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MATEMATIKA

Game of SIM and Ramsey theory

Diana Bergerová, Praha

Abstract. Ramsey theory, to quote an American mathematician Theodore
S. Motzkin, implies that complete disorder is impossible. We will demonstrate
key concepts of Ramsey theory on the famous SIM pencil game.

The SIM pencil game was invented in 1969 by a mathematician at the
Sandia Corporation laboratories, Gustavus Simmons, in Albuquerque,
who described the game in The Journal of Recreational Mathematics [5].
In his note he says that one of his colleagues picked the name as short for
SIMple SIMmons, and because the game bears resemblance to* the
familiar game of Nim [6]. Although Simmons was not the first to think
of it (the idea actually occurred independently to a number of mathe-
maticians), he was the first to publish it and to analyze it completely
with a computer program.

Rules of the game:
1. Place six vertices in a hexagonal arrangement.
2. The first player has a red crayon, the second player has a blue

crayon.
3. The first player draws a straight line between any two vertices.
4. The second player draws a straight line between any two vertices.
5. Players take turns drawing lines until one player has completed a

triangle in which all sides are of his colour and loses the game.

This combinatorial game is a zero-sum perfect-information2) game
without chance moves3), such as Chess or Checkers. The only possible
outcomes are restricted to win-loss, loss-win, tie-tie, or draw-draw4)(the

*Překlad slov, která jsou v textu vyznačena tučně, naleznete ve slov-
níčku pod článkem.

2)A game has perfect information if each player is perfectly informed of all the
events that have previously occurred; there is no bluffing for example.

3)A chance move is a situation in which transitions from state to state depend on
other chance factors, such as the weather, earthquakes, or the stock market. These
games involve no rolling of dice, hidden information, or bluffing.

4)Tie is an end position such as in a 3x3 tic-tac-toe, where no player wins, whereas
draw is a dynamic tie: any position from which a player has a nonlosing move, but
cannot force a win.
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zero-sum property). In case of a game of SIM on six vertices, a game
ending in tie-tie or draw-draw is also not possible, we will see in the rest
of this article that it is a consequence of Ramsey theory.
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Ramsey theory, to quote an American mathematician Theodore S. Motzkin, implies that

complete disorder is impossible. We will demonstrate key concepts of Ramsey theory on the
famous SIM pencil game.
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Figure 1: A possible game of SIM where the red player loses.
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Fig. 1: A possible game of SIM where the red player loses

In his 1930 paper On a Problem of Formal Logic [4], Frank P. Ramsey
introduced and proved both an infinite and finite version of what is now
known as Ramsey’s theorem. His interest was to solve what he called “one
of the leading problems of mathematical logic”, namely to determine
whether a logic formula is true or false. The modern graph version of
Ramsey’s theorem follows.

Theorem 1 (Ramsey’s theorem). For all k, r there exists n such that
for every k-colouring of the edges of the complete graph Kn, there is a
subset of r vertices, where all edges connecting them are of the same
colour.

By graph (denoted G = (V,E)), we mean a non-empty set of vertices
V connected by a set of edges E. A complete graph Kn is a graph where
every pair of distinct vertices is connected via an edge, meaning it has

n∑
i=1

i =
n(n− 1)

2

edges in total. If we colour all the edges with k colours, we get a k-
colouring of a graph.
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Ramsey theorem essentially asks: Can we always find a complete mo-
nochromatic subgraph of size r in a coloured Kn? And if not, how many
vertices must the initial graph have to find such a subgraph?

We would like to prove why in a game of SIM on six vertices a tie is
impossible. Suppose a graph has six vertices. Let us take an arbitrary
vertex, A. There are exactly five edges incident to A, of which, by the
pigeonhole principle, at least three are of the same colour. Without
loss of generality, we can assume the three edges are red and A is joined
with C,D,E, respectively. See Fig. 2. In order to avoid creating a red
monochromatic triangle, we colour edges {C,D}, {D,E}, {C,E} blue,
ergo creating a blue monochromatic triangle.

This combinatorial game is a zero-sum perfect-information1 game without chance moves2, such
as Chess or Checkers. The only possible outcomes are restricted to win-loss, loss-win, tie-tie, or
draw-draw3(the zero-sum property). In case of a game of SIM on six vertices, a game ending in
tie-tie or draw-draw is also not possible, we will see in the rest of this article that it is a consequence
of Ramsey theory.

In his 1930 paper On a Problem of Formal Logic [4], Frank P. Ramsey introduced and proved
both an infinite and finite version of what is now known as Ramsey’s theorem. His interest was
to solve what he called “one of the leading problems of mathematical logic”, namely to determine
whether a logic formula is true or false. The modern graph version of Ramsey’s theorem follows.

Theorem 1 (Ramsey’s theorem). For all k, r there exists n such that for every k-colouring of the
edges of the complete graph Kn, there is a subset of r vertices, where all edges connecting them are
of the same colour.

By graph (denoted G = (V, E)), we mean a non-empty set of vertices V connected by a set of
edges E. A complete graph Kn is a graph where every pair of distinct vertices is connected via an
edge, meaning it has

∑n
i=1 i = n(n−1)

2 edges in total. If we colour all the edges with k colours, we
get a k-colouring of a graph.

Ramsey theorem essentially asks: Can we always find a complete monochromatic subgraph of
size r in a coloured Kn? And if not, how many vertices must the initial graph have to find such a
subgraph?

We would like to prove why in a game of SIM on six vertices a tie is impossible. Suppose a graph
has six vertices. Let us take an arbitrary vertex, A. There are exactly five edges incident to A, of
which, by the pigeonhole principle, at least three are of the same colour. Without loss of generality,
we can assume the three edges are red and A is joined with C, D, E, respectively. See Figure 2.
In order to avoid creating a red monochromatic triangle, we colour edges {C, D}, {D, E}, {C, E}
blue, ergo creating a blue monochromatic triangle.
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Figure 2: Proof that a monochromatic triangle must always occur in a 2-coloured K6.

A game on six vertices determines a clear winner, but are we sure that six is the least number of
vertices that avoids a tie? The 2-coloured complete graph in Figure 3 serves as a counter-example,
showing that five vertices are insufficient to guarantee a monochromatic triangle. Thus, six is the
smallest number of vertices that cannot lead to a tie.

1A game has perfect information if each player is perfectly informed of all the events that have previously
occurred; there is no bluffing for example.

2A chance move is a situation in which transitions from state to state depend on other chance factors, such as the
weather, earthquakes, or the stock market. These games involve no rolling of dice, hidden information, or bluffing.

3Tie is an end position such as in a 3x3 tic-tac-toe, where no player wins, whereas draw is a dynamic tie: any
position from which a player has a nonlosing move, but cannot force a win.
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Fig. 2: Proof that a monochromatic triangle must always occur in a
2-coloured K6

A game on six vertices determines a clear winner, but are we sure
that six is the least number of vertices that avoids a tie? The 2-coloured
complete graph in Fig. 3 serves as a counter-example, showing that five
vertices are insufficient to guarantee a monochromatic triangle. Thus,
six is the smallest number of vertices that cannot lead to a tie.

Figure 3: A 2-coloured K5 that does not contain any monochromatic triangles.

Of course, SIM can be played on graphs with a number of vertices other than six. But how
many vertices do we have to start with to guarantee that one of the players actually wins? For
that we coin the term Ramsey numbers. Ramsey number R(r, b) is the smallest possible integer
R ∈ N such that all red and blue coloured graphs on R vertices either contain a red monochromatic
subgraph of size r or a blue monochromatic subgraph of size b.

Very little is known about these numbers: R(3, 3) = 6, R(4, 4) = 18, but all we know about
R(5, 5) is that it lies between 43 and 48. As for R(6, 6), we can only dream of the result. Even
the humble fact that R(4, 5) = 25 (thanks to McKay, Radziszkowski, and their 1995 computer
experiment) took a year or so to verify. Only very rough general lower and upper bounds on
Ramsey numbers were established:

2 k
2 < R(k, k) <

(
2k − 2
k − 1

)
.

For instance, if we want to play SIM where we avoid a complete subgraph on four vertices, the
bounds give us 4 as the lower bound and 20 as the upper bound on the minimal number of vertices
avoiding a tie. However, R(4, 4) has been proven to be equal to 18, therefore all graphs with fewer
vertices will allow a tie.

b=3 b=4 b=5 b=6
r=3 6 9 14 18
r=4 9 18 25 35–41
r=5 14 25 43–48 58–87

Figure 4: A table of Ramsey numbers (or their bounds) for r, b ≤ 6.

Paul ErdĹ‘s, a famous Hungarian mathematician [2], developed and popularized Ramsey theory
significantly. Ramsey numbers were reformulated as the Party problem. R(3, 3) = 6 can be
rephrased in the following way: Six is the least number of guests at a party to guarantee that at
least three of them are mutual friends (they have already met before the party) or at least three
of them are mutual strangers (they have not met before the party). To illustrate how difficult
it is to determine R(6, 6), ErdĹ‘s fondly told an anecdote about an alien invasion. Aliens invade
Earth and get ready to destroy the humankind - unless we can correctly answer their question.
If the aliens ask us what is the least number of people at a party to guarantee that five of them
are either mutual friends or mutual strangers, we should gather all mathematicians and try to test
every possibility via brute force. If the aliens ask for six friends or strangers, it would be easier to
prepare for a war than to even attempt to calculate it.

Concepts from Ramsey theory that we used on graphs can be applied on other mathematical
structures. One of those structures are number sequences, which evolved into a stand-alone theo-
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Fig. 3: A 2-coloured K5 that does not contain any monochromatic triangles

Of course, SIM can be played on graphs with a number of vertices
other than six. But how many vertices do we have to start with to gua-
rantee that one of the players actually wins? For that we coin the term
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Ramsey numbers. Ramsey number R(r, b) is the smallest possible integer
R ∈ N such that all red and blue coloured graphs on R vertices either
contain a red monochromatic subgraph of size r or a blue monochromatic
subgraph of size b.

Very little is known about these numbers:

R(3, 3) = 6, R(4, 4) = 18,

but all we know about R(5, 5) is that it lies between 43 and 48. As for
R(6, 6), we can only dream of the result. Even the humble fact that

R(4, 5) = 25

(thanks to McKay, Radziszkowski, and their 1995 computer experiment)
took a year or so to verify. Only very rough general lower and upper
bounds on Ramsey numbers were established:

2
k
2 < R(k, k) <

(
2k − 2

k − 1

)
.

For instance, if we want to play SIM where we avoid a complete sub-
graph on four vertices, the bounds give us 4 as the lower bound and 20
as the upper bound on the minimal number of vertices avoiding a tie.
However, R(4, 4) has been proven to be equal to 18, therefore all graphs
with fewer vertices will allow a tie.

b = 3 b = 4 b = 5 b = 6

r = 3 6 9 14 18

r = 4 9 18 25 35–41

r = 5 14 25 43–48 58–87

Tab. 1: A table of Ramsey numbers (or their bounds) for r, b ≤ 6.

Paul Erdős, a famous Hungarian mathematician [2], developed and
popularized Ramsey theory significantly. Ramsey numbers were refor-
mulated as the Party problem. R(3, 3) = 6 can be rephrased in the
following way: Six is the least number of guests at a party to guarantee
that at least three of them are mutual friends (they have already met
before the party) or at least three of them are mutual strangers (they
have not met before the party). To illustrate how difficult it is to deter-
mine R(6, 6), Erdős fondly told an anecdote about an alien invasion.
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Aliens invade Earth and get ready to destroy the humankind—unless we
can correctly answer their question. If the aliens ask us what is the least
number of people at a party to guarantee that five of them are either
mutual friends or mutual strangers, we should gather all mathematicians
and try to test every possibility via brute force. If the aliens ask for six
friends or strangers, it would be easier to prepare for a war than to even
attempt to calculate it.

Concepts from Ramsey theory that we used on graphs can be ap-
plied on other mathematical structures. One of those structures are num-
ber sequences, which evolved into a stand-alone theorem called Van der
Waerden’s theorem (named after the Dutch mathematician Bartel L. van
der Waerden). Here is a little puzzle for the reader to introduce van der
Waerden’s theorem.

Problem 1. Find the smallest number N , for which applies that in a
sequence 1, 2, 3, . . . , N for any 2-colouring an arithmetic progression of
three terms could be found.

People have continued to work on Ramsey theory for over a century
(see [1] for other comprehensible problems from this field): from van
der Waerden and Ramsey in the 1920s, to Erdős and the Anonymous
group in the 1930s, to Greenwood and Gleason and their 1955 proof of
R(4, 4), and to decades of work done by Radzikowski and Graham that
has continued into the 21st century. This demonstrates a strong com-
mitment to continuously produce new discoveries, which is bolstered
by real-world applications of Ramsey theory—finding patterns in rando-
mness quickly and efficiently is one of the most popular research topics
in computer science nowadays.

It could even provide insight into P vs. NP problems, such as the Tra-
veling Salesman Problem. The Traveling Salesman Problem asks, given
a list of cities and the distance between the cities, what is the shortest
route that visits each city only once and returns back to the original
city. These problems seek to identify how “difficult” a problem is to solve
with a computer, and have challenged researchers for several decades.
The Traveling Salesman problem itself has many applications in fields
other than mathematics, such as studying DNA sequences, building mo-
dern microchips, or general planning. The more that is known about
Ramsey theory the more tools we have to identify the complexity of
such problems.
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Slovníček: Game of SIM and Ramsey theory

arbitrary = libovolný

to bear resemblance to = podobat se

to bolster = podpořit

to coin the term = zavést termín

comprehensible = srozumitelný, pochopitelný

fondly = s oblibou

humble = skromný, pokorný

mutual = společný, vzájemný

pigeonhole principle = přihrádkový princip, princip holubníku

vertex (pl. vertices) = vrchol
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