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Abstract. Let d be a square-free positive integer and h(d) be the class number of the
real quadratic field Q(

√
d). We give an explicit lower bound for h(n2 + r), where r = 1, 4.

Ankeny and Chowla proved that if g > 1 is a natural number and d = n2g+1 is a square-free
integer, then g | h(d) whenever n > 4. Applying our lower bounds, we show that there does
not exist any natural number n > 1 such that h(n2g + 1) = g. We also obtain a similar
result for the family Q(

√
n2g + 4). As another application, we deduce some criteria for

a class group of prime power order to be cyclic.
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1. Introduction

Throughout this paper d = n2+r will be a square-free integer. Let h(d) and C(kn)

denote the class number and the class group of a real quadratic field kn = Q(
√
d),

respectively. The symbol P will always denote the principal ideal class in the class
group and N(I) denotes the norm of an ideal I. By pt || n we mean that pt | n but
pt+1 ∤ n.

Gauss conjectured that there exist infinitely many real quadratic fields of class

number 1, which is yet to be proved. More precisely, he conjectured that there

exist infinitely many real quadratic fields of the form Q(
√
p), p ≡ 1 (mod 4), of class

number 1. Much fruitful research have been done in this direction. In this connection,

the following two conjectures were given by Chowla (see [10]) and Yokoi, see [25].

(C) If m > 26 and d = m2 + 1 is a prime, then h(d) > 1.
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(Y) Let d = m2 + 4 be a square-free integer for some positive integer m. Then

there exist exactly 6 real quadratic fields Q(
√
d) of class number one, viz.

m ∈ {1, 3, 5, 7, 13, 17}.
Mollin in [19] considered m2 + 1 to be square-free and proved that:

Theorem 1.1. If m 6= 1, 2q, where q is a prime, and m2 + 1 is a square-free

integer, then h(m2 + 1) > 1.

He also deduced that if h(m2 + 1) = 1, then m2 + 1 is a prime. Assuming the

generalized Riemann hypothesis, Mollin and Williams in [20] proved (C) in 1988.

Kim, Leu and Ono in [12] proved that at least one of (C) and (Y) is true, and for the

other case at most 7 real quadratic fields Q(
√
d) of class number 1 are there. Finally,

Biró in [3], [4] proved (C) and (Y). For a given fixed number h, it is interesting

to find necessary and sufficient conditions for a real quadratic field to have class

number h. Yokoi in [25] established such a kind of criterion for h = 1 and he proved

the following result:

Theorem 1.2. The class number h(4m2 + 1) = 1 if and only if m2 − t(t + 1) is

a prime for all 1 6 t 6 m− 1.

Byeon and Kim in [6], [7] obtained an equivalent criterion for R-D type real

quadratic fields to have class number 1 and class number 2. In [8], the author

along with Chakraborty and Hoque obtained analogous criteria for the class number

to be 3. Some more interesting results on the class number one problem of R-D type

fields can be found in the works of Biró and Lapkova, cf. [5], [15].

It is also interesting to find bounds for the class number of a number field. Hasse

in [11] and Yokoi in [23], [24] studied lower bounds for class numbers of certain

real quadratic fields. Mollin in [17], [18] generalized their results for certain real

quadratic and bi-quadratic fields. The author along with Chakraborty and Hoque

(see [9]) derived a lower bound for class number of Q(
√
n2 + r), where r = 1, 4, to

classify the class group of order 4. The bound obtained was not so effective.

In this paper, we establish an efficient lower bound for the class number of

Q(
√
n2 + r), where r = 1, 4. In particular, we prove the following results:

Theorem 1.3. Let d = n2 + 1 ≡ 5 (mod 8) be a square-free integer, and let

n = 2p1
a1p2

a2 . . . pm
am with pi’s distinct odd primes and ai’s some positive integers.

(i) If m > 2, then h(d) > 2(a1 + a2 + . . .+ am)−m+ 1.

(ii) If m = 2, then h(d) > 2(a1 + a2)− 2.

(iii) If n = 2pt, where p is an odd prime and t > 1 is an integer, then h(d) > t.
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Theorem 1.4. Let d = n2 + 1 ≡ 1 (mod 8) be a square-free integer, and let

n = 2sp1
a1p2

a2 . . . pm
am , where pi’s are distinct odd primes, ai’s are positive integers

and s > 2.

(i) If m is even, then h(d) > 2(a1 + a2 + . . .+ am)−m+ 2s− 2.

(ii) If m > 1 is odd, then h(d) > 2(a1 + a2 + . . .+ am)−m+ 2s− 1.

(iii) If n = 2s, then h(d) > s− 1.

(iv) If n = 2spt, where p is an odd prime, s > 1 and t > 1, then h(d) > 2(t+ s)− 4.

Theorem 1.5. Let d = n2 + 1 ≡ 2 (mod 4) be a square-free integer, and let

n = p1
a1p2

a2 . . . pm
am , with pi’s distinct odd primes and ai’s some positive integers.

(i) If m > 2, then h(d) > 2(a1 + a2 + . . .+ am)−m+ 2.

(ii) If n = pt, with t > 1 an integer, then h(d) is even and h(d) > 2t.

We also obtain similar results for a square-free d of the form n2 + 4.

In 1955, Ankeny and Chowla in [1] studied the divisibility problem for the real

quadratic fields Q(
√
n2g + 1) and proved that, if g > 1 is a natural number and

d = n2g + 1 is a square-free integer, then g | h(d), whenever n > 4. Weinberger

in [22] extended the above divisibility result for the class numbers of Q(
√
n2g + 4)

and proved that, if g > 1 is a natural number and d = n2g + 4 is a square-free

integer, then, for infinitely many n, (i) (12g) | h(d), if g is even, (ii) g | h(d), if g
is odd. One can ask the following two questions related to the class number of the

family Q(
√
n2g + 1) and Q(

√
n2g + 4):

Question. Let g > 1 be a fixed natural number.

(1) Does there exist a natural number n > 1 such that h(n2g + 1) = g?

(2) Does there exist a natural number n > 1 such that

h(n2g + 4) =







g

2
if g is even,

g if g is odd?

By Brauer-Siegel theorem (see [14], page 321), there exist only finitely many real

quadratic fields of the form Q(
√
n2g + 1) or Q(

√
n2g + 4) which have class number

equal to g. However, Brauer-Siegel theorem is ineffective in finding out the exact

values of n such that the class number of Q(
√
n2g + 1) or Q(

√
n2g + 4) equals g.

Applying our lower bounds, we obtain the following two results related to above

question:

Theorem 1.6. Let g > 1 be a natural number and let d = n2g+1 be a square-free

integer. Then, for all n > 1, h(d) > g, i.e., there does not exist any natural number

n > 1 such that h(n2g + 1) = g.
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Theorem 1.7. Let g > 1 be a natural number, and let d = n2g+4 be a square-free

integer.

(i) If g is even, then h(d) 6= 1
2g.

(ii) If g is odd and n is not a prime, then h(d) 6= g. Moreover, if g is even and n is

not a prime, then h(d) > g, i.e., h(d) 6= g.

However, when g is even, there do exist primes p such that d = p2g+4 is square-free

and h(d) = g. For example, for g = 2, h(34 + 4) = 2 and h(54 + 4) = 2.

As an application of our lower bounds, we also give some criteria for the prime

power order class group of a real quadratic field Q(
√
n2 + r), where r = 1, 4, to be

cyclic.

Chowla and Friedlander in [10] proved that if m2 + 1 is a prime with m > 2 and

h(m2+1) = 1, then g(m2+1) is 1
2m, where g(n) is the least prime which is a quadratic

residue of n. We generalize this result and give an upper bound on g(1+4p2), where p

is a prime and h(1+4p2) > 1, and for g(p2+4), where p is a prime and h(p2+4) > 1.

In Section 2 we state the results on computing the partial Dedekind zeta values

of a real quadratic field. In Sections 3 and 4 we compute the partial Dedekind

zeta values and with some group theoretic arguments we deduce a lower bound for

the class number of Q(
√
n2 + r) for r = 1, 4. In Section 5 we give the proof of

Theorems 1.6 and 1.7. Further, in Section 5 we study the structure of class group of

prime power order. Finally, we conclude with some remarks.

2. Partial Dedekind zeta values

Let k be a real quadratic field, and let ζk(s) be the Dedekind zeta function attached

to k. Siegel in [21] derived an expression for the Dedekind zeta values at 1 − 2n,

where n is a positive integer. For n = 1, this expression becomes simpler:

Proposition 2.1. Let D be the discriminant of k. Then

ζk(−1) =
1

60

∑

|t|<
√
D

t2≡D (mod 4)

σ
(D − t2

4

)

,

where σ(n) denotes the sum of divisors of n.

Lang gave another method to compute ζk(−1) by computing partial Dedekind

zeta values and summing them up. For an ideal class A of k, consider an integral

ideal a in A−1 with integral basis {r1, r2}. Let r′1 and r′2 be the conjugates of r1
and r2, respectively, and

δ(a) := r1r
′
2 − r′1r2.
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Let ε be the fundamental unit of k. Then one has a matrix M =
[

a b

c d

]

with

integer entries satisfying:

ε

[

r1

r2

]

= M

[

r1

r2

]

.

We recall Lang’s result in [13].

Theorem 2.1. By keeping the above notations, we have

ζk(−1,A) =
sgn δ(a)r2r

′
2

360N(a)c3
{(a+ d)3 − 6(a+ d)N(ε)− 240c3(sgn c)S3(a, c)

+ 180ac3(sgn c)S2(a, c)− 240c3(sgn c)S3(d, c) + 180dc3(sgn c)S2(d, c)},

where Si(−,−) denotes the generalized Dedekind sum as defined in [2].

In order to apply Theorem 2.1, one needs to know a, b, c, d and the generalized

Dedekind sums. The following result (see [13], page 143, equation (2.15)) helps us

to determine a, b, c and d.

Lemma 2.1. With the same notations as above, we have

M =







Tr
(r1r

′
2ε

δ(a)

)

Tr
(r1r

′
1ε

′

δ(a)

)

Tr
(r2r

′
2ε

δ(a)

)

Tr
(r1r

′
2ε

′

δ(a)

)







Moreover, bc 6= 0 and det(M) = N(ε).

Lastly, we recall the following result on generalized Dedekind sums, see, [13],

page 155, equations (4.3)–(4.4).

Lemma 2.2. For any positive integer m, we have

(i) S3(±1,m) = ±(−m4 + 5m2 − 4)/120m3.

(ii) S2(±1,m) = (m4 + 10m2 − 6)/180m3.

3. The field Q(
√
n2 + 1)

In this case, the fundamental unit is ε = n +
√
n2 + 1 and N(ε) = −1. We also

know that if an odd prime p divides n, then p splits in kn as

(3.1) (p) =







(

p,
1 +

√
d

2

)(

p,
1−

√
d

2

)

if n2 + 1 ≡ 1 (mod 4),

(p, 1 +
√
d)(p, 1−

√
d) if n2 + 1 ≡ 2 (mod 4).
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By Theorem 2.3 of [6], we have

(3.2) ζkn
(−1,P) =















n3 + 14n

360
if n2 + 1 ≡ 1 (mod 4),

4n3 + 11n

180
if n2 + 1 ≡ 2 (mod 4).

We first find the integral basis of some particular ideals. Using this and Theo-

rem 2.1, we calculate the partial Dedekind zeta values for some ideal classes of kn.

Then we compare these Dedekind zeta values and use some elementary group theo-

retic arguments to establish our results.

Lemma 3.1. Let p be an odd prime, pt ‖ n, and let n2+1 ≡ 1 (mod 4). Consider

a = (p, 1
2 (1+

√
d)) and a′ = (p, 1

2 (1−
√
d)). Then {pr, 1

2 (1+
√
d)} and {pr, 1

2 (1−
√
d)}

are integral bases for ar and (a′)r, respectively, for all 1 6 r 6 t.

P r o o f. Consider

Mr =

[

pr,
1 +

√
d

2

]

,

a nonzero Z-module in Okn
. Then, by [16], Propositions 2.6 and 2.11,Mr is an ideal

and N(Mr) = pr for all 1 6 r 6 t. As N(ar) = pr and Mr ⊆ ar for all 1 6 r 6 t,

therefore,Mr = ar. Hence, {pr, 1
2 (1+

√
d)} is an integral basis for ar for all 1 6 r 6 t.

Similarly, ifM ′
r = [pr, 1

2 (1−
√
d)], thenM ′

r = (a′)r, and {pr, 1
2 (1−

√
d)} is an integral

basis for (a′)r for all 1 6 r 6 t. �

Now if we consider nonzero Z-modules Nr = [pr, 1 +
√
d] and N ′

r = [pr, 1 −
√
d]

in Okn
, where n2 + 1 ≡ 2 (mod 4), then, as before, one can prove the following:

Lemma 3.2. Let p be an odd prime, pt ‖ n, and let n2+1 ≡ 2 (mod 4). Consider

a = (p, 1+
√
d) and a′ = (p, 1−

√
d). Then {pr, 1+

√
d} and {pr, 1−

√
d} are integral

bases for ar and (a′)r, respectively, for all 1 6 r 6 t.

We derive our results in three subsections based on the congruence relations, i.e.,

n2 + 1 ≡ 1, 2, 5 (mod 8).

3.1. Congruence n2 + 1 ≡ 5 (mod 8). We have n2 ≡ 4 (mod 8) ⇒ n = 2n0,

where n0 is an odd integer.

P r o o f of Theorem 1.3 (iii). By (3.1) p splits in kn, so let A be an ideal class
containing a = (p, 1

2 (1 +
√
d)). Then a′ = (p, 1

2 (1−
√
d)) ∈ A−1 and, by Lemma 3.1,

{pr, 1
2 (1+

√
d)} and {pr, 12 (1−

√
d)} are integral bases for ar and (a′)r for all 1 6 r 6 t.

Now by using Lemmas 2.1, 2.2 and Theorem 2.1, we get

ζkn
(−1,Ar) =

n3 + n(4p4r + 10p2r)

360p2r
= ζkn

(−1,A−r) ∀ 1 6 r 6 t.
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If for any 1 6 r 6 t, Ar = P , then ζkn
(−1,Ar) = ζkn

(−1,P), which gives n = 2pr.

Therefore, Ar is a non-principal ideal class for all 1 6 r < t. This implies |A| > t

and hence h(d) > t. �

P r o o f of Theorem 1.3 (i). Since each pi splits in kn, as in (3.1), let Ai be the

ideal class containing ai = (pi,
1
2 (1 +

√
d)). Then again by using Lemmas 2.1, 2.2

and Theorem 2.1,

ζkn
(−1,Ari

i ) =
n3 + n(4p4rii + 10p2rii )

360p2rii

= ζkn
(−1,A−ri

i )

for all 1 6 i 6 m and 1 6 ri 6 ai. Comparing the values of ζkn
(−1,Ari

i )

and ζkn
(−1,P), we get that Ari

i are distinct nonprincipal ideal classes for all

1 6 i 6 m and 1 6 ri 6 ai. If for any 1 6 i 6 m, 1 6 ri, si 6 ai and ri 6= si we get

ζkn
(−1,Ari

i ) = ζkn
(−1,A−si

i ), then we have n = 2pri+si , which is not possible. This

implies that Ari
i 6= A−si

i for all 1 6 i 6 m, 1 6 ri, si 6 ai and ri 6= si. Therefore,

|Ai| > 2ai, and hence, h(d) > 2(a1 + a2 + . . .+ am)−m+ 1. �

The other part can be proved along the same lines.

Remark 3.1. If all the ai’s and t are zero, then n0 =1. Hence, d=5 and h(5)= 1.

3.2. Congruence n2 + 1 ≡ 1 (mod 8). In this case, 4 | n and 2 splits in kn as

(3.3) (2) =

(

2,
1 +

√
d

2

)(

2,
1−

√
d

2

)

.

P r o o f of Theorem 1.4 (iv). Let A and B be the two ideal classes in kn such that
a = (p, 1

2 (1 +
√
d)) ∈ A and b = (2, 12 (1 +

√
d)) ∈ B. Then as before,

ζkn
(−1,Ar) =

n3 + n(4p4r + 10p2r)

360p2r
= ζkn

(−1,A−r) ∀ 1 6 r 6 t,

and

ζkn
(−1,Bj) =

n3 + n(4× 24j + 10× 22j)

360× 22j
= ζkn

(−1,B−j) ∀ 1 6 j 6 s− 1.

If ζkn
(−1,P) = ζkn

(−1,Ar), then n = 2pr. This shows that Ar is a non-

principal ideal class for all 1 6 r 6 t. As ζkn
(−1,Ar) = ζkn

(−1,A−r) and we

have ζkn
(−1,Ar) 6= ζkn

(−1,As) for all 1 6 r, s 6 t, r 6= s, hence Ar 6= A−s for all

1 6 r, s 6 t and r 6= s. Thus, |A| > 2t. Now if ζkn
(−1,P) = ζkn

(−1,Bj), we get

n = 2 × 2j, therefore as above, |B| > 2(s − 1). And if ζkn
(−1,Ar) = ζkn

(−1,Bj),

we have n = 2 × 2jpr, this is only possible when r = t and j = s − 1. So, while

calculating class number we have to take care of At and Bs−1 as they may be equal

and we have to count them once. Hence, h(d) > (2t− 1)+ (2(s− 1)− 1)+ 1− 1, i.e.,

h(d) > 2(t+ s)− 4. �
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Using similar arguments, one can prove the other parts as well.

3.3. Congruence d = n2 + 1 ≡ 2 (mod 4). In this case, we have n2 + 1 ≡
2 (mod 4) and n is odd. If a = (p, 1 +

√
d) ∈ A, then as before, using Lem-

mas 2.1, 2.1, 3.2 and Theorem 2.1, we get

(3.4) ζkn
(−1,Ar) =

8n3 + n(2p4r + 20p2r)

360p2r
= ζkn

(−1,A−r) ∀ 1 6 r 6 t.

P r o o f of Theorem 1.5 (ii). If d ≡ 2 mod 4, then 2 ramifies in kn = Q(
√
d), i.e.,

(2) = (2,
√
d)2.

If b = (2,
√
d) is in ideal class B, then by [6], Theorem 2.3 we have

ζkn
(−1,B) = 2n3 + 28n

360
.

Also if ζkn
(−1,P) = ζkn

(−1,B), then d = 2. Therefore, B is a nonprincipal ideal
class and |B| = 2. Hence, h(d) is even.

Now if a = (p, 1 +
√
d) ∈ A, then by (3.4) we have

ζkn
(−1,Ar) =

8n3 + n(2p4r + 20p2r)

360p2r
= ζkn

(−1,A−r) ∀ 1 6 r 6 t.

Now if ζkn
(−1,P) = ζkn

(−1,Ar), then n = 1
2p

r, which is not possible. Therefore, Ar

is a nonprincipal ideal class, for all 1 6 r 6 t. Also ζkn
(−1,Ar) = ζkn

(−1,A−r) for

all 1 6 r 6 t, and if ζkn
(−1,Ar) = ζkn

(−1,As), where 1 6 r, s 6 t and r 6= s, then

n = 1
2p

r+s, which is again not possible. This gives |A| > 2t and hence h(d) > 2t. �

Following similar arguments, one can prove the other part as well.

Remark 3.2. If all the ai’s and t are zero, then n = 1 and d = 2. Hence, h(2) = 1.

4. The field Q(
√
n2 + 4)

We now study the class number of kn = Q(
√
d), where d = n2 + 4 is a square-

free positive integer. Clearly d ≡ 5 (mod 8) and n is odd. In this case, ε =
1
2 (n+

√
n2 + 4), and N(ε) = −4. Let p | n then

(4.1) (p) =

(

p,
p+ 2 +

√
d

2

)(

p,
p+ 2−

√
d

2

)

.

By Theorem 2.3 of [6], we also know that

(4.2) ζkn
(−1,P) =

n3 + 11n

360
.

8



Lemma 4.1. Let p be an odd prime, pt ‖ n, and let n2+4 ≡ 5 (mod 8). Consider

a = (p, 1
2 (p + 2 +

√
d) and a

′ = (p, 1
2 (p + 2 −

√
d)). Then {pr, 1

2 (p + 2 +
√
d)} and

{pr, 1
2 (p+2−

√
d)} are integral bases for ar and (a′)r, respectively, for all 1 6 r 6 t.

P r o o f. Consider

Mr =

[

pr,
pr + 2 +

√
d

2

]

,

a nonzero Z-module in Okn
. Then, by Propositions 2.6 and 2.11 of [16], Mr is an

ideal and N(Mr) = pr. As Mr ⊆ ar for all 1 6 r 6 t and N(ar) = pr, one has

Mr = ar and hence {pr, 1
2 (p+ 2 +

√
d)} is an integral basis for ar for all 1 6 r 6 t.

Similarly {pr, 1
2 (p+ 2−

√
d)} is an integral basis for (a′)r for all 1 6 r 6 t. �

Theorem 4.1. If n = pt with p an odd prime and t > 1 an integer then h(d) > t.

P r o o f. Let A be an ideal class containing a = (p, 1
2 (p+2+

√
d)). Then by using

Lemmas 2.1, 2.2, 4.1 and Theorem 2.1 we obtain:

ζkn
(−1,Ar) =

n3 + n(p4r + 10p2r)

360p2r
= ζkn

(−1,A−r) ∀ 1 6 r 6 t.

If for any 1 6 r < t, ζkn
(−1,P) = ζkn

(−1,Ar), then n = pr. Hence, |A| > t. This

implies that h(d) > t. �

Using similar arguments one gets:

Theorem 4.2. Let n = p1
a1p2

a2 . . . pm
am with pi’s distinct odd primes and ai’s

some positive integers.

(i) If m > 2, then h(d) > 2(a1 + a2 + . . .+ am)−m+ 1.

(ii) If m = 2, then h(d) > 2(a1 + a2)− 2.

Remark 4.1. If all the ai’s are zero, then n = 1, d = 5 and h(5) = 1.

5. Applications

5.1. Proof of Theorems 1.6 and 1.7.

P r o o f of Theorem 1.6. If n is odd, then n2g + 1 ≡ 2 (mod 4). Therefore, by

Theorem 1.5, h(n2g + 1) > g. Assume n is even. Then n2g + 1 ≡ 1 (mod 8), since

g > 1 and 22g | n2g. If there exists an odd prime p dividing n, then h(d) > g (by

Theorem 1.4). Now suppose n = 2s, then ng = 2sg. By Theorem 1.4, h(d) > sg− 1.

If s > 1, then sg − 1 > g. Hence, h(d) > g.

9



Now consider s= 1 and b=(2, 12 (1+
√
d))∈B. Then, as in the proof of Theorem 1.4,

ζkn
(−1,Bj) =

n3 + n(4× 24j + 10× 22j)

360× 22j
= ζkn

(−1,B−j) ∀ 1 6 j 6 g − 1,

and |B| > g − 1. If h(d) = g > 2, then |B| = g. Also, if h(d) = g = 2 and B
is principal ideal class, then ζkn

(−1,P) = ζkn
(−1,B) which further implies n = 4.

But h(42 + 1) = 1, therefore, if h(d) = 2, then |B| = 2. Hence, if h(d) = g > 1,

then |B| = g. Therefore, BlBg−l = P , i.e., (Bl)−1 = Bg−l. This implies that

ζkn
(−1,Bl) = ζkn

(−1,Bg−l), i.e.,

n3 + n(4 × 24l + 10× 22l)

360× 22l
=

n3 + n(4× 24(g−l) + 10× 22(g−l))

360× 22(g−l)
,

which gives n = 2g+1, a contradiction. Hence, h(d) > g. �

P r o o f of Theorem 1.7. The proof is a direct consequence of Theorems 4.1– 4.2.

�

5.2. Class group of prime power order. In this section, we deduce conditions

on the exponents of the prime factors of n so that the class group of prime power

order is cyclic.

Throughout this subsection, p and pi’s will be distinct odd primes and s, m and t

will be positive integers. Also, d will be a square-free positive integer and h(d) = qr

for some prime q and positive integer r > 2.

Theorem 5.1. Let p be an odd prime, t > 1 be an integer, n = 2pt, and let

d = n2 + 1 ≡ 5 (mod 8). If t > qr−1, then C(kn) ∼= Z/qrZ.

P r o o f. By Theorem 1.3, we have h(d) > t and if A is an ideal class containing
a = (p, 1

2 (1 +
√
d)), then A is a nonprincipal ideal class, |A| > qr−1 and |A| | qr.

This implies |A| = qr and hence, the class group is cyclic. �

The following results can also be proved using Theorems 1.3, 1.4, 1.5 and some

group theoretic arguments.

Theorem 5.2. Let d = n2 + 1 ≡ 5 (mod 8).

(I) If n = 2p1
a1p2

a2 . . . pm
am with m > 2 and if one of the following holds:

(i) For any 1 6 i 6 m, ai >
1
2 (q

r−1 + 1).

(ii) For some i 6= l and for any 2 6 j < r, ai >
1
2 (q

r−j+1) and al >
1
2 (q

j−1+1).

Then C(kn) ∼= Z/qrZ.

(II) If n = 2p1
a1p2

a2 and a1 or a2 > 1
2 (q

r−1 + 1), then C(kn) ∼= Z/qrZ.
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Theorem 5.3. Let d = n2 + 1 ≡ 1 (mod 8).

(I) If n = 2spt, s > 2 and t > 1
2 (q

r−1+1) or s−1> 1
2 (q

r−1+1). Then C(kn)∼=Z/qrZ.

(II) If n = 2spa1

1 p2
a2 . . . pm

am , s > 2, m > 2, and if one of the following holds:

(i) For any 1 6 i 6 m, ai or s− 1 > 1
2 (q

r−1 + 1).

(ii) For some i 6= l and for any 2 6 j < r, ai > 1
2 (q

r−j + 1) and al or

s− 1 > 1
2 (q

j−1 + 1).

Then C(kn) ∼= Z/qrZ.

Theorem 5.4. Let d = n2 + 1 ≡ 2 (mod 4).

(I) If n = pt and t > 1
2 (q

r−1 + 1), then C(kn) ∼= Z/qrZ.

(II) If n = p1
a1p2

a2 . . . pm
am , m > 2, and if one of the following holds:

(i) For any 1 6 i 6 m, ai >
1
2 (q

r−1 + 1).

(ii) For some i 6= l and for any 2 6 j < r, ai >
1
2 (q

r−j+1) and al >
1
2 (q

j−1+1).

Then C(kn) ∼= Z/qrZ.

Theorem 5.5. Let d = n2 + 4 ≡ 5 (mod 8).

(I) If n = pt and t > qr−1 + 1, then C(kn) ∼= Z/qrZ.

(II) If n = p1
a1p2

a2 and a1 or a2 > 1
2 (q

r−1 + 1), then C(kn) ∼= Z/qrZ.

(III) If n = p1
a1p2

a2 . . . pm
am , m > 2, and if one of the following holds:

(i) For any 1 6 i 6 m, ai >
1
2 (q

r−1 + 1).

(ii) For some i 6= l and for any 2 6 j < r, ai >
1
2 (q

r−j+1) and al >
1
2 (q

j−1+1).

Then C(kn) ∼= Z/qrZ.

6. Some remarks

Let g(n) be the least prime number which is a quadratic residue modulo n. Chowla

and Friedlander in [10] proved that if p = m2+1 is a prime, m > 2 and h(p) = 1, then

g(p) = 1
2m. We get some upper bound for g(4p

2 + 1), if h(4p2 + 1) > 1, irrespective

of 4p2 + 1 is a prime or not.

Theorem 6.1. Let d = 4p2+1 be a square-free integer, where p is a prime. Then

g(d) < p, except for p = 2, 3, 5, 7 and 13.

P r o o f. By Proposition 2.1,

ζkp
(−1) =

1

60

∑

|t|<
√

4p2+1

t2≡4p2+1 (mod 4)

σ
(4p2 + 1− t2

4

)

=
1

60

∑

|t|62p
t is odd

σ
(4p2 + 1− t2

4

)
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=
2

60

∑

06n6p−1

σ
(4p2 + 1− (2n+ 1)2

4

)

=
1

30

∑

06n6p−1

σ(p2 − n(n+ 1))

>
1

30

∑

06n6p−1

{1 + p2 − n(n+ 1)} =
8p3 + 28p

360
.

By Theorem 2.4 of [6] we have that h(
√

4p2 + 1) = 1 ⇔ ζkp
= (8p3 + 28p)/360.

Equality occurs only if the set {p2 − n(n + 1)}p−2
n=1 consists of only prime numbers.

Since (C) is true (proved by Biró in [3]), therefore, the set {p2−n(n+1)}p−2
n=1 always

contains a composite number, except for p = 2, 3, 5, 7 and 13. That is, for all p,

except p = 2, 3, 5, 7 and 13, there exists a 1 6 n0 6 p− 2 such that p2 − n0(n0 + 1)

is not a prime number. Since p2 − n0(n0 +1) < p2 is odd, there exists an odd prime

q < p such that q | (p2 − n0(n0 + 1)). So we have

p2 − n0(n0 + 1) ≡ 0 (mod q).

This implies that p2 − n(n+ 1) has a solution n0 in Fq and

n0 =
−1±

√

1 + 4p2

2
.

Therefore, 1 + 4p2 is a square in Fq, i.e., 1 + 4p2 = x2 in Fq for some x ∈ Fq. Thus,

1 + 4p2 is a quadratic residue of some prime q < p. Hence, q is also a quadratic

residue of 1 + 4p2 since 1 + 4p2 ≡ 1 (mod 4). �

Similarly, one can deduce the following result:

Theorem 6.2. Let d = p2 + 4 be a square-free integer, where p is a prime.

Consider Q(
√
d), then g(d) < p, except for p = 3, 5, 7, 13 and 17.

We believe that our method should go through for other R-D type real quadratic

fields as well. It will be interesting to extend these results for other real quadratic

fields, whose fundamental unit is known. Then one can try to reduce the class

number 1 problem for that particular family to its subfamily. One can also state

further information about the prime power order class group. In Section 5, if r is

small, say 2 or 3, then in most cases we can exactly determine the class group by

just looking at the exponents of prime factors.
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