jacobian

of system (2.1)–(2.2) is zero subject to the condition that its determinant is positive.

The trace of the Jacobian can be easily expressed as

TrJ = −2 + (n− 2)wf ′(x2).

For this bifurcation the transversality conditions take the form d(Re λ(w))/w 6= 0

and d(Re λ(w1))/w1 6= 0 leading to

1

2

(

(n− 2)f ′(x∗

2
) + (n− 2)wf ′′(x∗

2
)
∂x∗

2

∂w

)

6= 0,(2.13)

1

2
(n− 2)wf ′′(x∗

2
)
∂x∗

2

∂w1

6= 0.(2.14)

These conditions can be checked numerically. Hence, the Andronov-Hopf bifurcation

curve can be obtained as follows.
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Theorem 2.4. For a given value of x2 the corresponding point (w,w1) of the

Andronov-Hopf bifurcation curve is given as follows. If transversality conditions

(2.13)–(2.14) are satisfied, then the first coordinate, w, is

(2.15) w =
2

(n− 2)f ′(x2)

and the second coordinate w1 is given again by (2.6).

0 5 10 15
w

−50

0

50

100

w1 CP

(a) A cusp point (CP) of saddle-node bifur-
cation curve.

2.6 2.8 3.0 3.2 3.4
w

−3.4

−3.2

−3.0

−2.8

−2.6

−2.4

−2.2
w1 CP

CP

BT

(b) The swallowtail of saddle-node-bifurcation
curve with the Bogdanov-Takens (BT) bifur-
cation point.

Figure 1. Saddle-node (red) and Andronov-Hopf (blue) bifurcation curves in system (2.1)
and (2.2) with fixed parameters a = 4, b = 1, and n = 10.

A typical position of the two bifurcation curves is shown in Figure 1, where we

used the activation function

f(x) = (1 + exp(a− bx))−1

with fixed parameters a = 4, b = 1 and n = 10. In this case the saddle-node bi-

furcation curve (red) has a swallowtail, its cusp points are denoted by CP. The

endpoint of the Andronov-Hopf bifurcation curve (blue) can be found in this swal-

lowtail. This common point of the two bifurcation curves is the Bogdanov-Takens

bifurcation point that can also be determined analytically as follows. The common

point of the two bifurcation curves satisfies the equations of both, i.e., the coordinates

of the Bogdanov-Takens bifurcation point satisfy equations (2.6), (2.12) and (2.15).

We can plug in w from (2.15) into (2.12) leading to a single equation for x2. The

solution of this equation yields that value of x2 that belongs to the Bogdanov-Takens

bifurcation point. Introducing the function

g(x) =
2f(x)(n− 1)

f ′(x)(n − 2)
,

the equation for x2 takes a simpler form as it is given in the next statement.
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Theorem 2.5. Let xBT

2
be a solution of

2
(n− 1

n− 2
x2 − g(x2)

)

f ′(g(x2)) + f(g(x2)) = 0.

Then the coordinates of a Bogdanov-Takens bifurcation point in the (w,w1) param-

eter plane can be given as

wBT =
2

(n− 2)f ′(xBT

2
)
, wBT

1
=

xBT

2
− (n− 2)wBTf(xBT

2
)

f((n− 1)wBTf(xBT

2
))

.

We note that numerical experiments show that the above equation always has

a single solution for x2 as the parameters a, b and n are varied, i.e., there is a single

Bogdanov-Takens bifurcation point.

3. Global bifurcation curves

Our goal here is to find the global bifurcations in the reduced two-dimensional

system (2.1)–(2.2). While we could determine local bifurcations, where the phase

portrait changed in a neighbourhood of a steady state, analytically, global bifurca-

tions cannot be determined using analytical tools. In the case of global bifurcations

the phase portrait changes along a global structure such as a limit cycle or a ho-

moclinic orbit. We use the MatCont MATLAB toolbox [10], developed for the

investigation of parametrized dynamical systems and also for bifurcation studies, for

the detection of global bifurcations. We fix parameters of the activation function

a = 4, b = 1 and the size of the network, n = 10, for the investigation below.

The first global bifurcation that we detect is the fold bifurcation of cycles, where

two coexisting periodic orbits, a stable one and an unstable one, collide and disap-

pear [14]. To get a cycle fold bifurcation point, a periodic orbit should be found

first, for which the ode solvers of MATLAB are available in MatCont. Then this

periodic orbit can be continued by varying one parameter until we get to the cycle

fold bifurcation point denoted by LPC. The starting point of this continuation pro-

cess can be the Andronov-Hopf bifurcation curve that has already been determined

analytically, yielding a periodic orbit. We note that even more simply we can start

from a steady state and find the Andronov-Hopf point by continuation [10]. For

system (2.1)–(2.2), we used the stable limit cycle born on the Andronov-Hopf bifur-

cation curve, and continued it by varying the value of w1 (with w fixed at 900) until

the limit point of cycles (LPC) is reached as it can be seen in Figure 2 (a). Once

LPC is found, we can continue the unstable periodic orbit, with which the stable

one collided. This way we can get information about the appearance of the unstable

periodic orbit. The continuation algorithm of MatCont enables us to continue the
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10
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30

x1

−46

−44

−42

w1

−40

−20

0

x2

LPC

(a) Continuation of stable (blue) and unstable (red) peri-
odic orbits. The cycle fold bifurcation (black) is denoted
by LPC.

−47.0

−46.5

−46.0

w1

−40

−20

0

x2

0

20

40

60

x1

Hom

UM

(b) Approximating the unstable manifold (UM) and the sad-
dle homoclinic orbit (Hom).

Figure 2. Detecting global bifurcations in system (2.1)–(2.2) with fixed parameters a = 4,
b = 1, n = 10, and w = 900.

LPC point in the parameter plane (w,w1) to form the cycle fold bifurcation curve.

This is shown in Figures 3 and 4 with a magenta line. It can be seen that the cycle

fold bifurcation curve ends at the saddle homoclinic bifurcation curve (green). This

phenomenon was observed in several examples, see, e.g., [8] (Figure 7) and in [14]

(Example 8.3 in Section 8.4).

The other global bifurcation that we study is the homoclinic bifurcation. In the

two-dimensional case, a homoclinic orbit is the common part of the stable and un-
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stable manifold of an equilibrium point. If this point is a saddle, then the homoclinic

orbit is called a saddle homoclinic orbit. It may happen that the equilibrium is

a saddle-node, then the homoclinic orbit is called a saddle-node homoclinic orbit.

We can observe both cases in system (2.1)–(2.2). During a homoclinic bifurcation

a periodic orbit touches the equilibrium and becomes homoclinic, then it disappears.

If the system has a Bogdanov-Takens bifurcation point, then a saddle homoclinic

bifurcation curve always starts at this point [14]. To detect the homoclinic bifur-

cations we can use two different continuation algorithms. One is to start from a

limit cycle with large period and continue it by changing a system parameter until

its period reaches a prescribed large value, when it is considered to be a homo-

clinic orbit. The other one, called homotopy method in MatCont [10], is when

the unstable manifold of a saddle is approximated first by a solution started near

to the saddle. A segment of the unstable manifold is continued until the endpoint

reaches the stable eigenspace of the saddle (UM in Figure 2 (b)). Starting from this

point the manifold then can be continued to get the endpoint located near the sad-

dle, which indicates an appropriate approximation of the homoclinic orbit (Hom in

Figure 2 (b)). We apply the first method to determine the saddle-node homoclinic

bifurcation in system (2.1)–(2.2), and the second one for the saddle homoclinic bi-

furcation which is shown in Figure 2 (b). Once a homoclinic orbit is detected, then

it can be continued in the (w,w1) parameter plane to get the homoclinic bifurca-

tion curves [10], which are shown in Figures 3 and 4. For the fixed parameters

a = 4, b = 1, and n = 10, there are two saddle homoclinic bifurcation curves in the

system plotted with green. One of them is inside the swallowtail and it starts at

the Bogdanov-Takens bifurcation point and ends on the saddle-node curve as it is

shown in Figure 4 (b). The other one can be found outside the swallowtail and it

also ends on the saddle-node curve, but not at the same point as the previous one.

As it can be seen in Figure 3 (b), it has an intersection with the Andronov-Hopf

bifurcation curve. The saddle-node homoclinic bifurcation curve (dashed green in

Figure 4 (b)) connects the two saddle homoclinic bifurcation curves and lies on the

saddle-node curve.

4. Phase portraits in the different parameter regions

Now we describe the dynamical behaviour of system (2.1)–(2.2) for parameter

pairs (w,w1) lying in the domains created by the bifurcation curves, namely the

saddle-node, Andronov-Hopf, cycle fold and homoclinic bifurcation curves. These

bifurcation curves divide the parameter plane into nine domains which are denoted

by letters A-I and are shown in Figures 3 and 4. Now we describe the asymptotic

behaviour of system (2.1)–(2.2) for each domain; this is also summarized in Table 1.
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Domain Equilibrium Periodic orbit

A 1S -

B 2S, 1U -

C 2S, 1U 1U

D 1S, 2U 1S, 1U

E 1S, 2U 1S

F 1S, 2U -

G 3S, 2U -

H 2S, 3U 1S

I 2S, 3U -

Table 1. Equilibria and periodic orbits in system (2.1)–(2.2). Letters ‘S’ and ‘U’ refer to
stable and unstable equilibria and periodic orbits. The numbers represent their
number in each domain.

0 10 20 30 40w

−30

−20

−10

0

10

w1

A

F

B

(a) All detected local and global bifurcation
curves.

10 15 20 25 30 35 w

−20

−18

−16

−14

−12

−10

w1

F

B

C

E

D

(b) The intersection of the Andronov-Hopf
and saddle homoclinic bifurcation curves.

Figure 3. Saddle-node (red), Andronov-Hopf (blue), cycle fold (magenta), saddle homo-
clinic (green) and saddle-node homoclinic (dashed green) bifurcation curves and
their magnifications in system (2.1)–(2.2) with fixed parameters a = 4, b = 1, and
n = 10. CP is the cusp point and BT is the Bogdanov-Takens bifurcation point.

The model has a single globally stable steady state if the parameter pair (w,w1)

is in domain A. Crossing the saddle-node bifurcation curve towards domain B we

can find three equilibria. The first and the third ones are stable, the middle one

is a saddle. (The equilibria here and below are ordered according to their first

coordinate.) Entering domain C, an unstable periodic orbit appears around the first

steady state via saddle homoclinic bifurcation. The Andronov-Hopf bifurcation is

supercritical, that is, if we step into domain D, the first fixed point loses its stability

and a stable limit cycle appears around it. The unstable periodic orbit remains

around them. Because of the intersection of the saddle homoclinic and Andronov-
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Hopf bifurcation curves, only the stable limit cycle exists around the first steady

state in domain E. The stable and unstable periodic orbits collide and disappear

via cycle fold bifurcation, that is, in domain F only the three equilibria can be

found without any periodic orbit. The system has five steady states inside the

swallowtail. The first and fifth of them are always stable and the second and the

fourth are saddles. In domain G the third equilibrium is stable but it becomes

unstable as Andronov-Hopf bifurcation occurs and a stable periodic orbit appears

around it in domain H . This limit cycle becomes homoclinic and it disappears via

saddle homoclinic bifurcation, so only the five equilibria remain in the phase portrait

belonging to domain I.

3 4 5 6 7w

−8

−7

−6

−5

−4

−3

−2
w1

BT

CP

CP

A

F

B

E

(a) Magnification of the swallowtail. The
cycle fold bifurcation curve ends at the sad-
dle homoclinic bifurcation.

3.15 3.20 3.25 3.30w

−3.4

−3.3

−3.2

−3.1

−3.0
w1

BT

CP

F
I

B E

H

G

(b) The right-hand side of the swallow-
tail. The saddle-node homoclinic bifurcation
curve connects the two saddle homoclinic
bifurcation curves.

Figure 4. Saddle-node (red), Andronov-Hopf (blue), cycle fold (magenta), saddle homo-
clinic (green) and saddle-node homoclinic (dashed green) bifurcation curves and
their magnifications in system (2.1)–(2.2) with fixed parameters a = 4, b = 1, and
n = 10. CP is the cusp point and BT is the Bogdanov-Takens bifurcation point.

Now we show how the phase portraits of system (2.1)–(2.2) change via three

important bifurcations. First, we fix w and vary the value of w1 to cross the

homoclinic (green) and Andronov-Hopf bifurcation (blue) curves. If the param-

eter pair is in domain B, then there is no periodic orbit. Figure 5 (a) shows

the phase portrait when the parameter pair is on the homoclinic bifurcation

curve, i.e., on the boundary of domains B and C. We have then a saddle ho-

moclinic orbit where the unstable periodic orbit, which remains to exist in do-

mains C and D, is born. Crossing the Andronov-Hopf bifurcation curve, i.e.,

entering domain D, a stable periodic orbit appears. In Figure 5 (b), the co-

existing stable and unstable limit cycles can be seen surrounding the unstable

steady state.
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(a) Saddle homoclinic orbit surrounding
the stable equilibrium. The parameter pair
(w,w1) lies on the boundary of domains B
and C at w1 = −28.55.
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(b) Unstable steady state and the sta-
ble and unstable periodic orbits around it.
The parameter pair (w,w1) is in domain D
with w1 = −26.

Figure 5. Phase portraits in system (2.1)–(2.2) with fixed parameters a = 4, b = 1, n = 10,
and w = 100.

Second, we fix w and vary the value of w1 to cross the homoclinic (green) curve in-

side the swallowtail. The stable limit cycle existing for parameter pairs in domain H

is shown in Figure 6 (b). This limit cycle becomes a saddle homoclinic orbit shown

in Figure 6 (a) when the parameter pair is on the boundary of domains H and I.

The limit cycle disappears via saddle homoclinic bifurcation as the parameter pair

enters domain I.
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(a) Saddle homoclinic orbit surrounding
the unstable equilibrium. The parame-
ter pair (w,w1) lies on the boundary of
domains H and I .
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(b) Unstable steady state and the stable pe-
riodic orbit around it. The parameter pair
(w,w1) is in domain H .

Figure 6. Phase portraits of system (2.1)–(2.2) for parameter pairs inside the swallowtail
and with fixed parameter values a = 4, b = 1, n = 10, and w = 3.23.
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Finally, we fix w and let w1 vary in such a way that the parameter pair (w,w1)

moves from domain I to domain E by crossing the saddle-node homoclinic bifurca-

tion curve and then moving forward to cross the saddle homoclinic curve and entering

domain F . The phase portraits belonging to parameter pairs lying (a) on the bound-

ary of I and E, (b) in the domain E and (c) on the boundary of E and F are shown

in Figure 7. We can see that a stable limit cycle appears via saddle-node homoclinic

bifurcation on the boundary of I and E, then it becomes a saddle homoclinic orbit

on the boundary of E and F and then disappears in F .
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(a) Saddle-node homoclinic orbit for a pa-
rameter pair (w,w1) lying on the boundary
of domains I and E at w1 = −3.16335.
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(b) Unstable steady state and the stable
periodic orbit around it for a parameter
pair (w,w1) in domain E at w1 = −3.15.
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(c) Saddle homoclinic orbit for a parame-
ter pair (w,w1) lying on the boundary of
domains E and F at w1 = −3.1486344.

Figure 7. Birth of a stable periodic orbit via saddle-node homoclinic bifurcation and its
disappearance via saddle homoclinic bifurcation with fixed parameters a = 4,
b = 1, n = 10, and w = 3.225. An unstable steady state is surrounded by the
homoclinic and periodic orbits.
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5. Conclusion

In this paper our main goal was to classify some possible long-time dynamical

behaviours of the Hopfield model given in (1.1) when the weight matrix has a special

non-symmetric structure. The starting point is a fully connected network when all

non-diagonal weights are equal and positive, i.e., all neurons are identical and excita-

tory. This simple special case can be completely characterized, since all trajectories

tend to steady states. The effect of an inhibitory neuron is in the focus of this paper.

We considered the case when there are n−1 identical neurons with the same positive

weight w and only one neuron with an arbitrary weightw1. We assumed that the neu-

rons do not receive any external input and they do not connect to themselves directly.

The local bifurcations can be characterized and determined analytically. It turned

out that saddle-node and Andronov-Hopf bifurcations may occur leading to bista-

bility or a periodic orbit. We also investigated the numerical detection of global

bifurcations to describe the dynamics of the model in the whole parameter region.

Saddle-homoclinic, cycle fold and saddle-node homoclinic codimension 1 bifurcation

curves were detected using MatCont numerical toolbox of MATLAB. We studied

the behaviour of the model in each domain created by the bifurcation curves. We

showed that there can be one, three or five steady states and a stable and an unstable

periodic orbit may exist together yielding a rich dynamical behaviour.

These results show that even a single inhibitory neuron can create several new dy-

namical phenomena. Hence, it may be interesting to study the behaviour of the sys-

tem with more complex weight matrices. This could be the subject of future research.
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