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KYBERNET IKA — VOLUME 5 8 ( 2 0 2 2 ) , NUMBER 6 , PAGES 9 9 6 – 1 0 1 5

L-FUZZY IDEAL DEGREES IN EFFECT ALGEBRAS

Xiaowei Wei and Fu-Gui Shi

In this paper, considering L being a completely distributive lattice, we first introduce the
concept of L-fuzzy ideal degrees in an effect algebra E, in symbol Dei. Further, we characterize
L-fuzzy ideal degrees by cut sets. Then it is shown that an L-fuzzy subset A in E is an L-fuzzy
ideal if and only if Dei(A) = >, which can be seen as a generalization of fuzzy ideals. Later, we
discuss the relations between L-fuzzy ideals and cut sets (Lβ-nested sets and Lα-nested sets).
Finally, we obtain that the L-fuzzy ideal degree is an (L,L)-fuzzy convexity. The morphism
between two effect algebras is an (L,L)-fuzzy convexity-preserving mapping.

Keywords: effect algebra, L-fuzzy ideal degree, cut set, (L,L)-fuzzy convexity

Classification: 03B52, 03G27, 52A01

1. INTRODUCTION

In 1994, Foulis and Bennett [5] introduced effect algebras to model unsharp quantum
logics. We know that the ideals of effect algebras (pseudo-effect algebras) have attracted
a lot of attention [13, 39, 42]. Since Zadeh introduced the concept of fuzzy sets, many
branches of mathematics were discussed in fuzzy cases [17, 23, 34, 35]. In particular,
Liu and Wang [11] proposed the concept of fuzzy ideals for effect algebras in the unit
interval [0, 1]. Later, Liu [10] introduced and investigated fuzzy ideals and fuzzy filters
in pseudo-effect algebras. In order to better study fuzzy sets, cut sets were introduced,
which can be seen as a bridge between fuzzy sets and classic sets. The reader is referred
to [9, 37] for more information of cut sets.

Many branches of mathematics have the concept of convexities [31], such as vector
spaces, metric spaces, lattices, graphs, matroids and so on. At present, for the convex
theory, the research has formed a system, as follows: Rosa [24] first proposed the concept
of fuzzy convexities, which are called L-convex structures nowadays [2, 22, 25, 30, 36, 40,
45]. Afterwards, Shi and Xiu [28] gave a new approach to fuzzification of convexity and
proposed the concept of M -fuzzifying convex structures [19, 20, 33]. Later, Shi and Xiu
[29] further introduced the definition of (L,M)-fuzzy convex structures, which provided
a more general framework of fuzzy convex structures [21, 43, 44].

Groups, rings and fields are important parts of algebra. Williams, Latha and Chan-
drasekeran discussed the fuzzification of bi-Γ-ideals in Γ-semigroups and studied some
properties [38]. Öztürk, Jun and Yazarli introduced a kind of fuzzy Γ-ring and discussed
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some properties [18]. Malik and Mordeson [14] introduced the concepts of the fuzzy
weak direct sum and the fuzzy complete direct sum of fuzzy subrings of commutative
rings. Later, Mehmood, Shi and Hayat [16] introduced a new approach to the fuzzifica-
tion of rings. Further, Mehmood and Shi [15] discussed the M -hazy vector spaces over
M -hazy field. Recently, Shi and Xin [27] gave the concept of L-fuzzy subgroup degrees
and L-fuzzy normal subgroup degrees, which generalized the notion of degrees to which
a fuzzy subset is a fuzzy subgroup to L-fuzzy setting. Later, Li and Shi [9], Wen et al.
[37] characterized L-fuzzy convex structures by L-convex fuzzy sublattice degrees and
L-convex degrees on vector spaces, respectively. The L-fuzzy convexity is also called the
(L,L)-fuzzy convex structure.

In this paper, considering L being a completely distributive lattice, we first introduce
the definition of L-fuzzy ideal degrees and will characterize (L,L)-fuzzy convexities by L-
fuzzy ideal degrees on an effect algebra. If the L-fuzzy ideal degree of an L-fuzzy subset
equals to the maximum element in a lattice, then the L-fuzzy subset is an L-fuzzy
ideal, which can be seen as a generalization of the fuzzy ideal on effect algebras. We
further characterize L-fuzzy ideal degrees by four types of cut sets. We also discuss the
relations between L-fuzzy ideals and their cut sets (Lβ-nested sets and Lα-nested sets).
Finally, we obtain that the L-fuzzy ideal degree is an (L,L)-fuzzy convex structure. The
morphism between two effect algebras is an (L,L)-fuzzy convexity-preserving mapping.

2. PRELIMINARIES

2.1. Effect algebras

Definition 2.1. (Foulis and Bennett [5]) An effect algebra is a partial algebra
(
E,+, 0, 1

)
,

where 0, 1 are two different constants and + is a partial binary operation satisfying the
following:

(E1) If x+ y is defined, then y + x is also defined, and x+ y = y + x;

(E2) x+ y and
(
x+ y

)
+ z are defined if and only if y + z and x+

(
y + z

)
are defined,

and
(
x+ y

)
+ z = x+

(
y + z

)
;

(E3) For any x ∈ E, there exists a unique y ∈ E such that x+y is defined and x+y = 1;

(E4) If x+ 1 is defined, then x = 0.

We often denote the effect algebra
(
E,+, 0, 1

)
briefly by E. For any x ∈ E, we denote

the unique y in condition (E3) by x′. The operation + of an effect algebra
(
E,+, 0, 1

)
can induce a partial order ≤ as follows: x ≤ y if and only if there exists z ∈ E such that
x+ z is defined and x+ z = y. If x+ y is defined, then it is denoted by x ⊥ y.

In order to better understand effect algebras, we give the following examples, which
are the most important effect algebras.

Example 2.2. (1) LetH be a complete Hilbert space and B
(
H
)

the set of all bounded

linear operators on H, E
(
H
)

=
{
A | A ∈ B

(
H
)
, 0 ≤ A ≤ I

}
. For A,B ∈ E

(
H
)
,

if we define
A ⊥ B ⇐⇒ A+B ≤ I,

then
(
E(H),+, 0, I

)
is an effect algebra.
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(2) Let E = [0, 1]. For any x, y ∈ [0, 1], x ⊥ y if and only if x+y ≤ 1, then
(
E,+, 0, 1

)
is an effect algebra.

Definition 2.3. (Dvurečenskij and Pulmannová [3]) Let E and F be two effect alge-
bras. A mapping f : E −→ F is called a morphism provided that

(M1) f(1E) = 1F ;

(M2) If x, y ∈ E and x ⊥ y, then f(x) ⊥ f(y) and f(x) + f(y) = f(x+ y).

Lemma 2.4. (Dvurečenskij and Pulmannová [3]) Let f : E −→ F be a morphism
between two effect algebras. Then

(1) f is order-preserving, i. e., x ≤ y implies f(x) ≤ f(y) for all x, y ∈ E;

(2) f(x′) = f(x)′ for all x ∈ E.

Definition 2.5. (Dvurečenskij and Pulmannová [3]) Let E and F be two effect alge-
bras. A morphism f : E −→ F is called a monomorphism provided that f(x) ≤ f(y)
implies x ≤ y for all x, y ∈ E.

Definition 2.6. (Dvurečenskij and Pulmannová [3]) Let E be an effect algebra. A
nonempty subset I of E is said to be an ideal provided that

(I1) If x ∈ I and y ∈ E with y ≤ x, then y ∈ I;

(I2) If x, y ∈ I and x ⊥ y, then x+ y ∈ I.

2.2. Cut sets and (L,L)-fuzzy convexities

A partially ordered set (L,≤) [1] is said to be a lattice if any two elements λ and µ
in L have a smallest upper bound, denoted by λ ∨ µ, as well as a greatest lower bound,
denoted by λ∧µ. Let (L,≤) be a partially ordered set and Λ ⊆ L be a nonempty subset.
If for any λ, µ ∈ Λ, there always exists θ ∈ Λ such that λ ≤ θ and µ ≤ θ, then Λ is called
upward directed.

Let L be a lattice. If for any B ⊆ L,
∨
B and

∧
B exist, then L is called a complete

lattice. An element λ in a complete lattice L is said to be a prime element if µ ∧ θ ≤ λ
implies µ ≤ λ or θ ≤ λ. An element λ is said to be co-prime if λ ≤ µ ∨ θ implies λ ≤ µ
or λ ≤ θ [6]. Every complete lattice is always a bounded lattice such that the unit is the
top element and the zero is the bottom element. The set of non-unit prime elements in
L is denoted by P (L). The set of non-zero co-prime elements in L is denoted by J(L).

The binary relation ≺ in a complete lattice L is defined as follows: for λ, µ ∈ L, λ ≺ µ
if and only if for any subset A ⊆ L, such that µ ≤

∨
A implies λ ≤ θ for some θ ∈ A

[4]. The set
{
λ |λ ≺ µ

}
is said to be the greatest minimal family of µ, denoted by β(µ)

[32]. Moreover, for any µ ∈ L, we define α(µ) =
{
λ ∈ L |λ ≺op µ

}
. A complete lattice

L is a completely distributive lattice if and only if µ = ∨β(µ) = ∧α(µ) for all µ ∈ L [32].
In a completely distributive lattice L, α is an ∧-∪ mapping and β is a union-preserving
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mapping. There also exists an implication operator →: L×L −→ L as the right adjoint
for the meet operator ∧, which is defined by

λ→ µ =
∨{

θ ∈ L |λ ∧ θ ≤ µ
}
,

for all λ, µ ∈ L.
In this paper, if not otherwise specified, we always assume that L is a completely

distributive lattice, the smallest element and the largest element in L are denoted by ⊥
and >, respectively.

Lemma 2.7. (Höhle and Šostak [8]) Let L be a completely distributive lattice and the
operation → be the implication operator corresponding to ∧. For any λ, µ, θ ∈ L and{
λi
}
i∈I ⊆ L, then the following statements hold:

(1) > → λ = λ;

(2) λ ≤ θ → µ ⇐⇒ λ ∧ θ ≤ µ;

(3) λ→ µ = > ⇐⇒ λ ≤ µ;

(4) λ→
( ∧
i∈I

λi
)

=
∧
i∈I

(
λ→ λi

)
, hence λ→ µ ≤ λ→ θ whenever µ ≤ θ;

(5)
( ∨
i∈I

λi
)
→ µ =

∧
i∈I

(
λi → µ

)
, hence λ→ µ ≤ θ → µ whenever θ ≤ λ;

(6) (λ→ µ) ∧ (µ→ θ) ≤ λ→ θ.

Lemma 2.8. (Li and Shi [9], Wen et al. [37]) Let L be a completely distributive lattice
and λ, µ ∈ L. Then the following statements are equivalent:

(1) λ ≤ µ;

(2) for any δ ∈ J(L), δ ≤ λ implies δ ≤ µ;

(3) for any δ ∈ P (L), λ � δ implies µ � δ;

(4) for any δ ∈ β(>), δ ∈ β(λ) implies δ ∈ β(µ);

(5) for any δ ∈ α(⊥), δ /∈ α(λ) implies δ /∈ α(µ).

In what follows, we will recall some famous examples of t-norms on interval [0, 1].

Example 2.9. (1) The minimum t-norm x∗y = x∧y. The corresponding implication
is defined by

x→ y =

{
1, x ≤ y;

y, x > y.

(2) The product t-norm x ∗ y = x · y. The corresponding implication is defined by

x→ y =

{
1 , x ≤ y;

y/x , x > y.
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(3) The  Lukasiewicz t-norm x ∗ y = max{x+ y− 1, 0}. The corresponding implication
is defined by x→ y = min{1,1− x+ y}.

An L-fuzzy subset [7] of a set X is a mapping from X to L, and the family of all
L-fuzzy subsets on X will be denoted by LX , called the L-power set of X. >X and ⊥X
denote the largest element and the smallest element in LX , respectively.

Let f : X −→ Y be a mapping between two nonempty sets. Define f→L : LX −→ LY

and f←L : LY −→ LX by

f→L
(
A
)
(y) =

∨
f(x)=y

A
(
x
)

and f←L
(
B
)
(x) = B

(
f(x)

)
,

for all A ∈ LX , B ∈ LY , x ∈ X and y ∈ Y. Then the L-fuzzy subset f→L (A) is called the
image of A under f , and f←L (B) the preimage of B.

If L is a completely distributive lattice, then we can define

A[λ] =
{
x ∈ X |A(x) ≥ λ

}
, A(λ) =

{
x ∈ X |A(x) 
 λ

}
,

A(λ) =
{
x ∈ X | λ ∈ β

(
A(x)

) }
, A[λ] =

{
x ∈ X |λ /∈ α

(
A(x)

) }
,

for all A ∈ LX and λ ∈ L.
In [29], Shi and Xiu introduced the notion of (L,M)-fuzzy convexities. When L = M,

we called it (L,L)-fuzzy convex structure. In what follows, we will recall it.

Definition 2.10. A mapping C : LX −→ L is said to be an (L,L)-fuzzy convex struc-
ture on X if it satisfies the following three conditions:

(C1) C(>X) = C(⊥X) = >;

(C2) If
{
Ai
}
i∈I ⊆ L

X , then C
( ∧
i∈I

Ai
)
≥
∧
i∈I

C(Ai);

(C3) If
{
Ai
}
i∈I ⊆ L

X is nonempty and upward directed, then C
( ∨
i∈I

Ai
)
≥
∧
i∈I

C(Ai).

If C is an (L,L)-fuzzy convex structure on X, then (X,C) is said to be an (L,L)-fuzzy
convexity space. Every (L,L)-fuzzy convex structure on X is also called an (L,L)-fuzzy
convexity on X.

Definition 2.11. Let (X,Cx) and (Y,Cy) be two (L,L)-fuzzy convexity spaces. Then
a mapping f : X −→ Y is called

(1) an (L,L)-fuzzy convexity-preserving mapping if Cx(f←L (B)) ≥ Cy(B) for all B ∈ LY ;

(2) an (L,L)-fuzzy convex-to-convex mapping if Cy(f→L (A)) ≥ Cx(A) for all A ∈ LX .

3. L-FUZZY IDEAL DEGREES

In this section, we will introduce the concept of L-fuzzy ideal degrees and investigate it
by cut sets, further discuss some properties of L-fuzzy ideal degrees from the perspective
of convexity. If not otherwise specified, E denotes an effect algebra and L is a completely
distributive lattice with → (implication operator) corresponding to ∧ (lattice infimum).
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3.1. L-fuzzy ideal degrees

Definition 3.1. Let E be an effect algebra and A be an L-fuzzy subset in E. Then the
L-fuzzy ideal degree Dei(A) of A is defined by

Dei(A) =
∧

x,y,z,w∈E
z⊥w,x≤y

(
A(y)→ A(x)

)
∧
(
A(z) ∧A(w)→ A(z + w)

)
.

It is obvious that the Dei is a mapping from LE to L. In [11], authors proposed the
concept of L-fuzzy ideals with L = [0, 1], which are said to be fuzzy ideals.

A mapping A : E −→ [0, 1] is called a fuzzy ideal of an effect algebra E provided that

(II1) A(y) ≤ A(x) if x ≤ y;

(II2) A(x) ∧A(y) ≤ A(x+ y) if x ⊥ y,

for all x, y ∈ E.
In what follows, we will generalize the concept of fuzzy ideals from [0,1] to a lattice.

Definition 3.2. Let E be an effect algebra and Dei(A) an L-fuzzy ideal degree of an
L-fuzzy subset A in E. If Dei(A) = >, then the A is called an L-fuzzy ideal.

Remark 3.3. Let E be an effect algebra and Dei(A) an L-fuzzy ideal degree of an
L-fuzzy subset A in E. If Dei(A) = >, then(

A(y)→ A(x)
)
∧
(
A(z) ∧A(w)→ A(z + w)

)
= >,

for all x, y, z, w ∈ E with x ≤ y and z ⊥ w. It follows that

A(y) ≤ A(x) and A(z) ∧A(w) ≤ A(z + w),

for x, y, z, w ∈ E with x ≤ y and z ⊥ w. Hence, we could obtain that L-fuzzy ideals can
be seen as generalizations of fuzzy ideals from [0,1] to a lattice L.

In the sequel, we will give some examples of L-fuzzy ideal degrees.

Example 3.4. Let E = {0, x, x′, 1} with 0 ≤ x ≤ x′ ≤ 1, x+x′ = 1 be an effect algebra.

(1) Let A : E −→ [0, 1] be an L-fuzzy subset with a minimum t-norm in L = [0, 1].

If A is a constant value mapping on E, then

Dei(A) = >.

In this case, for any x, y, z, w ∈ E with x ≤ y and z ⊥ w, the L-fuzzy subset A
satisfies

A(y) ≤ A(x) and A(z) ∧A(w) ≤ A(z + w).

Hence, the L-fuzzy subset A is an L-fuzzy ideal.
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(2) Let A : E −→ [0, 1] be an L-fuzzy subset with a minimum t-norm in L = [0, 1].

A =
0.1

0
+

0.3

x
+

0.7

x′
+

1

1
.

We obtain Dei(A) = 0.1 and A(z) ∧A(w) ≤ A(z + w) if z ⊥ w. Since x ≤ x′, but
we have

A(x′) = 0.7 
 0.3 = A(x).

Hence, the L-fuzzy subset A is not an L-fuzzy ideal.

(3) Let A : E −→ [0, 1] be an L-fuzzy subset with a minimum t-norm in L = [0, 1].

A =
1

0
+

0.7

x
+

0.3

x′
+

0.1

1
.

We obtain Dei(A) = 0.1 with A(y) ≤ A(z) if z ≤ y. Since x+ x′ = 1, but we have

A(x) ∧A(x′) = 0.7 ∧ 0.3 
 0.1 = A(1).

Hence, the L-fuzzy subset A is not an L-fuzzy ideal.

(4) Let A : E −→ [0, 1] be an L-fuzzy subset with a minimum t-norm in L = [0, 1].

A =
0

0
+

0.7

x
+

1

x′
+

0.3

1
.

We obtain Dei(A) = ⊥. In this case, we have 0 ≤ x and x+ x′ = 1. But

A(x) = 0.7 
 0 = A(0) and A(x) ∧A(x′) = 0.7 ∧ 1 
 0.3 = A(1).

Hence, the L-fuzzy subset A is not an L-fuzzy ideal.

Lemma 3.5. Let E be an effect algebra and A be an L-fuzzy subset in E.

(1) If A(x) = > for all x ∈ E, then Dei(A) = >;

(2) If A(x) = ⊥ for all x ∈ E, then Dei(A) = >.

P r o o f . It is easy and omitted. �

Lemma 3.6. Let E be an effect algebra and A an L-fuzzy subset in E. For any λ ∈ L,
λ ≤ Dei(A) if and only if for any x, y, z, w ∈ E with x ≤ y and z ⊥ w, then

λ ∧A(y) ≤ A(x) and λ ∧A(z) ∧A(w) ≤ A(z + w).

P r o o f . Necessity: Take any λ ∈ L. If λ ≤ Dei(A), then

λ ≤
∧

x,y,z,w∈E
z⊥w,x≤y

(
A(y)→ A(x)

)
∧
(
A(z) ∧A(w)→ A(z + w)

)
.
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Hence, it follows that

λ ≤
(
A(y)→ A(x)

)
∧
(
A(z) ∧A(w)→ A(z + w)

)
,

which means

λ ≤ A(y)→ A(x) and λ ≤ A(z) ∧A(w)→ A(z + w),

for all x, y, z, w ∈ E with x ≤ y and z ⊥ w. Hence, we obtain

λ ∧A(y) ≤ A(x) and λ ∧A(z) ∧A(w) ≤ A(z + w),

for all x, y, z, w ∈ E with x ≤ y and z ⊥ w.

Sufficiency: Take any λ ∈ L. For any x, y, z, w ∈ E with x ≤ y and z ⊥ w, by the
assumption, we have

λ ∧A(y) ≤ A(x) and λ ∧A(z) ∧A(w) ≤ A(z + w).

Then it follows that

λ ≤ A(y)→ A(x) and λ ≤ A(z) ∧A(w)→ A(z + w),

which means
λ ≤

(
A(y)→ A(x)

)
∧
(
A(z) ∧A(w)→ A(z + w)

)
,

for all x, y, z, w ∈ E with x ≤ y and z ⊥ w. That is to say, we obtain

λ ≤
∧

x,y,z,w∈E
z⊥w,x≤y

(
A(y)→ A(x)

)
∧
(
A(z) ∧A(w)→ A(z + w)

)
,

as desired. �

Theorem 3.7. Let E be an effect algebra and A be an L-fuzzy subset in E. Then

Dei(A) =
∨{

λ ∈ L|λ∧A(y) ≤ A(x), λ∧A(z)∧A(w) ≤ A(z+w), for anyx ≤ y, z ⊥ w
}
.

P r o o f . Take any t ∈ L. Then it follows that

t ≤ Dei(A)⇐⇒ t ∧A(y) ≤ A(x) and t ∧A(z) ∧A(w) ≤ A(z + w), for any x, y, z, w ∈ E
with x ≤ y and z ⊥ w (by Lemma 3.6)

=⇒ t ≤
∨{

λ ∈ L |λ ∧A(y) ≤ A(x), λ ∧A(z) ∧A(w) ≤ A(z + w),∀x ≤ y, z ⊥ w
}
.

On the other hand, assume that

t ≤
∨{

λ ∈ L |λ ∧A(y) ≤ A(x), λ ∧A(z) ∧A(w) ≤ A(z + w), ∀ x ≤ y, z ⊥ w
}
.
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For any α ≺ t, it follows from the definition of binary relation ≺ that α ≤ λ for some
λ ∈ L satisfying

λ ∧A(y) ≤ A(x) and λ ∧A(z) ∧A(w) ≤ A(z + w),

for all x ≤ y and z ⊥ w. Then we know

α ≤ λ ≤ A(y)→ A(x) and α ≤ λ ≤
(
A(z) ∧A(w)

)
→ A(z + w),

for all α ∈ L with α ≺ t. By t =
∨{

α ∈ L | α ≺ t
}
, we know

t ≤ A(y)→ A(x) and t ≤
(
A(z) ∧A(w)

)
→ A(z + w),

for all x, y, z, w ∈ E with x ≤ y and z ⊥ w. That is to say,

t ∧A(y) ≤ A(x) and t ∧A(z) ∧A(w) ≤ A(z + w),

for all x, y, z, w ∈ E with x ≤ y and z ⊥ w. Then it follows from Lemma 3.6 that
t ≤ Dei(A). Hence, we obtain

Dei(A) =
∨{

λ ∈ L|λ∧A(y) ≤ A(x), λ∧A(z)∧A(w) ≤ A(z+w), for anyx ≤ y, z ⊥ w
}
,

as desired. �

In the following, cut sets of L-fuzzy subset A may be empty. If cut sets of A are
empty, then we still consider the empty set as a special ideal of E, when we discuss that
cut sets of L-fuzzy subset A are ideals. That is to say, the empty set is a special ideal
of E.

Theorem 3.8. Let E be an effect algebra and A be an L-fuzzy subset in E. Then

Dei(A) =
∨{

λ ∈ L | ∀µ ≤ λ, A[µ] is an ideal of E
}
.

P r o o f . Assume that A[µ] is an ideal of E for λ ∈ L with µ ≤ λ. Take any x, y ∈ E

with x ≤ y. Let θ = λ∧A(y). Then we have θ ≤ λ and θ ≤ A(y), which imply y ∈ A[θ].
By the assumption, we know that A[θ] is an ideal of E. Then it shows that

x ∈ A[θ],

which means θ ≤ A(x). It follows that

λ ∧A(y) ≤ A(x).

Similarly, for any z, w ∈ E with z ⊥ w, we obtain

λ ∧A(z) ∧A(w) ≤ A(z + w).
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Hence, it follows that

Dei(A) =
∨{

λ∈L|λ∧A(y)≤A(x), λ∧A(z)∧A(w)≤A(z + w), for anyx ≤ y, z ⊥ w
}

≥
∨{

λ∈L | ∀µ≤λ, A[µ] is an ideal of E
}
.

Conversely, assume that λ ∧ A(y) ≤ A(x) and λ ∧ A(z) ∧ A(w) ≤ A(z + w) for all
x, y, z, w ∈ E with z ⊥ w and x ≤ y. For any µ ≤ λ, we need to prove A[µ] is an ideal
of E.

(I1) If y ∈ A[µ] with x ≤ y, then µ ≤ A(y). It implies that

µ ≤ λ ∧A(y) ≤ A(x).

Then it follows that x ∈ A[µ].
(I2) If z, w ∈ A[µ] and z ⊥ w, then

µ ≤ λ ∧A(z) ∧A(w) ≤ A(z + w).

Hence, it follows that
z + w ∈ A[µ].

That is to say, A[µ] is an ideal of E. Then it implies that

Dei(A) =
∨{

λ∈L |λ∧A(y) ≤ A(x), λ ∧A(z)∧A(w)≤A(z + w), for anyx ≤ y, z ⊥ w
}

≤
∨{

λ ∈ L | ∀µ ≤ λ, A[µ] is an ideal of E
}
,

as desired. �

Theorem 3.9. Let E be an effect algebra and A be an L-fuzzy subset in E. Then

Dei(A) =
∨{

λ ∈ L | µ /∈ α(λ), A[µ] is an ideal of E
}
.

P r o o f . Assume that λ ∈ L with λ∧A(y) ≤ A(x) and λ∧A(z)∧A(w) ≤ A(z+w) for

all x, y, z, w ∈ E with x ≤ y and z ⊥ w. For µ /∈ α(λ), we need to prove that A[µ] is an
ideal of E.

(I1) If x ≤ y and y ∈ A[µ], then µ /∈ α(A(y)). It follows from

λ ∧A(y) ≤ A(x)

that
α(A(x)) ⊆ α(λ ∧A(y)) = α(λ) ∪ α(A(y)),

which means µ /∈ α(A(x)). Hence, we obtain x ∈ A[µ].
(I2) If z, w ∈ A[µ] and z ⊥ w, then

µ /∈ α(A(z)) ∪ α(A(w)) ∪ α(λ) = α(λ ∧A(z) ∧A(w)).
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It follows from

λ ∧A(z) ∧A(w) ≤ A(z + w)

that

α(A(z + w)) ⊆ α(λ ∧A(z) ∧A(w)).

Hence, we obtain

µ /∈ α(A(z + w)).

Then it follows that z + w ∈ A[µ], which means

Dei(A) =
∨{

λ∈L |λ∧A(y≤A(x), λ∧A(z)∧A(w)≤A(z + w), for anyx≤y, z ⊥ w
}

≤
∨{

λ ∈ L | µ /∈ α(λ), A[µ] is an ideal of E
}
.

Conversely, assume that A[µ] is an ideal of E for λ ∈ L with µ /∈ α(λ). In the sequel,
for any x, y, z, w ∈ E with x ≤ y and z ⊥ w, we need to prove

λ ∧A(y) ≤ A(x) and λ ∧A(z) ∧A(w) ≤ A(z + w).

Suppose that µ /∈ α(λ ∧A(y)). It follows from

α(λ ∧A(y)) = α(λ) ∪ α(A(y))

that

µ /∈ α(λ) and µ /∈ α(A(y)).

It implies that y ∈ A[µ]. By the assumption, we know that A[µ] is an ideal of E, which
means x ∈ A[µ]. Then it follows that

µ /∈ α(A(x)).

Hence, we obtain

λ ∧A(y) ≤ A(x).

Similarly, for any z, w ∈ E with z ⊥ w, we obtain

λ ∧A(z) ∧A(w) ≤ A(z + w).

Then it shows that

Dei(A) =
∨{

λ ∈ L |λ ∧A(y) ≤ A(x), λ ∧A(z) ∧A(w) ≤ A(z + w), for anyx ≤ y, z ⊥ w
}

≥
∨{

λ ∈ L | µ /∈ α(λ), A[µ] is an ideal of E
}
,

as desired. �
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Theorem 3.10. Let E be an effect algebra and A be an L-fuzzy subset in E. Then

Dei(A) =
∨{

λ ∈ L | ∀µ ∈ P (L), λ 
 µ, A(µ) is an ideal of E
}
.

P r o o f . Assume that λ ∈ L with λ∧A(y) ≤ A(x) and λ∧A(z)∧A(w) ≤ A(z+w) for

all x, y, z, w ∈ E with x ≤ y and z ⊥ w. If µ ∈ P (L) and λ 
 µ, then we need to prove
that A(µ) is an ideal of E.

Assume that y ∈ A(µ). If x /∈ A(µ), then A(x) ≤ µ. It follows from

λ ∧A(y) ≤ A(x)

that
λ ∧A(y) ≤ µ.

By µ ∈ P (L) and y ∈ A(µ), i. e., A(y) 
 µ, we have λ ≤ µ. This is a contradiction.
Hence, it follows that

x ∈ A(µ).

Similarly, for any z, w ∈ E with z ⊥ w, we obtain

z, w ∈ A(µ) implies z + w ∈ A(µ).

Then it follows that

Dei(A) =
∨{

λ∈L |λ∧A(y)≤A(x), λ∧A(z)∧A(w)≤A(z + w), for anyx≤y, z ⊥ w
}

≤
∨{

λ ∈ L | ∀µ ∈ P (L), λ 
 µ, A(µ) is an ideal of E
}
.

Conversely, assume that A(µ) is an ideal of E for λ ∈ L and µ ∈ P (L) with λ 
 µ.
In what follows, for any x, y, z, w ∈ E with x ≤ y and z ⊥ w, we need to prove

λ ∧A(y) ≤ A(x) and λ ∧A(z) ∧A(w) ≤ A(z + w).

For any x, y ∈ E with x ≤ y, let µ ∈ P (L) and λ ∧A(y) 
 µ. Then we have

λ 
 µ and A(y) 
 µ.

It follows that y ∈ A(µ). By the assumption, we know A(µ) is an ideal of E, then x ∈ A(µ).
Further, it implies that

A(x) 
 µ.

Hence, we have
λ ∧A(y) ≤ A(x).

Similarly, for any z, w ∈ E with z ⊥ w, we obtain

λ ∧A(z) ∧A(w) ≤ A(z + w).

Then it follows that

Dei(A) =
∨{

λ∈L|λ∧A(y) ≤ A(x), λ∧A(z)∧A(w)≤A(z + w), for anyx≤y, z ⊥ w
}

≥
∨{

λ ∈ L | ∀µ ∈ P (L), λ 
 µ, A(µ) is an ideal of E
}
,

as desired. �
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Theorem 3.11. Let E be an effect algebra and A an L-fuzzy subset in E. If β(λ∧µ) =
β(λ) ∩ β(µ) for all λ, µ ∈ L, then

Dei(A) =
∨{

λ ∈ L | ∀µ ∈ β(λ), A(µ) is an ideal of E
}
.

P r o o f . Assume that λ ∈ L such that λ∧A(y) ≤ A(x) and λ∧A(z)∧A(w) ≤ A(z+w)

for all x, y, z, w ∈ E with x ≤ y and z ⊥ w. For any µ ∈ β(λ), we need to prove that
A(µ) is an ideal of E.

(I1) If y ∈ A(µ) and x ≤ y, then

µ ∈ β(A(y)) ∩ β(λ) = β(A(y) ∧ λ) ⊆ β(A(x)).

It follows that x ∈ A(µ).

(I2) If z, w ∈ A(µ) and z ⊥ w, then

µ ∈ β(A(z)) ∩ β(A(w)) ∩ β(λ) = β(A(z) ∧A(w) ∧ λ) ⊆ β(A(z + w)).

Hence, we obtain
z + w ∈ A(µ).

Then it follows that

Dei(A) =
∨{

λ∈L |λ∧A(y)≤A(x), λ∧A(z)∧A(w)≤A(z + w), for anyx≤y, z ⊥ w
}

≤
∨{

λ ∈ L | ∀µ ∈ β(λ), A(µ) is an ideal of E
}
.

Conversely, assume that A(µ) is an ideal of E for λ ∈ L with µ ∈ β(λ). For any
x, y, z, w ∈ E with x ≤ y and z ⊥ w, we need to prove

λ ∧A(y) ≤ A(x) and λ ∧A(z) ∧A(w) ≤ A(z + w).

(i) Assume that x, y ∈ E with x ≤ y. Let µ ∈ β(λ ∧A(y)). Then it follows from

β(λ ∧A(y)) = β(A(y)) ∩ β(λ)

that
µ ∈ β(λ) and µ ∈ β(A(y)).

It implies y ∈ A(µ). By the assumption, we know that A(µ) is an ideal of E. Then it
shows x ∈ A(µ). Hence, we have

µ ∈ β(A(x)).

It follows that λ ∧A(y) ≤ A(x).
(ii) Assume that z, w ∈ E and z ⊥ w. Let µ ∈ β(λ ∧A(z) ∧A(w)). It follows from

β(λ ∧A(z) ∧A(w)) = β(λ) ∩ β(A(z)) ∩ β(A(w))

that
µ ∈ β(λ), µ ∈ β(A(z)) and µ ∈ β(A(w)).
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It implies that
z, w ∈ A(µ).

By the assumption, we know that A(µ) is an ideal of E and z ⊥ w. Then it shows that

z + w ∈ A(µ),

which means µ ∈ β(A(z + w)). It follows that

λ ∧A(z) ∧A(w) ≤ A(z + w).

Hence, we have

Dei(A) =
∨{

λ∈L |λ ∧A(y)≤A(x), λ∧A(z)∧A(w)≤A(z + w), for anyx≤y, z ⊥ w
}

≥
∨{

λ ∈ L|∀µ ∈ β(λ), A(µ) is an ideal of E
}
,

as desired. �

Zhang [41] discussed the relations between fuzzy ideals and fuzzy filters in dual effect
algebras. Liu [10], Liu and Wang [11] studied the connections between a fuzzy filter
F and its cut sets F[λ] for all λ ∈ [0, 1] in effect algebras and pseudo-effect algebras,
respectively. In the sequel, on one hand, we investigate L-fuzzy ideals by cut sets A[λ]

for all λ ∈ L, which generalizes the unit interval [0, 1] to a lattice L. On the other hand,
we characterize L-fuzzy ideals by another three kinds of cut sets. In particular, we think
that the empty set is a special ideal of an effect algebra E. By [9, 37], we obtain the
following corollaries immediately.

Corollary 3.12. Let E be an effect algebra and A an L-fuzzy subset in E. Then the
following statements are equivalent:

(1) A is an L-fuzzy ideal of E;

(2) for every λ ∈ L, A[λ] is an ideal;

(3) for every λ ∈ J(L), A[λ] is an ideal;

(4) for every λ ∈ L, A[λ] is an ideal;

(5) for every λ ∈ P (L), A[λ] is an ideal;

(6) for every λ ∈ P (L), A(λ) is an ideal.

Corollary 3.13. Let E be an effect algebra and A an L-fuzzy subset in E. Then the
following statements are equivalent when β(λ ∧ µ) = β(λ) ∩ β(µ) for all λ, µ ∈ L.

(1) A is an L-fuzzy ideal of E;

(2) for every λ ∈ J(L), A(λ) is an ideal;

(3) for every λ ∈ L, A(λ) is an ideal.
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In what follows, we will characterize L-fuzzy ideals by Lβ-nested sets and Lα-nested
sets. We also can refer to [12, 26] for more information on nested sets. By [26], we can
immediately obtain the following Theorems 3.14 and 3.15.

Theorem 3.14. Let E be an effect algebra and
{
A(λ) | λ ∈ L

}
be an Lβ-nest of ideals

of E. Then there exists an L-fuzzy ideal A such that

(1) A(λ) ⊆ A(λ) ⊆ A[λ] for all λ ∈ L;

(2) A(λ) =
⋃

λ∈β(ν)
A(ν) for all λ ∈ L;

(3) A[ν] =
⋂

λ∈β(ν)
A(λ) for all ν ∈ L.

Theorem 3.15. Let E be an effect algebra and
{
A(λ) | λ ∈ L

}
be an Lα-nest of ideals

of E. Then there exists an L-fuzzy ideal A such that

(1) A(λ) ⊆ A(λ) ⊆ A[λ] for all λ ∈ L;

(2) A(λ) =
⋃

ν∈α(λ)
A(ν) for all λ ∈ P (L);

(3) A[λ] =
⋂

λ∈α(ν)
A(ν) for all λ ∈ P (L).

3.2. (L,L)-fuzzy convexities are induced by L-fuzzy ideal degrees

In this subsection, we will characterize convex properties of L-fuzzy ideal degrees. By
morphisms between effect algebras, we obtain one kind of mappings between convexity
spaces. Firstly, we will investigate the structural properties of convexity spaces by L-
fuzzy ideal degrees.

Theorem 3.16. Let E be an effect algebra and Dei an L-fuzzy ideal degree. Then Dei

is an (L,L)-fuzzy convexity on E.

P r o o f . By Lemma 3.5, we only need to prove (C2) and (C3).
(C2) Let

{
Ai
}
i∈I be a family of L-fuzzy subsets in E. Then it follows that

Dei

(∧
i∈I

Ai
)

=
∧

x,y,z,w∈E
z⊥w,x≤y

(∧
i∈I

Ai(y)→
∧
i∈I

Ai(x)
)
∧
(∧
i∈I

Ai(z) ∧
∧
i∈I

Ai(w)→
∧
i∈I

Ai(z + w)
)

=
∧

x,y,z,w∈E
z⊥w,x≤y

∧
i∈I

( ∧
j∈I

Aj(y)→ Ai(x)
)
∧
∧
i∈I

( ∧
j∈I

Aj(z) ∧
∧
j∈I

Aj(w)→ Ai(z + w)
)

=
∧

x,y,z,w∈E
z⊥w,x≤y

∧
i∈I

( ∧
j∈I

Aj(y)→ Ai(x)
)
∧
( ∧
j∈I

Aj(z) ∧
∧
j∈I

Aj(w)→ Ai(z + w)
)

≥
∧
i∈I

∧
x,y,z,w∈E
z⊥w,x≤y

(
Ai(y)→ Ai(x)

)
∧
(
Ai(z) ∧Ai(w)→ Ai(z + w)

)

=
∧
i∈I

Dei

(
Ai
)
.
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(C3) Let
{
Ai
}
i∈I be a upward directed family of L-fuzzy subsets in E. Then we need

to prove

Dei

(∨
i∈I

Ai
)
≥
∧
i∈I

Dei

(
Ai
)
.

Take any λ ∈ L with λ ≤
∧
i∈I

Dei

(
Ai
)
. Then it follows that λ ≤ Dei

(
Ai
)

for all i ∈ I.

By Lemma 3.6, we know

λ ∧Ai(y) ≤ Ai(x) and λ ∧Ai(z) ∧Ai(w) ≤ Ai(z + w),

for all x, y, z, w ∈ E with x ≤ y, z ⊥ w and i ∈ I. In what follows, we need to prove

λ ∧
(∨
i∈I

Ai(y)
)
≤
∨
i∈I

Ai(x) and λ ∧
(∨
i∈I

Ai(z)
)
∧
(∨
i∈I

Ai(w)
)
≤
∨
i∈I

Ai(z + w),

for all x, y, z, w ∈ E with x ≤ y and z ⊥ w.
For any η ≺ λ ∧

( ∨
i∈I

Ai(z)
)
∧
( ∨
i∈I

Ai(w)
)
, there exist i ∈ I and j ∈ I such that

η ≤ Ai(z), η ≤ Aj(w) and η ≤ λ.

Since
{
Ai
}
i∈I is upward directed, there exists k ∈ I such that Ai ≤ Ak and Aj ≤ Ak.

Then it follows that

Ai(z) ≤ Ak(z) and Aj(w) ≤ Ak(w),

which means that

η ≤ λ ∧Ak(z) ∧Ak(w) ≤ Ak(z + w) ≤
∨
i∈I

Ai(z + w),

for all z, w ∈ E with z ⊥ w. Hence, we obtain

λ ∧
(∨
i∈I

Ai(z)
)
∧
(∨
i∈I

Ai(w)
)
≤
∨
i∈I

Ai(z + w),

for all z, w ∈ E with z ⊥ w. Similarly, we obtain

λ ∧
(∨
i∈I

Ai(y)
)
≤
∨
i∈I

Ai(x),

for all x, y ∈ E with x ≤ y. Then it follows from Lemma 3.6 that

λ ≤ Dei

(∨
i∈I

Ai
)
,

which implies Dei

( ∨
i∈I

Ai
)
≥
∧
i∈I

Dei

(
Ai
)
. Hence, we obtain that Dei is an (L,L)-fuzzy

convexity, as desired. �
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Theorem 3.17. Let E and F be two effect algebras and f : E −→ F be an effect al-
gebra morphism. Then f : (E,Dei) −→ (F,Dfi) is an (L,L)-fuzzy convexity-preserving
mapping.

P r o o f . Take any L-fuzzy subset A in F . Then

Dei

(
f←L (A)

)
=

∧
x,y,z,w∈E
z⊥w,x≤y

(
f←L (A)(y)→ f←L (A)(x)

)
∧
(
f←L (A)(z) ∧ f←L (A)(w)→ f←L (A)(z + w)

)
=

∧
x,y,z,w∈E
z⊥w,x≤y

(
A(f(y))→ A(f(x))

)
∧
(
A(f(z)) ∧A(f(w))→ A(f(z) + f(w))

)

≥
∧

x1,y1,z1,w1∈F
z1⊥w1,x1≤y1

(
A(y1)→ A(x1)

)
∧
(
A(z1) ∧A(w1)→ A(z1 + w1)

)
= Dfi(A).

Hence, we obtain that f is an (L,L)-fuzzy convexity-preserving mapping, as desired. �

In the sequel, we will discuss the relations between L-fuzzy ideals and their inverse
images by L-fuzzy ideal degrees.

Theorem 3.18. Let E and F be two effect algebras and f : E −→ F a monomorphism.
If B is an L-fuzzy ideal of F , then f←L (B) is an L-fuzzy ideal of E.

P r o o f . It can be obtained from Theorem 3.17. �

Remark 3.19. In this paper, we first introduce the concept of L-fuzzy ideal degrees
and further investigate it. In order to highlight the idea of fuzzy mathematics, we discuss
L-fuzzy ideal degrees, which emphasize the ideal of many-valued logics. The concept can
reveal essential characterizations of different mathematical structures. There are some
papers for different mathematical structures on degrees of mathematical structures, such
as [9, 27, 37, 44] and (Y.-Y. Dong, F.-G. Shi, L-fuzzy Sub-Effect Algebras).

4. CONCLUSIONS

In this paper, considering L being a completely distributive lattice, we first introduce
the concept of L-fuzzy ideal degrees. Then, we characterize L-fuzzy ideal degrees by
four types of cut sets. By L-fuzzy ideal degrees, we could give the concept of L-fuzzy
ideals, which can be seen as generalizations of fuzzy ideals. We also discuss the relations
between L-fuzzy ideals and cut sets (Lβ-nested sets and Lα-nested sets). Finally, we
obtain that the L-fuzzy ideal degree is an (L,L)-fuzzy convexity. These morphisms
between effect algebras are (L,L)-fuzzy convexity-preserving mappings.
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[3] A. Dvurečenskij and S. Pulmannová: New trends in Quantum Structures. Springer-
Science Business Media, B.V. 2000.

[4] P. Dwinger: Characterizations of the complete homomorphic images of a completely dis-
tributive lattice I. Mathematics 85 (1982), 4, 403–414. DOI:10.1016/1385-7258(82)90034-
8

[5] D. Foulis and M. K. Bennett: Effect algebras and unsharp quantum logice. Foundat.
Physics 24 (1994), 1331–1352. DOI:10.1007/BF02283036

[6] G. Gierz et al.: Continuous lattices and domains, Encyclopedia of Mathematics and its
Applications. Cambridge University Press, Cambridge 2003.

[7] J. A. Goguan: L-fuzzy sets. J. Math. Analysis Appl. 18 (1967), 145–174.
DOI:10.1016/0022-247X(67)90189-8
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