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Abstract. We derive an analytic characterization of the symmetric extension of a Herglotz-
Nevanlinna function. Here, the main tools used are the so-called variable non-dependence
property and the symmetry formula satisfied by Herglotz-Nevanlinna and Cauchy-type
functions. We also provide an extension of the Stieltjes inversion formula for Cauchy-type
and quasi-Cauchy-type functions.
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1. Introduction

On the upper half-plane C
+ := {z ∈ C : Im[z] > 0}, the class of holomorphic

functions with nonnegative imaginary part plays an important role in many areas

of analysis and applications. These functions, called Herglotz-Nevanlinna functions,

appear, to name but a few examples, in the theory of Sturm-Liouville operators and

their perturbations (see [3], [4], [7], [10]), when studying the classical moment prob-

lem (see [2], [17], [18]), when deriving physical bounds for passive systems (see [5])

or as approximating functions in certain convex optimization problems, see [8], [9].

The classical integral representation theorem (see [6], [17]) states that any

Herglotz-Nevanlinna function h can be written for z ∈ C
+ as

(1.1) h(z) = a+ bz +
1

π

∫

R

( 1

t− z
−

t

1 + t2

)

dµ(t),
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where a ∈ R, b > 0 and where µ is a positive Borel measure on R for which
∫

R
(1 + t2)−1 dµ(t) < ∞. Although this representation is a priori established for

z ∈ C
+, it is well-defined, as an algebraic expression for any z ∈ C \ R. Hence,

for a Herglotz-Nevanlinna function h, we define its symmetric extension hsym as the

right-hand side of representation (1.1), where we now take z ∈ C \ R. It is now an

easy consequence of the definitions that a holomorphic function f : C\R → C equals

the symmetric extension of some Herglotz-Nevanlinna function if and only if it holds

that Im[f(z)] > 0 for z ∈ C
+ and f(z) = f(z) for all z ∈ C \ R. In this way, we

obtain an analytic characterization of the symmetric extension.

When considering, instead, functions in the poly-upper half-plane

C
+n := (C+)n = {z ∈ C

n : ∀ j = 1, 2, . . . , n : Im[zj] > 0},

the analogous situation becomes more involved. Herglotz-Nevanlinna functions in

several variables, cf. Definition 2.2, appear, e.g., when considering operator mono-

tone functions (see [1]) or with representations of multidimensional passive systems,

see [20]. Their corresponding integral representation is recalled in detail in Theo-

rem 2.3 later on and leads, in an analogous way as in the one-variable case, to the

definition of a symmetric extension, which is now a holomorphic function on (C\R)n.

As such, the main goal of this paper is to give an analytic characterization of sym-

metric extensions of a Herglotz-Nevanlinna function in several variables, i.e., we

wish to be able to determine when a function f : (C \ R)n → C is, in fact, equal

to the symmetric extension of a Herglotz-Nevanlinna function. This is answered

by Theorem 3.3 and Corollary 3.4. Additionally, we provide, in Theorem 4.2 and

Proposition 4.6, two versions of the Stieltjes inversion formula that extend the known

inversion formula for Herglotz-Nevanlinna functions of several variables.

The structure of the paper is as follows. After the introduction in Section 1

we review different classes of functions that will appear throughout the paper in

Section 2. Section 3 is then devoted to presenting the main result of the paper

as well as some important examples. Finally, Section 4 discusses how the Stieltjes

inversion formula can be extended to certain functions on (C \ R)n.

2. Classes of functions in the poly cut-plane defined

via positive measures

Throughout this paper, we primarily consider two classes of holomorphic functions

on the poly cut-plane (C \ R)n, both of which are intricately connected to a certain

kernel function and a particular class of positive measures. Functions defined using

the same kernel but using complex measures instead will be of secondary considera-

tion later on in Section 4.2.
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2.1. The kernel Kn and Cauchy-type functions. We begin by introducing

the kernel Kn : (C \ R)n × R
n → C as

(2.1) Kn(z , t) := i

(
2

(2i)n

n∏

l=1

( 1

tl − zl
−

1

tl + i

)

−
1

(2i)n

n∏

l=1

( 1

tl − i
−

1

tl + i

))

.

If the vector z is restricted to C+n, then the kernelKn is a complex-constant multiple

of the Schwartz kernel of C+n viewed as a tubular domain over the cone [0,∞)n,

see [20], Section 12.5.

When n = 1, it holds that

K1(z, t) =
1

t− z
−

t

1 + t2
.

As such, the kernel K1 satisfies for all z ∈ C\R and all t ∈ R the symmetry property

K1(z, t) = K1(z, t).

When n > 2, the symmetry satisfied by the kernel becomes more involved and

requires the introduction of some additional notation. First, given two numbers

z, w ∈ C, an indexing set B ⊆ {1, 2, . . . , n} and an index j ∈ {1, 2, . . . , n}, put

ψj
B(z, w) :=

{

z; j 6∈ B,

w; j ∈ B.

Second, given an indexing set B ⊆ {1, 2, . . . , n}, define the map ΨB : C
n×C

n → C
n

as ΨB(z ,w) := ζ with ζj := ψj
B(zj , wj). In other words, the map ΨB functions

as a way of selectively combining two vectors into one, where the set B determines

which components of z should be replaced by the conjugates of the components ofw.

It now holds that

(2.2) Kn(z , t) =
∑

B⊆{1,...,n}
B 6=∅

(−1)|B|+1Kn(ΨB(i1, z), t)

for every z ∈ (C \ R)n and every t ∈ R
n, see [13], Proposition 6.1.

Using the kernel Kn and certain positive Borel measures on R
n we now define the

following class of functions.

Definition 2.1. A function g : (C \R)n → C is called a Cauchy-type function if

there exists a positive Borel measure µ on R
n satisfying the growth condition

(2.3)

∫

Rn

n∏

l=1

1

1 + t2l
dµ(t) <∞
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such that

g(z) =
1

π
n

∫

Rn

Kn(z , t) dµ(t)

for every z ∈ (C \ R)n.

Note that this definition is different from Definition 3.1 of [13] in that it assumes

from the beginning that a Cauchy-type function is defined on (C \R)n and not only

on C
+n. An extension of this definition to include functions defined by complex

measures will be briefly considered in Definition 4.5. Furthermore, it would be poss-

ible to define an even larger class of functions using the same kernel, but general

distributions instead of measures, see [14], Example 7.7 for an example. However,

this extension will not be considered in the present paper. Moreover, Definition 2.1

allows, in principle, for two (or more) different measures to yield the same function g,

though we will show that this is not the case later in Section 4.1.

An immediate consequence of the symmetry formula (2.2) is an analogous symme-

try formula for Cauchy-type functions. In particular, it holds for any Cauchy-type

function g that

(2.4) g(z) =
∑

B⊆{1,...,n}
B 6=∅

(−1)|B|+1g(ΨB(i1, z))

for every z ∈ (C \ R)n and every t ∈ R
n, see [13], Proposition 6.5.

The growth of a Cauchy-type function along a coordinate parallel complex line can

be described using non-tangential limits. These are taken in so-called Stoltz domains

and are defined as follows. An upper Stoltz domain with centre 0 ∈ R and angle

θ ∈ (0, 12π] is the set {z ∈ C
+ : θ 6 arg(z) 6 π − θ} and the symbol z

∨
→ ∞ then

denotes the limit |z| → ∞ in any upper Stoltz domain with centre 0. A lower Stoltz

domain and the symbol z
∧
→ ∞ are defined analogously. Furthermore, we note that

in the literature, slightly different notations are sometimes used to describe these

limits. Two examples of Stoltz domains are visualized in Figure 1 below.

x

iy

θ1
x

iy

θ2

Figure 1. An upper Stoltz domain with centre 0 and angle θ1 (left) and a lower Stoltz
domain with centre 0 and angle θ2 (right).
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For any Cauchy-type function g it now holds, for any z ∈ (C \ R)n and any

j ∈ {1, . . . , n}, that

lim
zj

∨

→∞

g(z)

zj
= lim

zj
∧

→∞

g(z)

zj
= 0,

see [13], Lemma 3.2.

2.2. Herglotz-Nevanlina functions. These functions are defined as follows,

cf. [12], [13], [19], [20].

Definition 2.2. A holomorphic function h : C
+n → C is called a Herglotz-

Nevanlinna function if it is holomorphic with nonnegative imaginary part.

In contrast to the definition of the Cauchy-type function, the above definition is

analytic in nature, i.e., it describes the function class in terms of conditions on the

function itself. In order to be able to relate it to the kernel Kn, we introduce, given

ambient numbers z ∈ C \ R and t ∈ R, the expressions

N−1(z, t) :=
1

2i

( 1

t− z
−

1

t− i

)

, N0(z, t) :=
1

2i

( 1

t− i
−

1

tj + i

)

,

N1(z, t) :=
1

2i

( 1

t+ i
−

1

t− z

)

.

Note that N0 is independent of z ∈ C \ R and N0(z, t) ∈ R while

N−1(z, t) = N1(z, t)

for all z ∈ C \ R and t ∈ R. Using these expressions, one may give an integral

representation formula for Herglotz-Nevanlinna functions involving the kernel Kn,

see [13], Theorem 4.1.

Theorem 2.3. A function h : C
+n → C is a Herglotz-Nevanlinna function if and

only if h can be written as

(2.5) h(z) = a+

n∑

j=1

bjzj +
1

π
n

∫

Rn

Kn(z , t) dµ(t),

where a ∈ R, b ∈ [0,∞)n, the kernelKn is as before and µ is a positive Borel measure

on R
n satisfying the growth condition (2.3) and the Nevanlinna condition

(2.6)
∑

̺∈{−1,0,1}n

−1∈̺∧1∈̺

∫

Rn

n∏

j=1

N̺j
(zj , tj) dµ(t) = 0

for all z ∈ C
+n. Furthermore, for a given function h, the triple of representing

parameters (a, b, µ) is unique.
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Remark 2.4. Positive Borel measures on Rn satisfying conditions (2.3) and (2.6)

are called Nevanlinna measures, cf. [13], [15], [16].

The integral representation in formula (2.5) is well-defined for any z ∈ (C \ R)n,

which may be used to extend any Herglotz-Nevanlinna function h from C
+n to

(C \ R)n. This extension is called the symmetric extension of the function h and is

denoted as hsym. The symmetric extension of a Herglotz-Nevanlinna function h is dif-

ferent from its possible analytic extension as soon as µ 6= 0 (see [13], Proposition 6.10)

and satisfies the following variable-dependence property, see [13], Proposition 6.9.

Proposition 2.5. Let n > 2 and let hsym be the symmetric extension of

a Herglotz-Nevanlinna function h in n variables for which b = 0. Let z ∈ (C \ R)n

be such that zj ∈ C
− for some index j ∈ {1, 2, . . . , n}. Then, the value hsym(z) does

not depend on the components of z that lie in C
+.

Furthermore, if h is a Herglotz-Nevanlinna function for which b = 0, then its

symmetric extension hsym satisfies the symmetry formula

(2.7) hsym(z) =
∑

B⊆{1,...,n}
B 6=∅

(−1)|B|+1hsym(ΨB(i1, z)),

where z ∈ (C \ R)n, see [13], Proposition 6.7. When n = 1, it is not necessary to

assume that b = 0 for formula (2.7) to hold. However, when n > 1, this is required.

The representing vector b describes the growth of the function h along coordinate

parallel complex lines in C
+n. More precisely, we recall from [13], Corollary 4.6 (iv)

that for any j ∈ {1, . . . , n} we have

(2.8) bj = lim
zj

∨

→∞

h(z)

zj
.

In particular, the above limit is independent of the entries of the vector z at the

non-jth positions. This result carries over to the symmetric extension, for which it

holds for any j ∈ {1, . . . , n} that

bj = lim
zj

∨

→∞

hsym(z)

zj
= lim

zj
∧

→∞

hsym(z)

zj
.

Every Herglotz-Nevanlinna function that is represented by a data-triple of the

form (0,0, µ) in the sense of Theorem 2.3 is also a Cauchy-type function. The

converse, i.e., that every Cauchy-type function equals a Herglotz-Nevanlinna function

represented by a data-triple of the form (0,0, µ), is true only when n = 1. This is

due to the fact that when n = 1, the Nevanlinna condition (2.6) becomes emptily

fulfilled by every positive Borel measures µ satisfying the growth condition (2.3).
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3. Symmetry and variable non-dependence

We begin by recalling that the symmetric extension of a Herglotz-Nevanlinna func-

tion h in one variable is uniquely determined by its values in C+. Indeed, when n = 1,

the symmetry formula (2.7) takes the form hsym(z) = hsym(z), providing a way to

recover the values of the function in C− using only the values of the function in C+.

For functions of several variables, the appropriate analogue involves the following

definition.

Definition 3.1. A function f : (C \R)n → C is said to satisfy the variable non-

dependence property 3.1 if for every vector z ∈ (C \R)n such that zj ∈ C
− for some

index j ∈ {1, 2, . . . , n} the value f(z) does not depend on the components of z that

lie in C
+.

By Proposition 2.5, the symmetric extension of a Herglotz-Nevanlinna function

satisfies the variable non-dependence property 3.1 if b = 0. In particular, the

symmetric extension of any Herglotz-Nevanlinna function that is also a Cauchy-

type function always satisfies the variable non-dependence property 3.1. However,

a general Cauchy-type function need not satisfy it, as shown by the function f2 in

Example 3.5 later on.

We may now describe the precise circumstances under which we can recover the

values of a function defined on (C \ R)n purely in terms of its values in C
+n.

Proposition 3.2. Let f : (C \R)n → C be a holomorphic function satisfying the

symmetry formula (2.7) and the variable non-dependence property 3.1. Then, the

values of the function f on (C \ R)n are uniquely determined by its values in C
+n.

P r o o f. Using the symmetry formula (2.7), let us investigate the values of the

function f in a connected component of (C\R)n, where at least one of the coordinates

has a negative sign of the imaginary part, i.e., we are investigating a connected

component X ⊆ (C \ R)n, where at least one index j ∈ {1, . . . , n} exists such that

the jth coordinate lies in C
−. For any such chosen connected component X , let

B′ ⊆ {1, . . . , n} be the set of those indices for which the corresponding variables

lie in C
−. In particular, 1 6 |B′| 6 n. For z ∈ X , it holds, by the symmetry

formula (2.7), that

f(z) =
∑

B⊆{1,...,n}
B 6=∅

(−1)|B|+1f(ΨB(i1, z))

=
∑

B⊆{1,...,n}
B 6=∅∧B⊆B′

(−1)|B|+1f(ΨB(i1, z)) +
∑

B⊆{1,...,n}
B 6⊆B′

(−1)|B|+1f(ΨB(i1, z)).
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Due to the definition of the set B′, it holds that ΨB(i1, z) ∈ C
+n for any z ∈ X and

any indexing set B ⊆ B′. Furthermore, by the variable non-dependence property 3.1,

it holds that

ΨB(i1, z) = ΨB\B′(i1, z)

for any z ∈ X and any indexing set B, where B 6⊆ B′. Hence,

f(z) =
∑

B⊆{1,...,n}
B 6=∅∧B⊆B′

(−1)|B|+1f(ΨB(i1, z)) +
∑

B⊆{1,...,n}
B 6⊆B′

(−1)|B|+1f(ΨB\B′(i1, z)).

We now claim that the second sum is always equal to zero. Indeed, if |B′| = n,

there is nothing left to prove. Otherwise, we may assume that |B′| < n, where we

claim that there is a way to “pair up” the indexing sets in the second sum in such

a way that the two sets in each pair only differ by one element in B′. We construct

this pairing in the following way. Let j1 be the smallest index in B
′. Then, exactly

half of the sets B ⊆ {1, . . . , n} that are not subsets of B′ contain the index j1 and

exactly half of them do not contain the index j1. This follows from the general

observation that exactly half of the subsets of a given set contain a specific element

of the set. An indexing set B1 is then paired with the indexing set B1 ∪{j1}. In this

case, (B1 ∪ {j1}) \B′ = B1 \B′ and

(−1)|B1|+1f(ΨB1\B′(i1, z)) + (−1)|B1∪{j1}|+1f(Ψ(B1∪{j1})\B′(i1, z))

= (−1)|B1|+1f(ΨB1\B′(i1, z))− (−1)|B1|+1f(ΨB1\B′(i1, z)) = 0,

yielding the desired result. �

The following theorem now gives an analytic characterization of the symmetric

extension of a Herglotz-Nevanlinna function. We emphasize beforehand that the

main significance of the theorem is the converse direction of its statement, i.e., that

the three properties listed are sufficient for a function to be equal to the symmetric

extension of a Herglotz-Nevanlinna function.

Theorem 3.3. Let f : (C \ R)n → C be a holomorphic function such that

lim
zj

∨

→∞

f(z)

zj
= lim

zj
∧

→∞

f(z)

zj
= 0

for all indices j ∈ {1, . . . , n}. Then f = hsym for some Herglotz-Nevanlinna func-

tion h if and only if:

(i) it holds that Im[f(z)] > 0 for all z ∈ C
+n,

(ii) the function f satisfies the symmetry formula (2.7),

(iii) the function f satisfies the variable non-dependence property 3.1.
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P r o o f. If f = hsym for some Herglotz-Nevanlinna function h, then this function

must have b = 0 due to the assumption on the growth of f . Then, properties (i)–(iii)

are satisfied by the previously known results discussed in Section 2.2. Conversely, if

we are given the function f satisfying the properties (i)–(iii), we construct a Herglotz-

Nevanlinna function out the function f by setting

h := f |C+n .

This function h may then be symmetrically extended to (C \ R)n. However, f

and hsym are now two holomorphic functions on (C \ R)n satisfying the symmetry

formula (2.7) and the variable non-dependence property 3.1 which, furthermore,

agree on C
+n. Therefore, by Proposition 3.2, they agree everywhere on (C \ R)n,

as desired. �

The assumption on the growth of the function f may be slightly weakened, but,

to compensate, conditions (ii) and (iii) need to be slightly modified.

Corollary 3.4. Let f : (C \ R)n → C be a holomorphic function such that

lim
zj

∨

→∞

f(z)

zj
= lim

zj
∧

→∞

f(z)

zj
= dj > 0

for all indices j ∈ {1, . . . , n}. In particular, for a fixed j ∈ {1, . . . , n}, the above

limits are assumed to be independent of the values of the vector z ∈ (C \R)n at the

non-jth positions. Then f = hsym for some Herglotz-Nevanlinna function h if and

only if

(i) it holds that Im[f(z)] > 0 for all z ∈ C
+n,

(ii′) the function z 7→ f(z)−
n∑

j=1

djzj satisfies the symmetry formula (2.7),

(iii′) the function z 7→ f(z) −
n∑

j=1

djzj satisfies the variable non-dependence prop-

erty 3.1.

The three conditions on the function f in Theorem 3.3 are independent of each

other. To verify this, consider the following functions on (C \ R)n.

Example 3.5. Table 1 presents eight explicit functions defined on (C \R)n and

Table 2 summarizes which conditions of Theorem 3.3 are fulfilled by which function.

Note also that all the eight functions satisfy the assumption on the growth of the

function from Theorem 3.3. The functions are constructed as follows.

The function f0 is defined to equal: a negative imaginary constant on C
+ × C

+

breaking condition (i); a function depending only on the second variable on C−×C
+

breaking condition (iii); and identically zero in the remaining connected components
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of (C \R)n, ensuring that condition (ii) is not satisfied. The function f1 is obtained

from f0 by changing the definition on C
+ × C

+ to a positive imaginary constant,

thereby satisfying condition (i), but still neither (ii) nor (iii).

C
+ × C

+
C

− × C
+

C
+ × C

−
C

− × C
−

f0 −i
1

z2
0 0

f1 i
1

z2
0 0

f2 −
i

2
−

1

i + z1
−

1

i + z2
−

i

2
+

1

z2 − z1
−

1

i + z2
−

i

2
−

1

i + z1
+

1

z1 − z2
−

i

2
f3 −i 0 0 0

f4
9i

2
−

1

i + z1
−

1

i + z2
−
11i

2
+

1

z2 − z1
−

1

i + z2
−
11i

2
−

1

i + z1
+

1

z1 − z2
−
11i

2

f5 i 0 0 0

f6 −i i i i

f7 i −i −i −i

Table 1. Eight examples of functions defined on (C \ R)2.

(i) (ii) (iii)

f0 × × ×

f1 X × ×

f2 × X ×

f3 × × X

f4 X X ×

f5 X × X

f6 × X X

f7 X X X

Table 2. The relation of the eight functions from Table 1 to the three conditions from
Theorem 3.3.

The function f2 is the Cauchy-type function given by a measure µ2 on R
2 defined

on Borel subsets U ⊆ R
2 as

µ2(U) := π

∫

R

χU (t, t) dt,

where χU denotes the characteristic function of the set U . This measure obviously

satisfies the growth condition (2.3) and it does not satisfy the Nevanlinna condi-

tion (2.6) as it is supported on the diagonal in R2 – an impossibility for Nevanlinna

measures as shown in [15], Example 3.14. This function does not satisfy condition (i)

as, for example, f2(4i, 4i) = − 1
10 i. As a Cauchy-type function, it is guaranteed to
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satisfy condition (ii). It also clearly does not satisfy condition (iii) as the values in

e.g., C+ × C
− depend explicitly on both variables. Note now that while the func-

tion f2 takes values with negative imaginary part in C
+ ×C

+, its imaginary part is

bounded from below. Indeed, the functions z1 7→ −1/(i + z1) and z2 7→ −1/(i + z2)

are Herglotz-Nevanlinna functions of one variable, implying that Im[f2(z1, z2)] > − 1
2

for all (z1, z2) ∈ C
+ × C

+. Hence, the function f4 is obtained by adding the sym-

metric extension of the Herglotz-Nevanlinna function (z1, z2) 7→ 5i (represented by

the measure 5λR2 to the function f2). This new function now satisfies condition (i)

in addition to (ii), while clearly still not satisfying condition (iii). Note that the

function

f4|C+×C+(z1, z2) =
9i

2
−

1

i + z1
−

1

i + z2

as a Herglotz-Nevanlinna function is not represented by the measure µ2 + 5λR2 in

the sense of Theorem 2.3, but rather by the measure

9

2
λR2 + (τ 7→ (1 + τ2)−1)λR ⊗ λR + λR ⊗ (τ 7→ (1 + τ2)−1)λR.

The function f3 is defined as zero on all the connected components of (C\R)2 other

than C
+ × C

+ to ensure that it satisfies condition (iii), while setting the function

equal to a negative imaginary constant in C
+ × C

+ ensures that it satisfies neither

condition (i) nor (ii). Changing this definition to a positive imaginary constant

in C+ ×C
+ gives the function f5 which satisfies conditions (i) and (iii), but not (ii).

The function f7 is simply taken as the symmetric extension of a Herglotz-

Nevanlinna function, thereby satisfying all the three properties automatically. Fi-

nally, the function f6 is chosen as f6 := −f7, satisfying conditions (ii) and (iii),

but not (i).

4. Variants of the Stieltjes inversion formula for functions

on the poly cut-plane

For Herglotz-Nevanlinna functions, the Stieltjes inversion formula describes how

to reconstruct the representing measure µ of a Herglotz-Nevanlinna function h from

the values of the imaginary part of the function in C+n. More precisely, it holds that
∫

Rn

ϕ(t) dµ(t) = lim
y→0+

∫

Rn

ϕ(x) Im[h(x + iy)] dx

for all C1-functions ϕ : R
n → R for which there exists a constant D > 0 such that

|ϕ(x)| 6 D
n∏

j=1

(1 + x2j )
−1 for all x ∈ R

n, see e.g., [5] or [10], Lemma 4.1 for the case

n = 1 and [13], Corollary 4.6 (viii) for the general case.
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4.1. Positive measures and Cauchy-type functions. As noted in Section 2.2,

Cauchy-type functions are a subclass of Herglotz-Nevanlinna functions when n = 1

and, hence, one only needs the values of (the imaginary part of) a Cauchy-type

function in C
+ to reconstruct its measure. However, in Example 3.5, we saw two

different positive Borel measures on R
2 for which the corresponding Cauchy-type

functions agree on C+2, but not on the remaining connected components of (C\R)2.

The crucial role in the proof of the Stieltjes inversion formula is held by the Poisson

kernel of C+n, which, we recall, is defined for z ∈ C
+n and t ∈ R

n as

Pn(z , t) :=

n∏

j=1

Im[zj ]

|tj − zj |2
.

Note that Pn(z , t) > 0 for every z ∈ C
+n and t ∈ R

n. The imaginary part of the

kernel Kn is equal to the Poisson kernel Pn plus a remainder term which can be

expressed in terms of the Nj-factors (see [13], Proposition 3.3) and the integral of

the remainder with respect to any Nevanlinna measure is zero.

The following lemma now shows how one can recover the value of the Poisson

kernel Pn at some point z ∈ C
+n (and t ∈ R

n) using that the values of kernel Kn

form all of the connected components of the poly cut-plane (C \ R)n.

Lemma 4.1. Let n ∈ N, z ∈ C
+n and t ∈ R

n. Then, it holds that

2iPn(z , t) =
∑

B⊆{1,...,n}

(−1)|B|Kn(ΨB(z , z), t),

where ΨB is the selective conjugation map from Section 2.1.

P r o o f. The proof is done by induction on the dimension n. If n = 1, then

∑

B⊆{1}

(−1)|B|K1(ΨB(z, z), t) = K1(Ψ∅(z, z), t) + (−1)K1(Ψ{1}(z, z), t)

= K1(z, t)−K1(z, t) = 2i Im[K1(z, t)] = 2iP1(z, t),

as desired.

Assume now that the statement of the lemma holds for all n = 1, 2, . . . , N − 1

for some N ∈ N. For n = N , take z ∈ C
+N and t ∈ R

N and let z ′ and t′ denote

the same vectors with the last component removed, i.e., z ′ := (z1, . . . , zN−1) and

t′ := (t1, . . . , tN−1). Furthermore, put

A(z, t) :=
1

2i

( 1

t− z
−

1

t+ i

)

.
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Then, we calculate that

∑

B⊆{1,...,N}

(−1)|B|KN(ΨB(z , z), t)

=
∑

B⊆{1,...,N}
N 6∈B

(−1)|B|KN (ΨB(z , z), t) +
∑

B⊆{1,...,N}
N∈B

(−1)|B|KN(ΨB(z , z), t)

=
∑

B′⊆{1,...,N−1}

(−1)|B
′|

[

i

(

2

N−1∏

j=1

A(ψj
B′(zj , zj), tj) ·A(zN , tN )−

N∏

j=1

A(i, tj)

)]

+
∑

B′⊆{1,...,N−1}

(−1)|B
′|+1

[

i

(

2

N−1∏

j=1

A(ψj
B′(zj , zj), tj) · A(zN , tN )−

N∏

j=1

A(i, tj)

)]

= 2viA(zN , tN )
∑

B′⊆{1,...,N−1}

(−1)|B
′|KN−1(ΨB′(z ′, z ′), t′)

+ i

N−1∏

j=1

A(i, tj) · (A(zN , tN )−A(i, tN )) ·

=0
︷ ︸︸ ︷

∑

B′⊆{1,...,N−1}

(−1)|B
′|

− 2iA(zN , tN )
∑

B′⊆{1,...,N−1}

(−1)|B
′|KN−1(ΨB′(z ′, z ′), t′)

− i

N−1∏

j=1

A(i, tj) · (A(z̄N , tN )−A(i, tN )) ·

=0
︷ ︸︸ ︷

∑

B′⊆{1,...,N−1}

(−1)|B
′|

= 2iA(zN , tN )PN−1(z
′, t′)− 2iA(z̄N , tN )PN−1(z

′, t′) = 2iPN (z , t),

finishing the proof. �

The Stieltjes inversion for Cauchy-type functions is, thus, the following.

Theorem 4.2. Let g be a Cauchy-type function given by a positive Borel mea-

sure µ satisfying condition (2.3). Then, it holds that

(4.1)
∫

Rn

ϕ(t) dµ(t) = lim
y→0+

1

2i

∫

Rn

ϕ(x)

[
∑

B⊆{1,...,n}

(−1)|B|g(ΨB(x + iy ,x + iy))

]

dx

for all C1-functions ϕ : R
n → R for which there exists a constant D > 0 such that

|ϕ(x)| 6 D
n∏

j=1

(1 + x2j)
−1 for all x ∈ R

n.
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P r o o f. By the definition of Cauchy-type functions and Lemma 4.1, it holds that

∑

B⊆{1,...,n}

(−1)|B|g(ΨB(x + iy ,x + iy))

=
1

π
n

∫

Rn

[
∑

B⊆{1,...,n}

(−1)|B|Kn(ΨB(x + iy ,x + iy), t)

]

dµ(t)

=
2i

π
n

∫

Rn

Pn(x + iy , t) dµ(t).

Hence,

lim
y→0+

1

2i

∫

Rn

ϕ(x)

[
∑

B⊆{1,...,n}

(−1)|B|g(ΨB(x + iy ,x + iy))

]

dx

= lim
y→0+

1

π
n

∫

Rn

ϕ(x)

(∫

Rn

Pn(x + iy , t) dµ(t)

)

dx

= lim
y→0+

1

π
n

∫

Rn

(∫

Rn

ϕ(x)Pn(x + iy , t) dx

)

dµ(t),

where the assumptions on the function ϕ and condition (2.3) for µ justify the use of

Fubini’s theorem to change the order of integration. The same assumptions permit

for Lebesgue’s dominated convergence to be used, allowing us to take the limit as

y → 0
+ before integrating with respect to the measure µ. Noting that, by e.g., [11],

page 111

lim
y→0+

∫

Rn

ϕ(x)Pn(x + iy , t) dx = π
nϕ(t)

finishes the proof. �

Example 4.3. Let h be a Herglotz-Nevanlinna function in C
+n with n > 2,

given purely by its representing measure in the sense of Theorem 2.3, i.e., there

exists a positive Borel measure µ satisfying conditions (2.3) and (2.6) such that

h(z) =
1

π
n

∫

Rn

Kn(z , t) dµ(t)

for all z ∈ C
+n. Let also hsym denote its symmetric extension which is, in par-

ticular, a Cauchy type function and, hence, the measure µ may be recovered from

the function hsym using formula (4.1). We now show that this, in fact, reproduces

the existing variant of the Stieltjes inversion formula for Herglotz-Nevanlinna func-

tions of several variables (see [13], Corollary 4.6 (viii)) for this special subclass of

Herglotz-Nevanlinna functions.
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We begin by calculating for x + iy ∈ C
+n that

∑

B⊆{1,...,n}

(−1)|B|hsym(ΨB(x + iy ,x + iy))

= hsym(x + iy)−
∑

B⊆{1,...,n}
B 6=∅

(−1)|B|+1hsym(ΨB(x + iy ,x + iy)) = (∗).

Note now that the last sum above runs over nonempty subsets of {1, . . . , n}, implying

that the map ΨB always conjugates at least one entry of its second input. Hence,

the input of the function hsym always has at least one coordinate in C
−. But the

symmetric extension of a Herglotz-Nevanlinna function was reviewed to satisfy the

variable non-dependence property in Proposition 2.5. In other words, for any fixed

point ξ ∈ C
+n and any set B ⊆ {1, . . . , n}, B 6= ∅, it holds that

hsym(ΨB(x + iy ,x + iy)) = hsym(ΨB(ξ,x + iy)).

Returning with this information to formula (∗), and choosing ξ = i1 for simplicity,

we conclude that

(∗) = hsym(x + iy)−
∑

B⊆{1,...,n}
B 6=∅

(−1)|B|+1hsym(ΨB(i1,x + iy)) = (∗∗).

We now recognize the sum above as the conjugate of the symmetry formula (2.7),

further implying that

(∗∗) = hsym(x + iy)− hsym(x + iy) = 2i Im[hsym(x + iy)] = 2i Im[h(x + iy)].

Returning with information to formula (4.1) reproduces the formula in [13], Corol-

lary 4.6 (viii), as claimed.

As an immediate corollary of Theorem 4.2 we also establish that the correspon-

dence between a Cauchy-type function and its defining measure µ is, indeed, a bi-

jection.

Corollary 4.4. Let µ1, µ2 be two positive Borel measures on R
n satisfying the

growth condition (2.3). Then,

∫

Rn

Kn(z , t) dµ1(t) =

∫

Rn

Kn(z , t) dµ2(t)

for all z ∈ (C \ R)n if and only if µ1 ≡ µ2.
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4.2. Complex measures and quasi-Cauchy-type functions. Formula (4.1)

can be extended to the case of functions defined by complex measures, though the fact

that complex measures are taken as finite by definition requires some adaptations.

To that end, we note first that we may establish a bijection between positive Borel

measures µ on R
n satisfying condition (2.3) and finite positive Borel measures ν

on R
n via the formulas

dν(t) :=

n∏

j=1

(1 + t2j )
−1 dµ(t) and dµ(t) :=

n∏

j=1

(1 + t2j) dν(t).

Hence, for every Cauchy-type function g, there exists precisely one finite positive

Borel measure ν such that

g(z) =
1

π
n

∫

Rn

Kn(z , t)

n∏

j=1

(1 + tj)
2 dν(t).

For complex measures, the above formula may be taken as a starting point instead,

yielding the following.

Definition 4.5. Let ν be a complex measure on R
n. Then, the function g :

(C \ R)n → C defined by

g(z) :=
1

π
n

∫

Rn

Kn(z , t)
n∏

j=1

(1 + tj)
2 dν(t)

is called a quasi-Cauchy-type function.

We remark that the prefix quasi- is used in analogy to the case of quasi-Herglotz

functions, see [9], [14].

Finally, we may derive the Stieltjes inversion formula for quasi-Cauchy-type func-

tions.

Proposition 4.6. Let g be a quasi-Cauchy-type function given by a complex

Borel measure ν. Then, it holds that

(4.2)

∫

Rn

ϕ(t)

n∏

j=1

(1 + t2j) dν(t)

= lim
y→0+

1

2i

∫

Rn

ϕ(x)

[
∑

B⊆{1,...,n}

(−1)|B|g(ΨB(x + iy ,x + iy))

]

dx

for all C1-functions ϕ : R
n → R for which there exists a constant D > 0 such that

|ϕ(x)| 6 D
n∏

j=1

(1 + x2j)
−1 for all x ∈ R

n.
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P r o o f. The proof may be conducted in two ways. First, we may near-verbatim

reproduce the proof of Theorem 4.2 by replacing “dµ(t)” with “
n∏

j=1

(1 + t2j) dν(t)”,

while noting that Lemma 4.1 remains valid as its conclusion is independent of the

particularities of the measure with respect to which one integrates the kernel Kn,

while the uses of Lebesgue’s dominated convergence theorem and Fubini’s theorem

also remain valid.

Alternatively, let ν1, ν2, ν3, ν4 be any four finite positive Borel measures on R
n

such that ν = ν1−ν2+i(ν3−ν4). Given this choice of measures, let gj be the Cauchy-

type function defined by the measure νj for j = 1, 2, 3, 4. Using Theorem 4.2 and the

bijection between finite measures and measures satisfying condition (2.3) reviewed

previously, we can combine four uses of formula (4.1) into formula (4.2). �

Example 4.7. In dimension 1, every Cauchy-type function is also a Herglotz-

Nevanlinna function and every quasi-Cauchy-type function is also a quasi-Herglotz

function, cf. [14], Theorem 3.3. Hence, formula (4.2) in dimension 1 reproduces the

inversion formula, see [14], Proposition 3.13. Indeed, we calculate that

1

2i

∑

B⊆{1}

(−1)|B|g(ΨB(x+ iy, x+ iy))

=
1

2i

(

(−1)|∅|g(Ψ∅(x + iy, x+ iy)) + (−1)|{1}|g(Ψ{1}(x+ iy, x+ iy))

)

=
1

2i
(g(x + iy)− g(x− iy)),

coinciding with formula (3.10) of [14].
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