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Abstract. In this paper, a generalized Motsch-Tadmor model with piecewise interaction
functions and fixed processing delays is investigated. According to functional differential
equation theory and correlation properties of the stochastic matrix, we obtained sufficient
conditions for the system achieving flocking, including an upper bound of the time delay pa-
rameter. When the parameter is less than the upper bound, the system achieves asymptotic
flocking under appropriate assumptions.
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1. Introduction

The self-organized collective system is one of the most common phenomena in the

natural world, which has appeared in numerous applications and theories, especially

in computer science [9], physics [13], biology [25] and social science [1]. It is very im-

portant to understand the theoretical mechanisms that lead to collective behaviour.

In 2007, the celebrated Cucker-Smale model [7] was proposed:

(1.1) ẋi(t) = vi(t), v̇i(t) =
λ

N

N∑

j=1

ϕ(|xj(t)−xi(t)|)(vj(t)−vi(t)), i = 1, 2, . . . , N,
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where (xi(t), vi(t)) ∈ R
2d, i = 1, 2, . . . , N is the position and velocity of the ith agent,

λ (λ > 0) measures the interaction strength, ϕ(r) = 1/(1 + r2)β , β > 0, represents

the interaction function, |·| is the Euclidean vector norm. According to the results
of [7], [8], [12], the unconditional flocking would occur if β 6 1

2 , which means that

the system (1.1) achieves flocking without an initial constraint. On the other hand,

if β > 1
2 , the system (1.1) achieves flocking under some limited initial states and this

case is called the condition flocking. In 2011, Motsch and Tadmor [23] changed the

interaction function from ϕ(|xj(t)− xi(t)|)/N into ψij(t), where

(1.2) ψij(t) =
ϕ(|xj(t)− xi(t)|)∑N
k=1 ϕ(|xk(t)− xi(t)|)

is an asymmetric function. By the concept of active sets and Lyapunov functional

approach, they also proved that β = 1
2 is a critical value for flocking. At the end

of [23], Motsch and Tadmor pointed out that the interaction decaying rapidly or

cutting off at a finite distance is a more realistic situation.

In 2018, Jin [17] presented a Motsch-Tadmor model with the cut-off interaction

function

(1.3)






ẋi(t) = vi(t), i = 1, 2, . . . , N,

v̇i(t) =
λ

Ni(t)

∑

j∈Ni(t)

χr(|xj(t)− xi(t)|)(vj(t)− vi(t)),

where r is a constant denoting the size of the neighbourhood,

χr(s) =

{
1, s < r,

0, s > r,

is the cut-off interaction function, Ni(t) = {j : lij(t) := |xj(t)− xi(t)| < r} is the
neighbour set of i and Ni(t) = Card(Ni(t)) is the number of neighbours for i. Using

the algebraic properties of the connected stochastic matrix, Jin obtained a suffi-

cient framework to ensure that the system (1.3) achieves flocking at an exponential

rate. Inspired by [17], [3] the proposed a generalized Motsch-Tadmor model with the

piecewise interaction function

(1.4)





ẋi(t) = vi(t), i = 1, 2, . . . , N,

v̇i(t) =
λ

Ni(t)

∑

j∈Ni(t)

χδ
r(|xj(t)− xi(t)|)(vj(t)− vi(t))

+
λ

N −Ni(t)

∑

j /∈Ni(t)

χδ
r(|xj(t)− xi(t)|)(vj(t)− vi(t)).
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where

χδ
r(s) =

{
1, s < r,

δ, s > r,
δ ∈ R,

is the piecewise interaction function, which is described by a piecewise constant

function. In the above system, if |xj(t) − xi(t)| < r, then i and j attract to each

other. However, if |xj(t)−xi(t)| > r, they attract (δ > 0) or repel (δ < 0) each other,

and the latter can be understood as the phenomenon of coexistence of cooperation

and competition within a population. Their research direction was to get the flocking

condition of the system (1.3) with the changes of δ. The authors found that in order

for the system (1.4) to achieve flocking, |δ| has to be small enough. Especially, the
result of [3] would degrade into the result of [17] if |δ| → 0.

The time delay is a non-negligible problem in multi-agent system cluster control

and its causes can be roughly divided into two types: information transmission delay

and information processing delay. The transmission delay means that it takes time

for agents to receive information from the others limited by the speed of communica-

tion, see [20], [4], [5], [6], [10], [11], [15], [2]. The processing delay, also known as reac-

tion delay, refers to the time required for devices to process information, see [26], [16],

[19], [18]. In 2020, Liu et al. studied the system (1.3) involving processing delay [21]:

(1.5)





ẋi(t) = vi(t), i = 1, 2, . . . , N,

v̇i(t) =
λ

Ñi(t)

∑

j∈Ñi(t)

χr(|x̃j(t)− x̃i(t)|)(ṽj(t)− ṽi(t)),

where τ ∈ R+ is a fixed delay, Ñi(t) = Ni(t− τ), ṽi(t) = vi(t− τ), x̃i(t) = xi(t− τ).

According to functional differential equation theory and correlation properties of

matrix eigenvalues, [21] gives sufficient conditions for the system (1.5) achieving

flocking, periodic flocking, clustering and periodic clustering, and points that 1
2π is

the critical delay.

In order to generalize the conclusions of [21], we consider a generalized Motsch-

Tadmor model with piecewise interaction and processing delay

(1.6)






ẋi(t) = vi(t), i = 1, 2, . . . , N,

v̇i(t) =
λ

Ñi(t)

∑

j∈Ñi(t)

χδ
r(|x̃j(t)− x̃i(t)|)(ṽj(t)− ṽi(t))

+
λ

N − Ñi(t)

∑

j /∈Ñi(t)

χδ
r(|x̃j(t)− x̃i(t)|)(ṽj(t)− ṽi(t)).

The initial conditions of the system (1.6) are

(1.7) xi(θ) = fi(θ), vi(θ) = gi(θ), fi(θ), gi(θ) ∈ C
(
[−τ, 0],Rd

)
, 1 6 i 6 N.
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The main purpose of this paper is to analyse the influence of the processing delay on

the system (1.4), obtain a sufficient condition for the system (1.6) achieving flocking

or periodic flocking, and compare our results with those of [21].

This paper is organized as follows: In Section 2, we introduce some preliminaries

and assumptions for model analysis. In Section 3, we analyse flocking behaviour of

the system (1.6) in two cases and obtain sufficient conditions for the system (1.6)

achieving flocking. Section 4 is the numerical simulation. The conclusion is in the

last section.

2. Modelling formulation and preliminaries

Firstly, we present the mathematical definition of periodic flocking.

Definition 2.1 ([21]). Suppose (xi(t), vi(t)) ∈ R
n×R

n, i = 1, 2, . . . , N is a solu-

tion to (1.6) with the initial data (1.7). The system (1.6) is said to achieve periodic

flocking, if there are periodic functions ϕpi(t) with the same period such that

sup
06t<∞

max
16i,j6N

|xi(t)− xj(t)| <∞, lim
t→∞

(vi(t)− ϕpi(t)) = v∞, i = 1, 2, . . . , N,

where v∞ ∈ R
d is a constant vector. Especially, if all ϕpi(t) = 0, the system is said

to achieve flocking.

In this section, some concepts from graph theory and matrix theory are introduced

to analyse the topological structure of the system (1.6). Define the neighbour graph

of the system (1.6) G(t) = (V , E(t)), where V = {1, 2, . . . , N}, E(t) = {(i, j) : lij(t) =
|xi(t)− xj(t)| < r, i, j ∈ V}. A path in G(t) from i to j is a sequence of distinct

vertexes k0 = i, k1, . . . , kq = j ∈ V such that (kp−1, kp) ∈ E(t) for every 1 6 p 6 q.

A graph is said to be connected at time t if there is a path between any two vertices

of the graph at t. Denote the adjacency matrix and the average matrix of G(t) by

A(t) = (aij(t))N×N and P (t) = (pij(t))N×N , respectively, where

(2.1) aij(t) =

{
1, (i, j) ∈ E(t),
0, (i, j) /∈ E(t),

and pij(t) =
aij(t)

Ni(t)
.

Similarly, define the distant relative graph of (1.6): Gc(t) = (V , Ec(t)), Ec(t) =

{(i, j) : lij(t) > r, i, j ∈ V}, the distant relative set of i : N c
i (t) = {j : lij(t) > r},

the number of distant relatives for i : N c
i (t) = Card(N c

i (t)), adjacency matrix of

Gc(t) : Ac(t) = (acij(t))N×N , average matrix of G
c(t) : P c(t) = (pcij(t))N×N , where

(2.2) acij(t) =

{
0, (i, j) ∈ E(t),
1, (i, j) /∈ E(t),

and pcij(t) =





acij(t)

N c
i (t)

, Ni(t) 6= N,

0, Ni(t) = N.
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From (2.1) and (2.2), we have the following lemma.

Lemma 2.1. P (t) and P c(t) are diagonalizable matrices and all their eigenvalues

are real.

P r o o f. By (2.1) we have

pij(t) =
aij(t)

Ni(t)
=

1√
Ni(t)

aij(t)√
Ni(t)Nj(t)

√
Nj(t).

Introduce the symmetric matrix

S =

(
aij(t)√

Ni(t)Nj(t)

)

N×N

.

Then

P (t) = diag

(
1√
N1(t)

, . . . ,
1√
NN (t)

)
S(t) diag

(√
N1(t), . . . ,

√
NN (t)

)
,

which means that P (t) is similar to S(t). On the other hand, S(t) is a real symmet-

ric matrix, so S(t) is diagonalizable and its all eigenvalues are real. Then P (t) is

diagonalizable and its all eigenvalues are real.

Set N c
min(t) = min {N c

1(t), N
c
2 (t), . . . , N

c
N (t)}. From (2.2), if N c

min(t) > 0,

pcij(t) =
acij(t)

N c
i (t)

=
1√
N c

i (t)

acij(t)√
N c

i (t)N
c
j (t)

√
N c

j (t).

Put

Sc(t) =

(
acij(t)√

N c
i (t)N

c
j (t)

)

N×N

.

Then according to the previous argument, P c(t) is diagonalizable and its all eigen-

values are real. When N c
min(t) = 0, using the the symmetry of Ac(t) and ele-

mentary transformations of matrix, there exists a non-singular matrix F such that

P c(t) = FQ(t)F−1, where

Q(t) =

(
Q1(t)

0

)
, Q1(t) = (qij(t))n1×n1

(qij 6= 0), 0 = {0}n2×n2
,

n1+n2 = N , and the form of Q1(t) is the same as (2.1). Then Q1(t) is diagonalizable

and its all eigenvalues are real, thus P c(t) is diagonalizable and its all eigenvalues

are real. �
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Throughout the paper, we use G0 and G
c
0 to represent the initial neighbour graph

and initial distant relative graph related to the system (1.6), with their average

matrix given by P0 and P
c
0 , respectively. Owing to Lemma 2.1, we denote all the

eigenvalues of P0 and P
c
0 by µi, i = 1, 2, . . . , n0 and νj , j = 1, 2, . . . ,m0, with the

algebraic multiplicity pi and qj , respectively. Without loss of generality, assume that

1 = µ1 > µ2 > . . . > µn0
and 1 = ν1 > ν2 > . . . > νm0

.

By matrix theory,M = (mij)N×N is a stochastic matrix if
N∑
j=1

mij = 1 andmij > 0

for all i = 1, 2, . . . , N . For any i, j (0 6 i, j 6 N), if there always exists a sequence

of integers k1, k2, . . . , kq (1 6 q 6 N − 2) such that the entries mik1
,mk1k2

, . . . ,mkqj

of the matrix are all non-zero, then the matrix is called connected. Thus, from (2.1)

and (2.2) we know that P0 and P
c
0 are both connected stochastic matrices if and only

if Nmax = max{N1(0), . . . , NN (0)} < N and Nmin = min{N1(0), . . . , NN (0)} > 1

(i.e., G0 is connected but not complete).

Lemma 2.2 ([3]). Let G0 be the initial neighbour graph of the system (1.6) and

its average matrix be P0 = (pij)N×N . P
c
0 = (pcij)N×N is the average matrix of the

distant relative graph. Assume G0 is connected but not complete. Then there are

matrices T1, T2 such that P0 = T1J1T
−1
1 , P c

0 = T2J2T
−1
2 , where

J1 =




1

µ2Ip2

. . .

µn0
Ipn0


 , J2 =




1

ν2Iq2
. . .

νm0
Iqm0




satisfy
n0∑
i=2

pi = N − 1,
m0∑
j=2

qj = N − 1, 0 < |µi| < 1, |νj | < 1, and T1 = (tij)N×N

satisfies det(T1) 6= 0, ti1 = a 6= 0, 1 6 i 6 N .

In the following, we use |·|, ‖·‖ and ‖·‖F to represent the Euclidean vector
norm, the spectral norm and the Frobenius norm, respectively. Set X(t) =

(x1(t), x2(t), . . . , xN (t))⊤ ∈ R
N×d, V (t) = (v1(t), v2(t), . . . , vN (t))⊤ ∈ R

N×d. From

matrix theory, we have

‖V ‖ = sup
|α|6=0

|V α|
|α| =

√
sup
|α|6=0

α⊤V ⊤V α

|α|2 =
√
̺max(V ⊤V ), ‖V ‖F =

( N∑

i=1

|vi|2
)1/2

,

where α ∈ R
d and ̺max(V

⊤V ) is the largest eigenvalue of V ⊤V . Using the Cauchy-

Schwarz inequality, it is easy to show that

(2.3) ‖V ‖ 6 ‖V ‖F 6
√
d‖V ‖.
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Finally, two conclusions about functional differential equations will be presented.

Let J1 is the matrix from Lemma 2.2, consider the equation

u̇(t) = −λ(I − J1)ũ(t)

and its characteristic equation

h0(z) = det(zI + λe−zτ (I − J1)) = z

n0∏

i=2

(
z + λ(1 − µi)e

−zτ
)pi

= 0.

Lemma 2.3 ([21]). If 0 6 λτ(1 − µn0
) < 1

2π, then all other roots of the equation

z = −λ(1− µi)e
−zτ have real parts and

a0 = max
26i6n0

sup{Re z : z = −λ(1− µi)e
−zτ} < 0.

Lemma 2.4 ([14]). If a0 = max {Re z : h0(z) = 0}, then, for any c > a0, there

is a constant K = K(c) such that the fundamental solution Su(t) of the equation

u̇(t) = −λ(I − J1)ũ(t) satisfies the inequality ‖Su(t)‖ 6 Kect.

3. Analysis of the flocking behaviour

To quantize the sensitiveness of the neighbour graph of the system (1.6) when the

distance of two particles is near r, we use the following variable of time t:

Γ(t) = min
{
r − max

(i,j)∈E(t)
lij(t), min

(i,j)∈Ec(t)
lij(t)− r

}
.

By definition, Γ(t) > 0. If Γ(0) > 0, we call this case the non-critical neighbourhood

situation. If Γ(0) = 0, we call it a general neighbourhood situation.

3.1. Flocking behaviour in the non-critical neighbourhood situation.

In this case, by the continuity of lij(t), there exists t1 > 0 such that the average

matrix P (t) keeps unchanged on [0, t1). Thus we obtain the following result.

Theorem 3.1. Let 0 6 λτ(1−µn0
) < 1

2π. Assume Γ(0) > 0, Nmax < N , Nmin > 1

and √
2dD1g0K < (|c1| − λ|δ|D1(1− νm0

)D2K)Γ(0),

where

g0 = sup
θ∈[−τ,0]

‖g(θ)‖, c1 =
1

2
max

26i6n0

sup{Re z : z = −λ(1− µi)e
−zτ},

D1 =

√
Nmax

Nmin
, D2 =

√
N −Nmin

N −Nmax
,

57



and K = K(c1) is a constant satisfying Lemma 2.4. Then the system (1.6) will

achieve flocking, and there is a constant

c ∈
(√

2nD1g0K

Γ(0)
+ λ|δ|D1(1 − νm0

)D2K,−c1
)

such that

‖V (t)− V∞‖ 6
c− Ω(K − 1)

c− ΩK
D1Kg0e

−(c−ΩK)t,

sup
06t6∞

max
16i,j6N

|xi(t)− xj(t)| 6
√
2d
(
‖f(0)‖+ c− Ω(K − 1)

(c− ΩK)2
D1Kg0

)
<∞,

where

Ω = λ|δ|D1(1− νm0
)D2,

V∞ = T1 diag(1, 0, . . . , 0)T
−1
1 V (0)− λδ

∫ ∞

0

T1 diag(1, 0, . . . , 0)T
−1
1 (I − P c

0 )Ṽ (s) ds.

P r o o f. The proof is divided into three steps.

The first step: use assumptions to obtain an exponential estimation of velocities

on [0, t1). Owing to Γ(0) > 0, the average matrix P (t) keeps unchanged on [0, t1).

Then the system (1.6) can be rewritten in the matrix form on [0, t1) to read as

(3.1)

{
V̇ (t) = −λ(I − P0)Ṽ (t)− λδ(I − P c

0 )Ṽ (t),

V (θ) = g(θ), θ ∈ [−τ, 0].

Let S1(t) be the fundamental solution operator of the equation

u̇(t) = −λ(I − J1)ũ(t).

By using the variation-of-constant formula, the general solution of (3.1) is given as

(3.2) V (t+ θ) = T1

(
1 0

0 S1(t)

)
T−1
1 g(θ)

− λδ

∫ t

0

T1

(
1 0

0 S1(t− s)

)
T−1
1 (I − P c

0 )Ṽ (s) ds.

To get an exponential estimate of velocities, we estimate ‖S1(t)‖, ‖T1‖ · ‖T−1
1 ‖ and

‖I − P c
0‖, in turn. Put a0 = max

26i6n0

sup{Re z : z = −λ(1 − µi)e
−zτ}, then we have

a0 < 0 from Lemma 2.3. Let c1 = − 1
2a0, Lemma 2.4 claims that there is a constant

K = K(c1) such that

(3.3) ‖S1(t)‖ 6 Kec1t, t > 0.

58



Nmax < N and Nmin > 1, so both P0 and P
c
0 are connected stochastic matrices.

Hence, using Lemma 2.2 and Lemma 2.1, direct computation yields

(3.4) ‖T1‖ · ‖T−1
1 ‖ 6

1√
Nmin

‖O‖ ·
√
Nmax‖O−1‖ 6

√
Nmax

Nmin
=: D1,

where O is the orthogonal matrix to diagonalize the symmetric matrix
(

aij(0)√
Ni(0)Nj(0)

)

N×N

.

Similarly, we have

(3.5) ‖T2‖·‖T−1
2 ‖ 6

√
N −Nmin

N −Nmax
=: D2.

Then from Lemma 2.1 we obtain

(3.6) ‖I − P c
0 ‖ 6 (1− νm0

)D2.

According to the last assumption
√
2dD1g0K < (|c1| − λ|δ|D1(1 − νm0

)D2K)Γ(0)

and (3.3), there exists a constant

c ∈
(√

2nD1g0K

Γ(0)
+ λ|δ|D1(1 − νm0

)D2K,−c1
)

such that

(3.7) ‖S1(t)‖ 6 Ke−ct.

Next, we get an exponential estimate of velocities. Put

Va(t+θ) = T1 diag(1, 0, . . . , 0)T
−1
1 g(θ)−λδ

∫ t

0

T1 diag(1, 0, . . . , 0)T
−1
1 (I−P c

0 )Ṽ (s) ds.

Using Lemma 2.1 again, we know the entries in the first column of T1 are the same.

Direct calculating the above equality shows that all the rows of Va(t + θ) are the

same. Then (I − P c
0 )Ṽa(s) = 0 holds and we have

V (t+ θ)− Va(t+ θ) = T1

(
0 0

0 S1(t)

)
T−1
1 g(θ)

− λδ

∫ t

0

T1

(
0 0

0 S1(t− s)

)
T−1
1 (I − P c

0 )Ṽ (s) ds

= T1

(
0 0

0 S1(t)

)
T−1
1 g(θ)

− λδ

∫ t

0

T1

(
0 0

0 S1(t− s)

)
T−1
1 (I − P c

0 )(Ṽ (s)− Ṽa(s)) ds.
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Taking the norm of the above inequality and using (3.4), (3.6) and (3.7) yield

sup
θ∈[−τ,0]

‖V (t+ θ)− Va(t+ θ)‖ 6 D1Kg0e
−ct + λ|δ|D1(1 − νm0

)D2K

×
∫ t

0

e−c(t−s) sup
θ∈[−τ,0]

‖V (s+ θ)− Va(s+ θ)‖ ds.

By solving the above Gronwall inequality, we obtain

(3.8) sup
θ∈[−τ,0]

‖V (t+ θ)− Va(t+ θ)‖ 6 D1Kg0e
−(c−λ|δ|D1(1−νm0

)D2K)t, t ∈ [0, t1).

The second step: prove that P (t) remains unchanged for all time, i.e., t1 = ∞. If
t1 <∞, then there exists (i0, j0) such that

l̃i0j0(t1) = |x̃i0 (t1)− x̃j0(t1)| = r.

Recalling the first equation of (1.6), we have ẋi0(t) = vi0 (t) and ẋj0(t) = vj0 (t), then

xi0 (t)− xj0(t) = xi0 (0)− xj0 (0) +

∫ t

0

(vi0(s)− vj0(s)) ds.

Combining (2.3) and (3.8) yields

|vi0 (s)− vj0(s)| 6
√
2 sup
θ∈[−τ,0]

‖V (t+ θ)− Va(t+ θ)‖F

6
√
2d sup

θ∈[−τ,0]

‖V (t+ θ)− Va(t+ θ)‖

6
√
2dD1Kg0e

−(c−λ|δ|D1(1−νm0
)D2K)t.

Then by the fact that

c <

√
2nD1g0K

Γ(0)
+ λ|δ|D1(1− νm0

)D2K

we obtain

li0j0(t1 + θ) = |xi0 (t1 + θ)− xj0 (t1 + θ)|

6 li0j0(0) +
√
2dD1g0K

∫ ∞

0

e−(c−λ|δ|D1(1−νm0
)D2K)s ds

= li0j0(0) +

√
2dD1g0K

(c− λ|δ|D1(1− νm0
)D2K)

< li0j0(0) + Γ(0) 6 r, (i0, j0) ∈ E(0) ∀ θ ∈ [−τ, 0],
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and

li0j0(t1 + θ) = |xi0 (t1 + θ)− xj0 (t1 + θ)|

> li0j0(0)−
√
2dD1g0K

∫ ∞

0

e−(c−λ|δ|D1(1−νm0
)D2K)s ds

= li0j0(0)−
√
2dD1g0K

(c− λ|δ|D1(1− νm0
)D2K)

> li0j0(0)− Γ(0) > r, (i0, j0) /∈ E(0) ∀ θ ∈ [−τ, 0].

This implies that

l̃i0j0(t1) < r, (i0, j0) ∈ E(0), and l̃i0j0(t1) > r, (i0, j0) /∈ E(0).

Obviously, the above inequalities contradict the existence of (i0, j0) such that

l̃i0j0(t1) = r. Thus t1 = ∞ and P (t) ≡ P0 for all time.

The final step: use the exponential estimation of velocities to show that the system

achieves flocking. From conclusions of the first step and the second step, we have

sup
θ∈[−τ,0]

‖V (t+ θ)− Va(t+ θ)‖ 6 D1Kg0e
−(c−λ|δ|D1(1−νm0

)D2K)t, t > 0.

Set Ω = λ|δ|D1(1− νm0
)D2 for convenience. Then

(3.9) sup
θ∈[−τ,0]

‖V (t+ θ)− Va(t+ θ)‖ 6 D1Kg0e
−(c−ΩK)t, t > 0.

Combining

Va(t+ θ) = T1 diag(1, 0, . . . , 0)T
−1
1 g(θ)

− λδ

∫ t

0

T1 diag(1, 0, . . . , 0)T
−1
1 (I − P c

0 )Ṽ (s) ds

= T1 diag(1, 0, . . . , 0)T
−1
1 g(θ)

− λδ

∫ t

0

T1 diag(1, 0, . . . , 0)T
−1
1 (I − P c

0 )(Ṽ (s)− Ṽa(s)) ds

with (3.9), we deduce that

T1 diag(1, 0, . . . , 0)T
−1
1 g(θ) = T1 diag(1, 0, . . . , 0)T

−1
1 V (0)

and there exists V∞ given by

(3.10) V∞ = T1 diag(1, 0, . . . , 0)T
−1
1 V (0)

− λδ

∫ ∞

0

T1 diag(1, 0, . . . , 0)T
−1
1 (I − P c

0 )Ṽ (s) ds
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such that

‖Va(t)− V∞‖ 6 λδD1(1 − νm0
)D2

∫ ∞

t

‖Ṽ (s)− Ṽa(s)‖ ds

6 ΩD1Kg0

∫ ∞

t

e−(c−ΩK)t ds =
ΩD1Kg0
c− ΩK

e−(c−ΩK)t.

Using (3.9) again, we conclude

‖V (t)− V∞‖ 6 ‖V (t)− Va(t)‖+ ‖Va(t)− V∞‖

6
c− Ω(K − 1)

c− ΩK
D1Kg0e

−(c−ΩK)t, t > 0.

On the other hand,

‖X(t)− tV∞‖ =

∥∥∥∥X(0) +

∫ t

0

V (s)− V∞ ds

∥∥∥∥

6 ‖f(0)‖+ c− Ω(K − 1)

c− ΩK
D1Kg0

∫ t

0

e−(c−ΩK)s ds

6 ‖f(0)‖+ c− Ω(K − 1)

(c− ΩK)2
D1Kg0, t > 0,

and thus

sup
06t6∞

max
16i,j6N

|xi(t)− xj(t)| 6
√
2‖X(t)− tV∞‖2 6

√
2d‖X(t)− tV∞‖

6
√
2d
(
‖f(0)‖+ c− Ω(K − 1)

(c− ΩK)2
D1Kg0

)
<∞.

�

R em a r k 3.1. Here we discuss the satisfiability of the assumptions of Theo-

rem 3.1. There are five assumptions in Theorem 3.1: 0 6 λτ(1 − µn0
) < 1

2π

comes from Lemma 2.3, Γ(0) > 0 means the non-critical neighbourhood situa-

tion, Nmax < N and Nmin > 1 are the conditions for Lemma 2.2,
√
2dD1g0K <

(|c1|−λ|δ|D1(1− νm0
)D2K)Γ(0) is a technical condition related to the initial condi-

tions. In the last assumption, c1, K(c1), Γ(0), νm0
, D1 and D2 are all determined by

the initial neighbour graph G0. Although we have only the existence result for K(c1)

(from Lemma 2.4), (|c1|−λ|δ|D1(1−νm0
)D2K)Γ(0) > 0 can be guaranteed when |δ|

is sufficiently small. On the other hand, we can change g0 by adjusting the initial ve-

locities without affecting G0, because G0 is determined only by the initial positions,

and the selection of the initial positions, and the initial velocities are independent of

each other. Then the last assumption holds when g0 is sufficiently small. And the

last assumption does not conflict with the first four assumptions, so the assumptions

of Theorem 3.1 are actually satisfiable.
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3.2. Flocking behaviour in the general neighbourhood situation. In the

general case, we put tn to be the switching moments at the nth time. Then tn
is called the switching time sequence, which could be finite or infinity. Since the

average matrix keeps unchanged at each interval (tn, tn+1), n = 0, 1, 2, . . . (t0 = 0,

t1 > 0), the matrix P (t) is a constant matrix on (tn, tn+1), say P (tn). Assume the

initial average matrix keeps unchanged, say P (θ) = P0 for θ ∈ [−τ, 0].
To understand well the dynamics of the system (1.6) in the general case, we assume

that the adjacency matrix does not change frequently and sharply, and consider the

following assumptions.

(H1) There exist positive constants δ, γ and a sequence t
∗
n ∈ (tn, tn+1) such that

tn+1 − tn > δ, tn+1 − t∗n > τ and Γ(t∗n) > γ ∀n.

(H2) Assume that the amplitudes ‖P (t) − P0‖ and ‖P c(t) − P c
0 ‖ are bounded

uniformly on t,

η1 = sup
t>0

‖P (t)− P0‖ and η2 = sup
t>0

‖P c(t)− P c
0‖.

The above assumptions ensure that the system is a controllable switching system.

(H1) guarantees that switches are not too frequent and (H2) guarantees that switches

are not too drastic. The following theorem shows that under the assumptions

(H1)–(H2) and appropriate initial conditions, the topology of the system (1.6) stops

changing after a certain time point.

Theorem 3.2. Let 0 6 λτ(1 − µn0
) < 1

2π. Assume

Nmax < N, Nmin > 1, ΛD1(K − 1) < |c1|,

and the assumptions (H1)–(H2) hold. Then the system (1.6) will achieve flocking,

and there is a constant c ∈ (ΛD1K,−c1) such that

sup
06t6∞

max
16i,j6N

|xi(t)− xj(t)| 6
√
2d
(
‖f(0)‖+ c− ΛD1(K − 1)

(c− ΛD1K)2
D1Kg0

)
<∞,

‖V (t)− V∞‖ 6
c− ΛD1(K − 1)

c− ΛD1K
D1Kg0e

−(c−ΛD1K)t,

where

Λ = λη1 + λ|δ|(1 − νm0
)D2 + λ|δ|η2,

V∞ = T1 diag(1, 0, . . . , 0)T
−1
1 V (0)

+

∫ ∞

0

T1 diag(1, 0, . . . , 0)T
−1
1 [λ(P (t)− P0)− λδ(I − P c(t))]Ṽ (s) ds.
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P r o o f. The proof is also divided into three steps.

The first step: use assumptions to obtain the exponential estimation of velocities.

Rewrite the system (1.6) as

(3.11)

{
V̇ (t) = −λ(I − P0)Ṽ (t) + λ(P (t)− P0)Ṽ (t)− λδ(I − P c(t))Ṽ (t),

V (θ) = g(θ), θ ∈ [−τ, 0].
By using the variation-of-constant formula, the general solution of (3.11) is given as

V (t+ θ) = T1

(
1 0

0 S1(t)

)
T−1
1 g(θ)

+

∫ t

0

T1

(
1 0

0 S1(t− s)

)
T−1
1 [λ(P (t) − P0)− λδ(I − P c(t))]Ṽ (s) ds.

Taking

Va(t+ θ) = T1 diag(1, 0, . . . , 0)T
−1
1 g(θ)

+

∫ t

0

T1 diag(1, 0, . . . , 0)T
−1
1 [λ(P (t) − P0)− λδ(I − P c(t))]Ṽ (s) ds

and using the fact that

T1

(
0 0

0 S1(t− s)

)
T−1
1 [λ(P (t) − P0)− λδ(I − P c(t))]Ṽa(s) = 0,

we have

V (t+ θ)− Va(t+ θ)

= T1

(
0 0

0 S1(t)

)
T−1
1 g(θ)

+

∫ t

0

T1

(
0 0

0 S1(t− s)

)
T−1
1 [λ(P (t) − P0)− λδ(I − P c(t))]Ṽ (s) ds

= T1

(
0 0

0 S1(t)

)
T−1
1 g(θ)

+

∫ t

0

T1

(
0 0

0 S1(t− s)

)
T−1
1 [λ(P (t) − P0)− λδ(I − P c(t))](Ṽ (s)− Ṽa(s)) ds.

To get an exponential estimate of velocities, we estimate

‖λ(P (t)− P0)− λδ(I − P c(t))‖.

Using (3.5) and (H2), we obtain

(3.12) ‖λ(P (t)− P0)− λδ(I − P c(t))‖
6 λ‖P (t)− P0‖+ λ|δ|‖I − P c

0 ‖+ λ|δ|‖P c(t)− P c
0 ‖

6 λη1 + λ|δ|(1 − νm0
)D2 + λ|δ|η2 := Λ.
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According to the assumption ΛD1(K − 1) < |c1| and (3.3), there is a constant
c ∈ (ΛD1K,−c1) such that

‖S1(t)‖ 6 Ke−ct.

Thus

sup
θ∈[−τ,0]

‖V (t+ θ)− Va(t+ θ)‖

6 D1Kg0e
−ct + ΛD1K

∫ t

0

e−c(t−s) sup
θ∈[−τ,0]

‖V (s+ θ)− Va(s+ θ)‖ ds.

Then

ect sup
θ∈[−τ,0]

‖V (t+ θ)− Va(t+ θ)‖

6 D1Kg0 + ΛD1K

∫ t

0

ecs sup
θ∈[−τ,0]

‖V (s+ θ)− Va(s+ θ)‖ ds.

By solving the above Gronwall inequality, we get

(3.13) sup
θ∈[−τ,0]

‖V (t+ θ)− Va(t+ θ)‖ 6 D1Kg0e
−(c−ΛD1K)t.

The second step: prove that there exists tk1
> 0 such that P (t) remains un-

changed when t > tk1
. From (H1) and the inequality ΛD1K < c, there are a positive

integer k1, positive constants δ, γ and t
∗
k1

∈ (tk1
, tk1+1) such that

√
2nD1Kg0e

−(c−ΛD1K)k1δ < (c− ΛD1K)γ,

and

tk1+1 − tk1
> δ, tk1+1 − t∗k1

> τ, Γ(t∗k1
) > γ.

Next, we claim that tk1+1 = ∞. If tk1+1 <∞, then there exists (i0, j0) such that

l̃i0j0(tk1+1) = |x̃i0(tk1+1)− x̃j0 (tk1+1)| = r.

Recalling the first equation of (1.6), we have ẋi0(t) = vi0(t) and

xi0 (t)− xj0(t) = xi0 (t
∗
k1
)− xj0(t

∗
k1
) +

∫ t

t∗
k1

(vi0 (s)− vj0(s)) ds.

Combining (2.3) and (3.13), we get

|vi0(s)− vj0 (s)| 6
√
2 sup
θ∈[−τ,0]

‖V (t+ θ)− Va(t+ θ)‖F

6
√
2d sup

θ∈[−τ,0]

‖V (t+ θ)− Va(t+ θ)‖

6
√
2dD1Kg0e

−(c−ΛD1K)t.
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Then, when θ ∈ [−τ, 0], we have

li0j0(tk1+1 + θ) = |xi0 (tk1+1 + θ)− xj0 (tk1+1 + θ)|

6 li0j0(t
∗
k1
) +

√
2dD1g0K

∫ ∞

t∗
k1

e−(c−ΛD1K)s ds

= li0j0(t
∗
k1
) +

√
2dD1g0Ke−(c−ΛD1K)t∗k1

c− ΛD1K

< li0j0(t
∗
k1
) + γ 6 li0j0(t

∗
k1
) + Γ(t∗k1

) 6 r, (i0, j0) ∈ E(t∗k1
),

and

li0j0(tk1+1 + θ) = |xi0 (tk1+1 + θ)− xj0 (tk1+1 + θ)|

> li0j0(t
∗
k1
)−

√
2dD1g0K

∫ ∞

t∗
k1

e−(c−ΛD1K)s ds

= li0j0(t
∗
k1
)−

√
2dD1g0Ke−(c−ΛD1K)t∗k1

c− ΛD1K

> li0j0(t
∗
k1
)− γ > li0j0(t

∗
k1
)− Γ(t∗k1

) > r, (i0, j0) /∈ E(t∗k1
).

This implies that

l̃i0j0(tk1+1) = li0j0(tk1+1 − τ) < r

and

li0j0(tk1+1) = li0j0(tk1+1 − τ) > r.

Obviously, the above inequalities contradict the existence of (i0, j0) such that

l̃i0j0(tk1+1) = r. Thus tk1+1 = ∞ and P (t) ≡ P (tk1
) for all time t > tk1

.

The final step: use exponential estimation of velocities to show that the system

achieves flocking. Through the procedure similar to Theorem 3.1 we obtain

sup
t>0

max
16i,j6N

|xi(t)− xj(t)| 6
√
2d
(
‖f(0)‖+ c− ΛD1(K − 1)

(c− ΛD1K)2
D1Kg0

)
<∞,

‖V (t)− V∞‖ 6
c− ΛD1(K − 1)

c− ΛD1K
D1Kg0e

−(c−ΛD1K)t,

where

V∞ = T1 diag(1, 0, . . . , 0)T
−1
1 V (0)

+

∫ ∞

0

T1 diag(1, 0, . . . , 0)T
−1
1 [λ(P (t) − P0)− λδ(I − P c(t))]Ṽ (s) ds.

�
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R em a r k 3.2. By a discussion analogous to Remark 3.1, we know that the as-

sumptions of Theorem 3.2 are actually satisfiable. Although Theorems 3.1 and 3.2

give a sufficient framework for the system achieving flocking, the framework is not

sharp. We emphasize two points here: (1) When δ > 0, the unconditional flocking

would occur if 0 6 λτ(1 − µn0
) < 1

2π. (2) When δ 6 0, in addition to the de-

lay constraint, the most important thing is that the neighbour graph needs to be

connected [24] or at least remains connected [22].

3.3. Is 1
2π the critical threshold? The effects of the transmission delay and the

processing delay on flocking behaviour are quite different. For the transmission delay,

in [15] the author proved that under the assumption that the interaction function of

the system decays slowly enough, the sufficient condition for the system to achieve

flocking does not contain the limitation on the size of the delay. In particular, for the

Cucker-Smale type interaction function ϕ(r) = 1/(1 + r2)β , β > 0, when β < 1
2 , the

system achieves the unconditional flocking regardless of the value of the transmission

delay. In the same year, a more brilliant conclusion was obtained in [2]. The author

showed that the same unconditional flocking result for the non-delayed case is valid in

the delayed case, and for Cucker-Smale type interaction function, the unconditional

flocking would occur if β 6 1
2 . However, the effect of the processing delay on the

system cannot be ignored. In [26] the authors proved that a sufficient condition for

flocking of the system with the processing delay should include a constraint on the

size of the delay.

In [21] the authors studied the flocking and periodic flocking behaviour of the

system (1.6) when δ = 0. They showed that if λτ(1 − µn0
) = 1

2π, the system

velocity converges to a periodic velocity plus a constant value under appropriate

initial conditions, that is, the system achieves the periodic flocking. In this paper,

Theorems 3.1 and 3.2 give a sufficient framework for the system achieving flocking, in

which the constraint of the processing delay 0 6 λτ(1−µn0
) < 1

2π is worth thinking

about. Is 1
2π a critical value? If λτ(1−µn0

) = 1
2π, does the system (1.6) also achieve

periodic flocking when δ 6= 0? Instead of proving a conclusion, let us briefly analyse

the velocity change of the system when λτ(1 − µn0
) = 1

2π.

First, consider the equation

u̇(t) = −λ(1− µn0
)u(t− τ)

and its characteristic equation z = −λ(1 − µn0
)e−τz. For λτ(1 − µn0

) = 1
2π, the

characteristic equation has pure imaginary roots ± 1
2πi/τ . Thus the solution of the

above equation is given as

u(t) = cos
(

πt

2τ

)
u(0)− sin

(
πt

2τ

)
u(−τ), t ∈ (0, t1).
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Then we can define the fundamental solution operator as

S0(t)ϕ(θ) = cos
(

πt

2τ

)
ϕ(0)− sin

(
πt

2τ

)
ϕ(−τ).

Rewrite

P0 = T1




1 0 0

0 J∗
1 0

0 0 µn0
Ipn0



T−1
1

and let S∗
1 (t) be a fundamental solution operator of the equation

u̇∗(t) = −λ(I − J∗
1 )ũ

∗(t).

By using the variation-of-constant formula, the general solution of (3.1) is given as

V (t+ θ) = T1




1 0 0

0 S∗
1 (t) 0

0 0 S0(t)Ipn0


T−1

1 g(θ)

− λδ

∫ t

0

T1




1 0 0

0 S∗
1 (t− s) 0

0 0 S0(t− s)Ipn0


T−1

1 (I − P c
0 )Ṽ (s) ds.

Put

Va(t+ θ) = T1 diag(1, 0, . . . , 0)T
−1
1 g(θ)

− λδ

∫ t

0

T1 diag(1, 0, . . . , 0)T
−1
1 (I − P c

0 )Ṽ (s) ds,

Vb(t+ θ) = T1




0 0 0

0 S∗
1 (t) 0

0 0 0



T−1
1 g(θ)

− λδ

∫ t

0

T1




0 0 0

0 S∗
1 (t− s) 0

0 0 0



T−1
1 (I − P c

0 )Ṽ (s) ds,

Vp(t) = cos
(

πt

2τ

)
T1

(
0 0

0 Ipn0

)
T−1
1 g(0)− sin

(
πt

2τ

)
T1

(
0 0

0 Ipn0

)
T−1
1 g(−τ)

= T1

(
0 0

0 S0(t)Ipn0

)
T−1
1 g(θ)

and

V ∗
p (t) = −λδ

∫ t

0

T1




0 0 0

0 0 0

0 0 S0(t− s)Ipn0


T−1

1 (I − P c
0 )Ṽ (s) ds.

Then we obtain

V (t+ θ) = Va(t+ θ) + Vb(t+ θ) + Vp(t) + V ∗
p (t).
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When δ = 0, the results in [21] showed that V (t) converges to the periodic velocity

Vp(t) plus a constant value under appropriate assumptions. However, numerical

examples in Section 4 show that when δ 6= 0, λτ(1 − µn0
) = 1

2π is not the critical

condition for the system to achieve flocking, nor it does make the system achieve

periodic flocking. We speculate that the integral term V ∗
p (t) may be the main reason

for the above results.

4. Numerical simulation

We consider 4-agents in the system (1.6), and put gi(θ) = xi(0) and fi(θ) = vi(0),

θ ∈ [− 1
2 , 0]. Because of the importance of the connectedness of P0 and P

c
0 , for

convenience, we choose the initial positions as

x1(0) = 0, x2(0) = 3, x3(0) = 6, x4(0) = 9.

The initial velocities are produced randomly in (0, 1),

v1(0) = 0.3299, v2(0) = 0.6705, v3(0) = 0.6165, v4(0) = 0.8559.

Case 1: Set r = 4. Then we have

P0 =




1

2

1

2
0 0

1

3

1

3

1

3
0

0
1

3

1

3

1

3

0 0
1

2

1

2




, P c
0 =




0 0
1

2

1

2
0 0 0 1

1 0 0 0
1

2

1

2
0 0




and µ1 = 1, µ2 = 1
4 +

√
11
48 , µ3 = 1

6 , µ4 = 1
4 −

√
11
48 . Consider the case where there is

no interaction between distant relatives, i.e., δ = 0. Simulation of two examples (i)

λ = 3, τ = 1
2 , (ii) λ = π/

(
3
4 +

√
11
48

)
, τ = 1

2 , follow (see Fig. 1).

Case 2: Set λ = 3, δ = ±0.01, τ = 1
2 and r = 4. In this case, the initial neighbour

graph is same as in Case 1. There is a slight attraction (repulsion) between distant

relatives, i.e., δ = 0.01 (δ = −0.01) (see Fig. 2).

Case 3: λ = 3, δ = ±1, τ = 1
2 and r = 4. In this case, the initial neighbour graph

is the same as in Case 1 and there is a strong attraction (repulsion) between distant

relatives (see Fig. 3).

Case 4: λ = π/
(
3
4 +

√
11
48

)
, δ = ±0.01, τ = 1

2 and r = 4. In this case, the initial

neighbour graph is the same as in Case 1 and λτ(1 − µn0
) = 1

2π (see Fig. 4).
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Figure 1. The left one is the case λ = 3, τ = 1
2
, δ = 0 and r = 4. Then 0 6 λτ (1−µn0

) < 1

2
π

and the system achieves flocking. The right one is the case λ = π/
(

3

4
+

√

11

48

)

,

τ = 1
2
, δ = 0 and r = 4. Then λτ (1−µn0

) = 1
2

π and the system achieves periodic
flocking. The above simulations are consistent with the results in [21].
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Figure 2. λ = 3, δ = ±0.01, τ = 1

2
and r = 4. The system also achieves flocking, which is

consistent with Theorem 3.1.
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Figure 3. λ = 3, δ = ±1, τ = 1

2
and r = 4. The system does not achieve flocking. In fact,

in order for the system (1.4) to achieve flocking, |δ| has to be small enough, which
is consistent with Theorems 3.1 and 3.2.
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Figure 4. λ = π/
(

3

4
+

√

11

48

)

, δ = ±0.01, τ = 1

2
and r = 4. λτ (1 − µn0

) = 1

2
π, but the

system does not achieve periodic flocking. When δ = 0.01, the velocities of the
system diverge. When δ = −0.01, the velocities of the system converge. Hence,
when δ 6= 0, λτ (1 − µn0

) = 1

2
π is not the critical condition for the system to

achieve flocking, nor does it make the system achieve periodic flocking.

Case 5: λ = 3, δ = 0.01, τ = 1
2 and r = 2. In this case, we have

P0 =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


 , P c

0 =




0
1

3

1

3

1

3
1

3
0

1

3

1

3
1

3

1

3
0

1

3
1

3

1

3

1

3
0




and µ1 = 1 (p1 = 4). The initial neighbour graph is not connected and there is

a slight attraction between distant relatives (see Fig. 5).
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Figure 5. λ = 3, δ = 0.01, τ = 1
2
and r = 2. The system also achieves flocking, which means

that when δ > 0 the connectedness of P0 is not necessary for the system achieving
flocking. In fact, the unconditional flocking would occur if 0 6 λτ (1− µn0

) < 1

2
π

and δ > 0.
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5. Conclusion

In this paper, we investigated a generalized Motsch-Tadmor model with the piece-

wise interaction function χδ
r(s) and a fixed processing delay τ . According to func-

tional differential equation theory and the correlation properties of stochastic matrix,

we showed that if 0 6 λτ(1 − µn0
) < 1

2π, the system would achieve flocking under

appropriate assumptions. However, because of the presence of δ 6= 0, the system

does not achieve periodic flocking when λτ(1 − µn0
) = 1

2π, which is different from

the results in [21].
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