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Abstract. In this paper, a generalized Motsch-Tadmor model with piecewise interaction
functions and fixed processing delays is investigated. According to functional differential
equation theory and correlation properties of the stochastic matrix, we obtained sufficient
conditions for the system achieving flocking, including an upper bound of the time delay pa-
rameter. When the parameter is less than the upper bound, the system achieves asymptotic
flocking under appropriate assumptions.
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1. INTRODUCTION

The self-organized collective system is one of the most common phenomena in the
natural world, which has appeared in numerous applications and theories, especially
in computer science [9], physics [13], biology [25] and social science [1]. It is very im-
portant to understand the theoretical mechanisms that lead to collective behaviour.
In 2007, the celebrated Cucker-Smale model [7] was proposed:

N
(11) &l = wilt), () = 5 D el ()~ oy () —vi(1), i = 1,2, N,
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where (x;(t),v;(t)) € R?¢ i =1,2,..., N is the position and velocity of the ith agent,
A (A > 0) measures the interaction strength, ¢(r) = 1/(1 +72)%, B > 0, represents
the interaction function, |-| is the Euclidean vector norm. According to the results
of [7], [8], [12], the unconditional flocking would occur if 8 < %, which means that
the system (1.1) achieves flocking without an initial constraint. On the other hand,
if g > %, the system (1.1) achieves flocking under some limited initial states and this
case is called the condition flocking. In 2011, Motsch and Tadmor [23] changed the

interaction function from ¢(|z;(t) — x;(¢)|)/N into v;;(t), where

o el —w)
(1.2) Wi (1) Eszl P(lzk(t) —2i(t)])

is an asymmetric function. By the concept of active sets and Lyapunov functional

approach, they also proved that § = % is a critical value for flocking. At the end
of [23], Motsch and Tadmor pointed out that the interaction decaying rapidly or
cutting off at a finite distance is a more realistic situation.

In 2018, Jin [17] presented a Motsch-Tadmor model with the cut-off interaction

function
j:i(t)zvi(t), i=1,2,...,N,

(1.3) . A S () — m D w5(E) — i),

JEN(t)

where r is a constant denoting the size of the neighbourhood,

is the cut-off interaction function, N;(t) = {j: l;;(t) := |z;(t) — z;(t)| < r} is the
neighbour set of ¢ and N;(t) = Card(N;(t)) is the number of neighbours for 7. Using
the algebraic properties of the connected stochastic matrix, Jin obtained a suffi-
cient framework to ensure that the system (1.3) achieves flocking at an exponential
rate. Inspired by [17], [3] the proposed a generalized Motsch-Tadmor model with the
piecewise interaction function

j:i(t)zvi(t), iZl,Q,...,N,
. A 5
V() = T(Ejt—il,'it th—vit
- =5 2 W) =m0 o)
i 2 Kl - m w0 - o)
JEN(t)
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where

X‘S(s)—{l’ s<r, P

" o, s=m, ’

is the piecewise interaction function, which is described by a piecewise constant
function. In the above system, if |z;(t) — x;(t)] < 7, then ¢ and j attract to each
other. However, if |z;(t) —x;(t)| > r, they attract (6 > 0) or repel (6 < 0) each other,
and the latter can be understood as the phenomenon of coexistence of cooperation
and competition within a population. Their research direction was to get the flocking
condition of the system (1.3) with the changes of 6. The authors found that in order
for the system (1.4) to achieve flocking, |4| has to be small enough. Especially, the
result of [3] would degrade into the result of [17] if |§] — 0.

The time delay is a non-negligible problem in multi-agent system cluster control
and its causes can be roughly divided into two types: information transmission delay
and information processing delay. The transmission delay means that it takes time
for agents to receive information from the others limited by the speed of communica-
tion, see [20], [4], [5], [6], [10], [11], [15], [2]. The processing delay, also known as reac-
tion delay, refers to the time required for devices to process information, see [26], [16],
[19], [18]. In 2020, Liu et al. studied the system (1.3) involving processing delay [21]:

where 7 € R, is a fixed delay, N;(t) = N;(t — 7), 0;(t) = v;(t — 7), &(t) = z:(t — 7).
According to functional differential equation theory and correlation properties of
matrix eigenvalues, [21] gives sufficient conditions for the system (1.5) achieving
flocking, periodic flocking, clustering and periodic clustering, and points that %TE is
the critical delay.

In order to generalize the conclusions of [21], we consider a generalized Motsch-
Tadmor model with piecewise interaction and processing delay

j:i(t)zvi(t), iZl,Q,...,N,
A
(1) = = Xo(175(8) = (1)) (9 (1) — B:(8))
(1.6) Ni(t) je%,:(t)
A
= X2F ) = @)@ () = (t).
N=Ni®) 250

The initial conditions of the system (1.6) are
(L7)  i(0) = fi(0),vi(0) = gs(0), f:(8),9:(6) € C ([-7,0],RY), 1<i<N.
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The main purpose of this paper is to analyse the influence of the processing delay on
the system (1.4), obtain a sufficient condition for the system (1.6) achieving flocking
or periodic flocking, and compare our results with those of [21].

This paper is organized as follows: In Section 2, we introduce some preliminaries
and assumptions for model analysis. In Section 3, we analyse flocking behaviour of
the system (1.6) in two cases and obtain sufficient conditions for the system (1.6)
achieving flocking. Section 4 is the numerical simulation. The conclusion is in the
last section.

2. MODELLING FORMULATION AND PRELIMINARIES

Firstly, we present the mathematical definition of periodic flocking.

Definition 2.1 ([21]). Suppose (z;(t),v;(t)) € R"xR",i=1,2,..., N is a solu-
tion to (1.6) with the initial data (1.7). The system (1.6) is said to achieve periodic
flocking, if there are periodic functions ¢,;(¢) with the same period such that

(S dmax |zi(t) —2;(0)] < oo, lim (vi(t) = ¢pi(t)) = Voo, 1=1,2,..., N,
where v, € R? is a constant vector. Especially, if all ¢,;(t) = 0, the system is said
to achieve flocking.

In this section, some concepts from graph theory and matrix theory are introduced
to analyse the topological structure of the system (1.6). Define the neighbour graph
of the system (1.6) G(t) = (V,£(t)), where V = {1,2,..., N}, £(t) = {(4,7): lij) =
|zi(t) —z;(t)] < i,j € V}. A path in G(¢) from i to j is a sequence of distinct
vertexes ko = 4, k1,...,kq = j € V such that (k,_1,kp) € E(¢) for every 1 < p < q.
A graph is said to be connected at time ¢ if there is a path between any two vertices
of the graph at ¢. Denote the adjacency matriz and the average matriz of G(t) by
A(t) = (aij(t))nxn and P(t) = (pi; (t)) nxn, respectively, where

(21) aij(t) _ { ]" (Zvj) S g(t)v aij (t)

and p;;(t) = .

0, (i,4) ¢ EQ), ’ Ni(t)
Similarly, define the distant relative graph of (1.6): G°(t) = (V,E°(t)), &€°(t) =
{(,7): Li;(t) = r, i,j € V}, the distant relative set of i: NF(t) = {j: l;;(t) > r},
the number of distant relatives for i: Nf(t) = Card(NF(t)), adjacency matrix of

G(t): A°(t) = (af;(t))nx N, average matrix of G°(t): P¢(t) = (p§;(t))nx N, Where

i ag; (t) 4
(22)  af(t) = { (1)7 (2.7.7‘) € &), and pt (1) = { N N;(t) # N,
o (1,) ¢ EQ), 0. Nit) = N.



From (2.1) and (2.2), we have the following lemma.

Lemma 2.1. P(t) and P¢(t) are diagonalizable matrices and all their eigenvalues
are real.

Proof. By (2.1) we have

Pl =N = Uno vmome VY

Introduce the symmetric matrix

Then

P(t) = ding

1 1 )
b S(t) diag(v/N1(t), ...,/ Nn(t)),
VINi(t) VN () ( )
which means that P(t) is similar to S(¢). On the other hand, S(¢) is a real symmet-
ric matrix, so S(t) is diagonalizable and its all eigenvalues are real. Then P(¢) is
diagonalizable and its all eigenvalues are real.

Set N&,;.(t) = min {N{(¢), N§(t),..., N (t)}. From (2.2), if NS, (t) > 0,
e apt) 1 ag; (1) -
pij(t) - Nf(t) - \/Nf(t) \/Nf(t)NjC(t) Nj (t).
Put

ge _< afj(t) )
() = | ———— )
NEN() ) yxn

Then according to the previous argument, P¢(t) is diagonalizable and its all eigen-
(t) = 0, using the the symmetry of A°(¢) and ele-
mentary transformations of matrix, there exists a non-singular matrix F' such that

Pe(t) = FQ(t)F~1, where

values are real. When N¢

min

0= (" 1) QO = @Ol £0). 0= (O

n1+ng = N, and the form of Q4 (¢) is the same as (2.1). Then Q(¢) is diagonalizable
and its all eigenvalues are real, thus P¢(t) is diagonalizable and its all eigenvalues
are real. (]

95



Throughout the paper, we use G and G to represent the initial neighbour graph
and initial distant relative graph related to the system (1.6), with their average
matrix given by Py and Py, respectively. Owing to Lemma 2.1, we denote all the
eigenvalues of Py and F§ by p;, 1 = 1,2,...,n0 and v;, j = 1,2,...,mp, with the
algebraic multiplicity p; and g;, respectively. Without loss of generality, assume that

l=p1 >pe>...> Uy, and 1=uv1 > > ... > Uy,

By matrix theory, M = (m;;)nxn is a stochastic matrix if % mi; = landm;; >0
i=1

forallt=1,2,...,N. For any ¢, j (0 <4,j < N), if there ajlways exists a sequence
of integers ki, k2, ..., k; (1 < ¢ < N —2) such that the entries mx, , mr ks, - - -, Mi,j
of the matrix are all non-zero, then the matrix is called connected. Thus, from (2.1)
and (2.2) we know that Py and P§ are both connected stochastic matrices if and only
if Nmax = max{N1(0),...,Ny(0)} < N and Npin = min{N;(0),...,Ny(0)} > 1
(i.e., Gy is connected but not complete).

Lemma 2.2 ([3]). Let Gy be the initial neighbour graph of the system (1.6) and
its average matrix be Py = (pij)nxn. P§ = (pfj) NxN Is the average matrix of the
distant relative graph. Assume Gy is connected but not complete. Then there are
matrices T, T such that Py = TlJlel, F§ = TngT{l, where

1 1
Jy = :LLQIpz . 7 Jy = VQqu

PnoLpn, Vmodgm,

no mo
satisfy > . pi =N —1, > ¢ =N —-1,0 < || <1, |yj] <1, and Ty = (tij)nxn
i=2 j=2

satisfies det(Th) #0,tin =a #0,1 < i< N.

In the following, we use |-|, ||| and ||:||r to represent the Euclidean vector
norm, the spectral norm and the Frobenius norm, respectively. Set X(t) =
(w1(t), 2(t),...,2n ()T € RV*XL V(t) = (vi(t),v2(t),...,on(t) " € R¥*9 From
matrix theory, we have

Va a'VTVa N 1/2
Wi = sup Vol — Jqp @V Ve f TV, Ve = (Z |w|2) 7
=1

laj£0 || EE

where a € R? and gpax(V TV) is the largest eigenvalue of V' TV. Using the Cauchy-
Schwarz inequality, it is easy to show that

(2:3) VI <IVIe < Vd|V].
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Finally, two conclusions about functional differential equations will be presented.
Let J; is the matrix from Lemma 2.2, consider the equation

a(t) = —A(I — Ji)a(t)

and its characteristic equation

ho(z) =det(zl +Xe *"(I — J1)) = 2 ﬂ (z+ A1 = p)e )" = 0.

=2

Lemma 2.3 ([21]). If0 < AT(1 — pp,) < 37, then all other roots of the equation
z = —A(1 — p;)e *" have real parts and

ap = max sup{Rez: z=—A(1—p;)e *"} <0.

<isno

Lemma 2.4 ([14]). If a9 = max{Rez: ho(z) = 0}, then, for any ¢ > ao, there
is a constant K = K(c) such that the fundamental solution S, (t) of the equation
u(t) = —\(I — Jy)u(t) satisfies the inequality ||S,(t)|| < Ke“.

3. ANALYSIS OF THE FLOCKING BEHAVIOUR

To quantize the sensitiveness of the neighbour graph of the system (1.6) when the
distance of two particles is near r, we use the following variable of time ¢:

hﬂﬂ—r}

By definition, I'(¢) > 0. If I'(0) > 0, we call this case the non-critical neighbourhood
situation. If T'(0) = 0, we call it a general neighbourhood situation.

T'(t :min{r— max [;;(t), min
®) (i.3)€E() i) (i.§)EE°(t)

3.1. Flocking behaviour in the non-critical neighbourhood situation.
In this case, by the continuity of l;;(¢), there exists ¢t; > 0 such that the average
matrix P(t) keeps unchanged on [0,¢1). Thus we obtain the following result.

Theorem 3.1. Let 0 < A(1—pin,) < %n. AssumeT'(0) > 0, Nppax < N, Nppin > 1
and
V 2dD1gOK < (|(31| — /\|5|D1(1 — VmO)DQK)F(O),

where

1
go= sup |lg0)], ¢ == max sup{Rez: z= -1 — p;)e”*"},
0e[—7,0] 2 2<i<no

wax N_Nmin
D, = - Dy =4/ —— 7%
! ]Vmin7 2 ]\']'_J\fmax7
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and K = K(c1) is a constant satisfying Lemma 2.4. Then the system (1.6) will
achieve flocking, and there is a constant

vVoanDigo K
e (Y0 4 NSIDL (1 — vy ) Do K, —c1
I'(0)
such that
c— QUK —-1)
_ <N 7
V() — Vil < S22
—Q(K —1)
2

sup  max_|zi(t) — 2;(t)| < \@(Hf(oﬂuc(c_QK)

0<t<oo 1SEHISN

DlKgoe_(c_QK)ta
DlKg()) < o0,

where
Q= >\|5|D1(1 - l/mO)DQ,
Voo = Ty diag(1,0,...,0)T; 'V (0) — )\(5/ T, diag(1,0,...,0)T (I — P§)V (s) ds.
0

Proof. The proof is divided into three steps.

The first step: use assumptions to obtain an exponential estimation of velocities
on [0,%1). Owing to I'(0) > 0, the average matrix P(t) keeps unchanged on [0,%;).
Then the system (1.6) can be rewritten in the matrix form on [0,¢;) to read as

(3.1) { V(t) = =AI = Po)V () = A6(I — P§)V (1),
' V(0) = g(h),0 € [-7,0].

Let S1(t) be the fundamental solution operator of the equation
() = =N — Jr)u(t).

By using the variation-of-constant formula, the general solution of (3.1) is given as

(3.2) V(E+8) =T, ((1) Sl(;t)) T(0)

— A6 /Ot T ((1) s (to_ S)) T (I — PV (s) ds.

To get an exponential estimate of velocities, we estimate ||Sy(t)||, |71] - |75 || and

I — B§||, in turn. Put ag = ,max sup{Rez: z = —A(1 — p;)e *"}, then we have
1 "No
ap < 0 from Lemma 2.3. Let ¢; = —%ao, Lemma 2.4 claims that there is a constant

K = K(c1) such that
(3.3) 1S1(t)]] < Ke*t, t>0.
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Nmax < N and Nyin > 1, so both Py and F§ are connected stochastic matrices.
Hence, using Lemma 2.2 and Lemma 2.1, direct computation yields

1 N,
3.4 T - 1778 < Ol - V/Nunax |O7Y|| < /| =25 =: Dy,
B4) T I < =10 VRO < 3/ g2 = Dy

where O is the orthogonal matrix to diagonalize the symmetric matrix
( ai;(0) )
Ni(0)N;(0) / nxw

Similarly, we have

N — Ny
: Lol |T5 Y € )/ =——— =: Da.
(35) T3 < | e = De
Then from Lemma 2.1 we obtain
(3.6) 1= F5ll < (1= vimg)Do.

According to the last assumption v2dD1goK < (|c1| — N8| D1(1 = v, ) Do K)T(0)
and (3.3), there exists a constant

vVanDigo K
ce [ YELTIIOR  N\I5ID1(1 — vy ) Do K, —c1
I'(0)
such that
(3.7) 1S1(1)]| < Ke .

Next, we get an exponential estimate of velocities. Put
t
Va(t+0) = T3 diag(1,0,..., O)Tflg(f))—)\é/ T, diag(1,0,...,0)T *(I-P§)V (s)ds.
0

Using Lemma 2.1 again, we know the entries in the first column of T} are the same.
Direct calculating the above equality shows that all the rows of V,(t + 6) are the

same. Then (I — P§)V,(s) = 0 holds and we have
0 0



Taking the norm of the above inequality and using (3.4), (3.6) and (3.7) yield

sup ||[V(t+6) — Va(t+0)|| < D1Kgoe " + Md|D1(1 — vy, ) D2 K

0e[—,0] ¢
% / e—C(t—S) sup HV(S + 9) - Va(s + 9)” ds.
0 96[*770]

By solving the above Gronwall inequality, we obtain

(3.8) , s[up ’ [V (t+ 0) = Va(t + 6)|| < DyKgge AP 0=vmo)D2E)E 4 2 [0 44).
el—r,

The second step: prove that P(t) remains unchanged for all time, i.e., ¢; = co. If
t1 < 00, then there exists (ig, jo) such that

Ligjo (t1) = |Ziy (t1) — Tjo (t1)| = -

Recalling the first equation of (1.6), we have &;,(t) = v;, (¢) and &;,(t) = vj, (t), then

Fig (1) — 250 (t) = 240 (0) — 3, (0) + / (010 (5) — w3 (5)) ds.
Combining (2.3) and (3.8) yields

[0iq (5) = V3 (5)] < V2 sup ]HV(t +0) = Valt+0)llr
oc[—7,0

<V2d sup |[V(t+6) = Va(t+0)|
oc[—T,0]

<V 2dD1Kg0e_(C—/\|5|D1(1—Vm0)D2K)t.
Then by the fact that

A% ZHDlgoK

F(O) +/\|5|D1(1 —VmO)DQK

we obtain
Ligjo (b1 + 0) = s, (11 +0) — 2, (t1 + 0)
< ligjo (0) + V2dD1go K / o~ (€= X8| D1 (1=vmg) D2K)s 4
0

— i (0) + V2dDygo K
o (¢ — N6|D1(1 = vy ) D2K)
< liojo (O) + F(O) < T, (ioajo) € 5(0) Vo e [_Ta 0];
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and
liojo (tl + 9) = |xi0 (tl + 9) — Tj, (tl + 9)|
o0
> iy, (0) — VZlegOK/ e~ (e=AéID1(1=vmg) D2K)s 44
0

— 1, (0) — V2dDygo K
- oo (C — A|5|D1(1 — VmO)DQK)
> ligjo (0) =T(0) = 7, (0, J0) € £(0) VO € [~7,0].

This implies that

liojo (tl) <r, (io,jo) S 5(0), and liojo (tl) >, (io,jo) ¢ 5(0)

Obviously, the above inequalities contradict the existence of (ig,jo) such that

ligjo(t1) = r. Thus t; = oo and P(t) = Py for all time.
The final step: use the exponential estimation of velocities to show that the system
achieves flocking. From conclusions of the first step and the second step, we have

sup ||V (t+6) — Va(t 4 0)|| < D1 K goe (e AOID10=vmg) DKt -y >
oc[—T,0]

Set Q = A|0|D1(1 — vy, ) D2 for convenience. Then

(3.9) sup ||V (t+6) = Vo(t +0)|| < D1 Kgoe =21t ¢ >,
0e[—7,0]

Combining
Va(t +6) = Ty diag(1,0,...,0)T; 'g(0)

— A6 /t Ty diag(1,0,...,0)T7 (I — PS)V(s)ds
=T diag(él, 0,...,0)T *g(0)

Y /Ot Ty diag(1,0,...,0)T7 (I — P§)(V(s) — Va(s))ds
with (3.9), we deduce that
T, diag(1,0,...,0)Ty *g(0) = T) diag(1,0,...,0)T; *V(0)
and there exists V,, given by
(3.10) Voo = Ty diag(1,0,...,0)T; 1V (0)

- )«5/ T, diag(1,0,...,0)T (I — P§)V (s)ds
0
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such that
[Va(t) = Vool < A6D1(1 — Vmo)Dz/ [V (s) = Va(s)|| ds
t

< QD1 Kgo /OO e (=Kt qg — %e*(cfﬂlﬂt.
t c— QK

Using (3.9) again, we conclude
IV(£) = Vool < IV(2) = Va@)ll + [[Va(t) = Vio|

c— QK -1)

<
c— QK

D1 K goe (79Kt > 0.

On the other hand,

X () — Vi | = HX(O) +/OtV(s) Vi ds

c— QUK -1 o o 5

< |f(0)|+#DlKgo/o e (705 g
c— QK -1

<170+ 2GR DK, t30,

and thus

sup  max|2;(t) — 25 (t)] < V2IX () — tVaoll2 < V2dI|IX (£) — V|

0<t<oo 1SEISN
ST c— QK -1
<V 2d<”f(0)” + WDlKQO) < 0.

O

Remark 3.1. Here we discuss the satisfiability of the assumptions of Theo-
rem 3.1. There are five assumptions in Theorem 3.1: 0 < A7(1 — py,) < %n
comes from Lemma 2.3, I'(0) > 0 means the non-critical neighbourhood situa-
tion, Npax < N and Ny, > 1 are the conditions for Lemma 2.2, \/ﬁDlgOK <
(ler] = A|0)D1(1 — vy ) D2 K)T(0) is a technical condition related to the initial condi-
tions. In the last assumption, ¢1, K(c1), I'(0), vm,, D1 and Dy are all determined by
the initial neighbour graph Gy. Although we have only the existence result for K (c;)
(from Lemma 2.4), (Jc1| = A|0]D1(1 — vy, ) D2 K)T'(0) > 0 can be guaranteed when |J|
is sufficiently small. On the other hand, we can change gy by adjusting the initial ve-
locities without affecting G, because Gy is determined only by the initial positions,
and the selection of the initial positions, and the initial velocities are independent of
each other. Then the last assumption holds when gg is sufficiently small. And the
last assumption does not conflict with the first four assumptions, so the assumptions
of Theorem 3.1 are actually satisfiable.
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3.2. Flocking behaviour in the general neighbourhood situation. In the
general case, we put t,, to be the switching moments at the nth time. Then ¢,
is called the switching time sequence, which could be finite or infinity. Since the
average matrix keeps unchanged at each interval (¢, t,4+1), n = 0,1,2,... (top = 0,
t1 > 0), the matrix P(t) is a constant matrix on (¢,,%,+1), say P(t,). Assume the
initial average matrix keeps unchanged, say P(6) = P, for 0 € [—7,0].

To understand well the dynamics of the system (1.6) in the general case, we assume
that the adjacency matrix does not change frequently and sharply, and consider the
following assumptions.

(H;) There exist positive constants d, v and a sequence t¥ € (t,,t,+1) such that

tog1 —tn 20, tpp1—th =27 and T(t) =y VYn.

(Hz) Assume that the amplitudes ||P(t) — Py|| and ||P¢(t) — F¢|| are bounded
uniformly on ¢,

m =sup |[P(t) — ol and 2 =sup||P(t) — Fy||.
t>0 t>0

The above assumptions ensure that the system is a controllable switching system.
(H;) guarantees that switches are not too frequent and (Hs) guarantees that switches
are not too drastic. The following theorem shows that under the assumptions
(Hy)—(Hz2) and appropriate initial conditions, the topology of the system (1.6) stops
changing after a certain time point.

Theorem 3.2. Let 0 < A7(1 — i) < 57 Assume
Npax < N, Npin >1, ADi(K —1) < a1,
and the assumptions (Hy)—(Hz) hold. Then the system (1.6) will achieve flocking,
and there is a constant ¢ € (AD1 K, —c;) such that

C—ADl(K— ].)

sup max[i(t) — 25(8)] < V2d(||F0)]] + c— AD\K)?

DK 0) <0
0<t<oo 1< <N g ’

Cc — ADl(K — 1)

_ <
Ve -Vl < =557

DlKgOe_(C_ADlK)t7
where

A =2 + A0|(1 = iy ) D2 + Ad|n2,
Voo = Ty diag(1,0,...,0)T; 'V (0)

+ /Ooo Ty diag(1,0, ..., 0) T A(P(t) — Py) — AS(I — PE(t))]V (s) ds.
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Proof. The proofis also divided into three steps.
The first step: use assumptions to obtain the exponential estimation of velocities.
Rewrite the system (1.6) as

gy V0= RVO AP0 - BT (O) X0 = PO )
’ V(e)=g(6), 6<[-r0)
By using the variation-of-constant formula, the general solution of (3.11) is given as

Vo) =Ti (o g )79

! 1 0 —1 c Ve
+/0 T <0 Su(t - s)> T A(P(t) — Po) — A6(I — PC()]V (s) ds.

Taking
Va(t 4+ 0) = Ty diag(1,0,...,0)T; g(0)
+ /t T, diag(1,0, . ..,0)T 'A(P(t) — Py) — A6(I — Pe(t))]V (s) ds
0

and using the fact that

h <g sluo_ s>> T AP() = Po) = M(T = Pe(1))]Va(s) = 0,

we have

V(t+0)—Vu(t+0)

1o s00) 70

+ /Ot T <0 0 > T A(P(t) — Po) — AO(I — PE(£))]V (s) ds

! 0 0 -1 c T v
L1 gy ) TP = P = X = POIT(S) = Talo) .

To get an exponential estimate of velocities, we estimate
[A(P(t) = Po) = Ad(I = P(2))]-
Using (3.5) and (Hgz), we obtain
(3.12) [ACP(t) = Po) = AS(1 — P<(2))|
AP(E) = Poll + AlS[IIT = Fgll + Alol[| Pe(t) — Fl
A1+ AS|(L = vy ) D2 + Ad|n2 == A.

NN
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According to the assumption AD;(K — 1) < |¢1| and (3.3), there is a constant
¢ € (AD1K, —cq) such that
1S1(B)]| < Ke™.

Thus
sup [|[V(t+0)—V,(t+0)|
oc[—T,0] t
< D Kgpe ¢ + ADlK/ e %) sup IV(s+86)—Vi(s+0)|ds.
0 0e[—7,0]
Then

e’ sup [|[V(t+0)— Va(t+09)|
oc[—T,0]

t
ngKgo—f—ADlK/ ¢ sup [|[V(s+6) — Vi(s + )| ds.
0 oe[—T,0]

By solving the above Gronwall inequality, we get

(3.13) sup ||V (t+0) — Va(t +0)|| < D1K goe™ (AP,
0e[—7,0]

The second step: prove that there exists ¢5, > 0 such that P(¢) remains un-
changed when ¢ > tx,. From (H;) and the inequality AD; K < ¢, there are a positive
integer k1, positive constants d, v and ¢}, € (tk,,t,+1) such that

V21D K gge™ (¢7APIEIRS (¢ AD K),

and
toyp1 — Ty 2 57 U1 — tzl 2T, F(tzl) = 7.

Next, we claim that tg, 11 = 0o. If {5, 41 < 0o, then there exists (ig, jo) such that

Ligjo (thy+1) = |Zig (tky +1) — Tjo (thy +1)| = 7

Recalling the first equation of (1.6), we have &;,(¢) = v;,(t) and

t

io () = 24y (1) = @io () — 2 () + / (vig (5) = vjo(5)) ds.

t,
Combining (2.3) and (3.13), we get
[ig (8) = vjo (8)] < V2 sup | [Vt +6) = Va(t +0)||r
6e[—T,0

<V2d sup ||V(t+6) — Va(t+0)|
0e[—7,0]

< V2dD, K goe~ (AP,
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Then, when 6 € [—7, 0], we have

Ligjo (tky+1 + 0) = |@i (try +1 + 0) — 5, (tk1+1 +0)]

< ZOJO(tkl) V DlgoK e (C*ADlK)s dS

kl
Lty + V2D KO
T Medotth c—AD\K

< liojo (t;;l) +7v< liojo (tZI) + F(tzl) <7y (i07j0) € 8@;;1))

and

Linjo (tky 11 +0) = |24y (thy 11 + 0) — 24, (tk1+1 +0)|
=1 0Jo (tkl) V2 DlgOK _(C—ADlK)s ds

Lo (¢ \/ﬁDlgoKe_(c_ADlK)tzl
- lo]o(kl)_ C—ADlK

> liojo (t;;l) - = liojo (tzl) - F(tzl) =, (iovjo) ¢ 5@21)

This implies that
Liojo (tky+1) = ligjo (tky41 — 7) <1
and
Liojo (tky+1) = ligjo (tky41 — 7) > 1
Obviously, the above inequalities contradict the existence of (ig,jo) such that
Liojo (tky+1) = 7. Thus t, 41 = oo and P(t) = P(ty,) for all time t > t, .
The final step: use exponential estimation of velocities to show that the system
achieves flocking. Through the procedure similar to Theorem 3.1 we obtain

—AD(K-1)
()] < D
sup, max [z(t) = (1) < V21Ol + == 5Dk < oo,
c—ADy(K —1) (e—AD K
_ P S c 1K)t
IV (t) = Vool < AD Difoe :
where

Voo = Ty diag(1,0,...,0)T; 'V (0)
+ /Oo Ty diag(1,0,...,0) T L N(P(t) — Po) — AS(I — PE(t))]V (s) ds.
0
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Remark 3.2. By a discussion analogous to Remark 3.1, we know that the as-
sumptions of Theorem 3.2 are actually satisfiable. Although Theorems 3.1 and 3.2
give a sufficient framework for the system achieving flocking, the framework is not
sharp. We emphasize two points here: (1) When ¢ > 0, the unconditional flocking
would occur if 0 < A7(1 = pin,) < 37 (2) When 6 < 0, in addition to the de-
lay constraint, the most important thing is that the neighbour graph needs to be
connected [24] or at least remains connected [22].

3.3. Is %n the critical threshold? The effects of the transmission delay and the
processing delay on flocking behaviour are quite different. For the transmission delay,
in [15] the author proved that under the assumption that the interaction function of
the system decays slowly enough, the sufficient condition for the system to achieve
flocking does not contain the limitation on the size of the delay. In particular, for the
Cucker-Smale type interaction function o(r) = 1/(14+72)%, 3 > 0, when 8 < %, the
system achieves the unconditional flocking regardless of the value of the transmission
delay. In the same year, a more brilliant conclusion was obtained in [2]. The author
showed that the same unconditional flocking result for the non-delayed case is valid in
the delayed case, and for Cucker-Smale type interaction function, the unconditional
flocking would occur if 8 < % However, the effect of the processing delay on the
system cannot be ignored. In [26] the authors proved that a sufficient condition for
flocking of the system with the processing delay should include a constraint on the
size of the delay.

In [21] the authors studied the flocking and periodic flocking behaviour of the
system (1.6) when 6 = 0. They showed that if A\7(1 — y,,) = 37, the system
velocity converges to a periodic velocity plus a constant value under appropriate
initial conditions, that is, the system achieves the periodic flocking. In this paper,
Theorems 3.1 and 3.2 give a sufficient framework for the system achieving flocking, in
which the constraint of the processing delay 0 < A7(1 — pp,) < %n is worth thinking
about. Is 11 a critical value? If A7(1 — pin,) = 37, does the system (1.6) also achieve
periodic flocking when ¢ # 07 Instead of proving a conclusion, let us briefly analyse
the velocity change of the system when A7(1 — i) = 37

First, consider the equation

w(t) = A1 = pn Ju(t —7)

and its characteristic equation z = —A(1 — in,)e”"*. For A\(1 — pin,) = 37, the
characteristic equation has pure imaginary roots i%ni/ 7. Thus the solution of the
above equation is given as

u(t) = cos(;)u(O) - Siﬂ(—)u(—r), t € (0,t1).
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Then we can define the fundamental solution operator as

Solt)e(6) = cos(22) p(0) — sin (32 ) ¢(=7).

1 0 0
Po=T1 |0 Ji 0 Tt

0 0 jpnJ

Png
and let ST (¢) be a fundamental solution operator of the equation

W (t) = — NI — Tk (t).

By using the variation-of-constant formula, the general solution of (3.1) is given as

Rewrite

1 0 0
V(t+0)= (0 S (t) 0 )Tllg(ﬂ)
0 0 So(t)I,,nO

. 1 0 0
- )\6/ [0 Sit—s) 0 T, I — PV (s) ds.
0 0 0 So(t = $)Ip,,

Put
Va(t + 0) = Ty diag(1,0,...,0)T; g(0)
t
- /\6/ Ty diag(1,0,. .., 0YT (1 — P&V (s) ds,
0

0 0 0
Vi(t +0) = (0 Sk (t) 0) T g(0)
0

0 0
t
Y T1(0 Sl*(t—s) o) 71 — B§)V(s) ds,
0 nt 0 o .
(o . ) 3 g<o>—sm(27)n(0 )T
0

and

Then we obtain
V(t+0)=Vo(t+0)+ Vp(t +0) + Vp(t) + V, (1)
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When § = 0, the results in [21] showed that V' (¢) converges to the periodic velocity
Vp(t) plus a constant value under appropriate assumptions. However, numerical
examples in Section 4 show that when 6 # 0, A7(1 — pn,) = %T[ is not the critical
condition for the system to achieve flocking, nor it does make the system achieve
periodic flocking. We speculate that the integral term V,(#) may be the main reason
for the above results.

4. NUMERICAL SIMULATION

We consider 4-agents in the system (1.6), and put ¢;(f) = z;(0) and f;(0) = v;(0),
0 € [—%,0]. Because of the importance of the connectedness of Py and Ff§, for
convenience, we choose the initial positions as

CL’l(O) = 07 xQ(O) = 3; (Eg(O) = 67 1'4(0) =9
The initial velocities are produced randomly in (0, 1),
v1(0) = 0.3299,  v2(0) = 0.6705, v3(0) = 0.6165, v4(0) = 0.85509.

Case 1: Set r = 4. Then we have

L
2 2 11
LR R © 05 3
3 3 3 . o o 0 1

P°_0111’P°_1000

3 3 3 1140
0o o L+ 1 2 2
2 2

and uy =1, pus = %—i— %, 3 = %, g = %— \/}T—é. Consider the case where there is
no interaction between distant relatives, i.e., 6 = 0. Simulation of two examples (i)
A=3,7=35 () A=n/(2+ \/g), T = 3, follow (see Fig. 1).

Case 2: Set A=3,6 ==+0.01, 7 = % and r = 4. In this case, the initial neighbour
graph is same as in Case 1. There is a slight attraction (repulsion) between distant
relatives, i.e., 0 = 0.01 (6 = —0.01) (see Fig. 2).

Case 3: N=3,6=+1, 7= % and r = 4. In this case, the initial neighbour graph
is the same as in Case 1 and there is a strong attraction (repulsion) between distant
relatives (see Fig. 3).

Case 4: A = n/(% + Q/%), 6 ==10.01, 7 = % and r = 4. In this case, the initial

neighbour graph is the same as in Case 1 and A7(1 — in,) = 37 (see Fig. 4).
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Figure 1. The left one is the case A = 3, 7 = %, 0=0andr =4. Then 0 < A7(1—pny) < %TE

Figure 2. A =3, § = £0.01, 7 = 3
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and the system achieves flocking. The right one is the case A = 1/ (% +

T= %, 0 =0and r =4. Then AT(1—pn,) = %TE and the system achieves periodic

flocking. The above simulations are consistent with the results in [21].

0

50 100 150 200 250t300

consistent with Theorem 3.1.

V()

50 100 150 200 25026300

0

and r = 4. The system also achieves flocking, which is

1046 10221

0.5 X T T T T T x T T T T T
V() 51 Vi(t) 5=-1

0.0 F - 9 L _

0.5 1

0
0
—_9 L i
—-0.5 |
~1.0 | —4r T
_1.5 1 1 1 1 1 _6 1 1 1 1 1
0 0

50 100 150 200 250t300

50 100 150 200 250t300

Figure 3. A =3, =41, 7 = % and r = 4. The system does not achieve flocking. In fact,
in order for the system (1.4) to achieve flocking, |6| has to be small enough, which
is consistent with Theorems 3.1 and 3.2.
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Figure 4. \ = n/(% + %), 6 = +£0.01, 7 = % and r = 4. AT(1 — pp,) = %n, but the
system does not achieve periodic flocking. When § = 0.01, the velocities of the
system diverge. When § = —0.01, the velocities of the system converge. Hence,
when § # 0, A7(1 — pin,) = 47 is not the critical condition for the system to
achieve flocking, nor does it make the system achieve periodic flocking.

Case 5: A=3,6=0.01, 7 = % and r = 2. In this case, we have

o 111
3 3 3

100 0 1, 11
0100 . 3 3 3
P°_0010’P0_1101
000 1 3 3 3
111

333 "

and py = 1 (p1 = 4). The initial neighbour graph is not connected and there is
a slight attraction between distant relatives (see Fig. 5).

9 T T T T T

0.3
0 50 100 150 200 25075300

Figure 5. A =3, =0.01, 7 = % and r = 2. The system also achieves flocking, which means
that when ¢ > 0 the connectedness of Py is not necessary for the system achieving
flocking. In fact, the unconditional flocking would occur if 0 < A7(1 — pny) < %n
and 6 > 0.
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5. CONCLUSION

In this paper, we investigated a generalized Motsch-Tadmor model with the piece-

wise interaction function x°(s) and a fixed processing delay 7. According to func-

tional differential equation theory and the correlation properties of stochastic matrix,

we showed that if 0 < A7(1 — py,) < 37, the system would achieve flocking under

appropriate assumptions. However, because of the presence of § # 0, the system

does not achieve periodic flocking when A7(1 — p1,,) = 47, which is different from
the results in [21].
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