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On sets of discontinuities of functions continuous on all lines

Luděk Zaj́ıček

Abstract. Answering a question asked by K.C. Ciesielski and T. Glatzer in 2013,
we construct a C1-smooth function f on [0, 1] and a closed set M ⊂ graphf
nowhere dense in graphf such that there does not exist any linearly continuous
function on R2 (i.e., function continuous on all lines) which is discontinuous at

each point of M . We substantially use a recent full characterization of sets of
discontinuity points of linearly continuous functions on R

n proved by T. Banakh
and O. Maslyuchenko in 2020. As an easy consequence of our result, we prove
that the necessary condition for such sets of discontinuities proved by S.G. Slo-
bodnik in 1976 is not sufficient. We also prove an analogue of this Slobodnik’s
result in separable Banach spaces.

Keywords: linear continuity; discontinuity sets; Banach space

Classification: 26B05, 46B99

1. Introduction

Separately continuous functions on R
n (i.e., functions continuous on all lines

parallel to a coordinate axis) and also linearly continuous functions (i.e., functions

continuous on all lines) were investigated in a number of articles, see the survey [5].

Note that linearly continuous functions are well-defined in any linear space and

recent articles [13] and [1] investigate them also in Banach (and even more general)

spaces.

It appears that linearly continuous functions are much “more close to con-

tinuous functions” than separately continuous functions. First note that, by

Lebesgue’s result of [9],

(1.1)
each separately continuous function on R

n belongs to the (n− 1)th

Baire class

(and that the number n− 1 is optimal, cf. [5]). On the other hand, it was proved

independently (answering a question posed in [5]) in [13] and [1] that each linearly

continuous function on R
n belongs to the first Baire class.
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A natural question how small must be members of the families (where D(f)

denotes the set of discontinuity points of f)

Dn
s := {D(f) : f is a separately continuous function on R

n}

and

Dn
l := {D(f) : f is a linearly continuous function on R

n}

was considered in several works, see [5]. Clearly, Dn
l ⊂ Dn

s and each set from Dn
s

is an Fσ set. It appears that the sets from Dn
l “must be essentially smaller” than

those from Dn
s .

The following complete characterization of sets from Dn
s was given in [7] (and

was proved independently by another method in [11]).

Theorem 1.1 (R. Kershner, 1943). A set M ⊂ R
n belongs to Dn

s if and only if

M is an Fσ set and the orthogonal projection of M onto each (n−1)-dimensional

coordinate hyperplane is a first category (= meager) set.

This characterization shows that each member of Dn
s is a first category set,

but it can have positive Lebesgue measure (even its complement can be Lebesgue

null, cf. [5]). On the other hand (see Remark 1.3 (a) below) all members of Dn
l

are Lebesgue null.

Probably the first result concerning the system Dn
l was published in 1910 by

W.H. Young and G.C. Young in [12]; they constructed a linearly continuous

function on [0, 1]2 for which D(f) is uncountable in every nonempty open set.

A. S. Kronrod in 1945, see [10, page 268] and [5, page 28], considered the

natural problem to find a complete characterization of sets from the system D2
l .

As a partial solution of (n-dimensional) Kronrod’s problem, S.G. Slobodnik

proved Theorem 6 in [11] whose obvious reformulation reads as follows.

Theorem 1.2 (S. G. Slobodnik, 1976). Let M ∈ Dn
l . Then we can write M =⋃

∞

k=1 Bk, where each Bk has the following properties:

(i) Bk is a compact subset of a Lipschitz hypersurface Lk.

(ii) The orthogonal projection of Bk onto each (n−1)-dimensional hyperplane

H ⊂ R
n is nowhere dense in H .

(iii) For each c ∈ R
n \Bk, the set {(x− c)/‖x− c‖ : x ∈ Bk} is nowhere dense

in the unit sphere SRn .

Remark 1.3. (a) For the definition of a Lipschitz hypersurface see Defini-

tion 2.1. Property (i) clearly implies that M ⊂ R
n is Lebesgue null.

(b) The article [10] (written independently of [11]) contains results which are

very close to Theorem 1.2 with n = 2.

(c) Conditions (i) and (ii) clearly imply that in (i) we can write that Bk is

nowhere dense in Lk.
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(d) An equivalent reformulation of (iii) (used in [11]) is the following:

(iii)* For each c ∈ R
n \Bk and each hyperplane H ⊂ R

n \ {c}, the central

projection from c of Bk onto H is nowhere dense in H .

Further interesting contributions to Kronrod’s problem were proved in [3]

and [4]. Main results of [3] read as follows.

Theorem 1.4 (K.Ch. Ciesielski and T. Glatzer, 2012).

(i) If n ≥ 2 and f : Rn−1 → R is convex and M ⊂ graph f is nowhere dense

in graph f , then there exists a linearly continuous function g on R
n such

that M ⊂ D(g).

(ii) If f : R → R is C2 smooth and M ⊂ graphf is nowhere dense in

graph f , then there exists a linearly continuous function g on R
2 such that

M ⊂ D(g).

(iii) There exists f : R → R having bounded derivative and M ⊂ graph f

which is nowhere dense in graphf such that there does not exist any

linearly continuous function g on R
2 such that M ⊂ D(g).

The article [4] contains a full characterization of sets from D2
l . However, this

solution of Kronrod’s problem (in R
2) is not quite satisfactory, cf. [5, page 29],

since it uses the topology on the set of all lines in R
2 (and its applicability is

unclear).

A nice applicable solution of Kronrod’s problem in R
n was proved by T. Banakh

and O. Maslyuchenko in [1]. It asserts that a subset of R
n belongs to Dn

l if

and only if it is “σ-l-miserable”, see Subsection 2.3 for details. In [1], several

applications of this characterization are shown and other two applications are

contained in the present article.

In Section 3 we use the Banakh–Maslyuchenko characterization as the main

ingredient in the proof of the main result of the present article, Theorem 3.4,

which shows, answering the first part of Problem 5.3 from [3], that the func-

tion f from Theorem 1.4 (iii) can be even C1-smooth. More precisely, we use

this characterization in the proof of the basic Lemma 3.1. It seems that any proof

of Theorem 3.4 based on Lemma 3.1 needs a nontrivial inductive construction.

The idea of our construction based on Lemma 2.3 and Lemma 3.2 is not difficult,

but the detailed proof is unfortunately rather long and slightly technical.

As an easy but interesting consequence of our Theorem 3.4, we obtain in Sec-

tion 4 that Slobodnik’s necessary condition for sets from Dn
l is not sufficient

(which supports the opinion that there exists no characterization of sets from Dn
l

similar to Kershner’s characterization of sets from Dn
s ).

In Section 5, we prove an analogue of Slobodnik’s result in separable Ba-

nach spaces for functions having the Baire property (which improves [13, Corol-

lary 4.2]). This result (Proposition 5.1) which easily implies Slobodnik’s theorem
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in R
n is an easy consequence of [13, Corollary 4.2] and the Banakh–Maslyuchenko

characterization.

2. Preliminaries

2.1 Basic notation. In the following, by a Banach space we mean a real Banach

space with a norm ‖·‖. If X is a Banach space, we set SX := {x ∈ X : ‖x‖ = 1}.

By C[0, 1] and C1[0, 1] we denote the set of all continuous and C1-smooth func-

tions on [0, 1], respectively. If f ∈ C[0, 1], then ‖f‖ always denotes the supremum

norm of f .

The symbol B(x, r) will denote the open ball with center x and radius r. By M

and intM we denote the closure and the interior of a set M , respectively. We say

that a set Q is an ε-net of a subset A of a metric space, if Q ⊂ A ⊂
⋃

x∈Q B(x, ε).

The oscillation of a function f on a set M is osc(f,M) := sup{|f(x) − f(y)|:

x, y ∈ M}. By graph f , supp f and D(f), we denote the graph, the closed support

{x : f(x) 6= 0} and the set of discontinuity points of f , respectively. We will write

fn ⇒ f if the sequence (fn) uniformly converges to f . The Lebesgue measure

on R is denoted by λ.

In a metric space X , the system of all sets with the Baire property is the

smallest σ-algebra containing all open sets and all first category sets. We say

that a function f on X has the Baire property if f−1(B) has the Baire property

for all Borel sets B ⊂ Y , see [8, § 32]. We will use the following definition.

Definition 2.1. Let X be a Banach space. We say that A ⊂ X is a Lipschitz

hypersurface if there exists a 1-dimensional linear space V ⊂ X , its topological

complement Y and a Lipschitz mapping ϕ : Y → V such that A = {y + ϕ(y):

y ∈ Y }.

It is easy to see that each Lipschitz hypersurface is a closed set and that, if

X = R
n, then we can demand that Y is an orthogonal complement of V .

2.2 Notation and two lemmas concerning tangent lines. If f ∈ C1[0, 1],

z ∈ [0, 1] and Z ⊂ [0, 1], then we use the following notation:

(i) By Af,z we denote the affine function

Af,z(x) = f(z) + f ′(z)(x− z), x ∈ R.

(ii) By Tf,z we denote the tangent line to graph f at the point (z, f(z)), i.e.,

Tf,z := graph(Af,z).
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(iii) We set

Tf,Z :=
⋃

z∈Z

Tf,z.

We will need the following easy lemma.

Lemma 2.2. Let functions f and f1, f2, . . . belong to C1[0, 1]. Suppose that z

and z1, z2, . . . belong to [0, 1], (x, y) ∈ R
2 and

fn ⇒ f, f ′

n ⇒ f ′, zn → z.

Then the conditions (x, y) ∈ Tfn,zn , n = 1, 2, . . . , imply (x, y) ∈ Tf,z.

Proof: By the assumptions, we have fn(zn) + f ′

n(zn)(x− zn) = y, n ∈ N. Since

fn(zn) → f(z) and f ′

n(zn) → f ′(z), see, e.g., [6, Theorem 7.5, page 268], we

obtain f(z) + f ′(z)(x− z) = y. �

The following lemma is also rather easy but is an important ingredient in our

proof of Theorem 3.4.

Lemma 2.3. Suppose that f ∈ C1[0, 1] and f ′ has infinite variation on an interval

[α, β] ⊂ [0, 1]. Then there exist numbers e, w such that α < e < w < β and

(w, f(w)) ∈ Tf,e.

Proof: First observe that there exist numbers e0, w0, e1, w1 such that α <

e0 < w0 < β, α < e1 < w1 < β and

(2.1) f(w0) < f(e0) + f ′(e0)(w0 − e0), f(w1) > f(e1) + f ′(e1)(w1 − e1).

To construct e0 and w0, note that f ′ is not nondecreasing on (α, β) and thus we

can choose numbers α < e∗ < w0 < β with f ′(e∗) > f ′(w0). Set e0 := max{x ∈

[e∗, w0] : f
′(x) = f ′(e∗)}. Then we have

f(w0) = f(e0) +

∫ w0

e0

f ′ < f(e0) + f ′(e0)(w0 − e0)

and so e0 and w0 satisfy (2.1). The existence of e1 and w1 follows quite analo-

gously.

Now set

e(t) := te1 + (1 − t)e0, w(t) := tw1 + (1− t)w0, t ∈ [0, 1].

Then clearly e(0) = e0, w(0) = w0, e(1) = e1, w(1) = w1 and e(t) < w(t),

t ∈ [0, 1]. The function g(t) := f(w(t))− f(e(t))− f ′(e(t))(w(t)− e(t)), t ∈ [0, 1],

is clearly continuous, g(0) < 0 and g(1) > 0. Consequently there exists t∗ ∈

(0, 1) such that g(t∗) = 0 and so e := e(t∗) and w := w(t∗) have the required

property. �
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2.3 Banakh–Maslyuchenko characterization. The authors of [1] work in

“Baire cosmic vector spaces” but we work in the present article in the more

special context of separable Banach spaces; so we present basic definitions from [1]

in Banach spaces only.

Definition 2.4. Let X be a Banach space and A ⊂ X .

(i) A set V ⊂ X is called an l-neighborhood of A if for any a ∈ A and v ∈ X

there exists ε > 0 such that a+ [0, ε) · v ⊂ V .

(ii) The set A is called l-miserable if A ⊂ X \ L for some closed l-neighbor-

hood L of A.

(iii) The set A is called σ-l-miserable if A is a countable union of closed

l-miserable sets.

An immediate consequence of [1, Theorem 1.5.] is the following result.

Theorem 2.5 (T. Banakh and O. Maslyuchenko). Let X be a separable Banach

space and M ⊂ X . Then the following conditions are equivalent.

(i) M = D(f) for some linearly continuous function f on X which has the

Baire property.

(ii) M is σ-l-miserable.

Note that if X = R
n, then each linearly continuous function on X has the

Baire property by (1.1) and so Theorem 2.5 gives a full characterization of sets

of discontinuities of linearly continuous functions on R
n.

3. Main result

In this section we prove our main Theorem 3.4 using the following basic lemma

whose rather easy proof is based on the Banakh–Maslyuchenko characterization,

Theorem 2.5.

Lemma 3.1. Let f ∈ C1[0, 1], let ∅ 6= P ⊂ (0, 1) be a perfect nowhere dense set

and let D ⊂ P be a countable dense subset of P . Let, for each d ∈ D, two points

ud, vd ∈ (0, 1) be given such that ud < vd < d,

(3.1) (d, f(d)) ∈ intTf,[ud,vd]∩P

and

(3.2) the set Dε := {d ∈ D : d− ud > ε} is finite for each ε > 0.

Then there does not exist any linearly continuous function g on R
2 which is

discontinuous at each point of the set graph(f |P ).
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Proof: Suppose to the contrary that such a function g exists. By Theorem 2.5

there exists a σ-l-miserable set A ⊂ R
2 such that graph(f |P ) ⊂ A. Let A1, A2, . . .

be closed l-miserable subsets of R
2 such that A =

⋃
∞

n=1 An. Since the set

graph(f |P ) is closed in R
2, by the Baire theorem there exists k ∈ N such that the

closed set Ak ∩graph(f |P ) is not nowhere dense in graph(f |P ) and so there exists

an interval (a, b) ⊂ [0, 1] such that P ∩ (a, b) 6= ∅ and graph(f |P∩(a,b)) ⊂ Ak.

Since Ak is l-miserable, we can choose a closed l-neighbourhood L of Ak such

that Ak ⊂ H , where H := R
2 \ L. Further choose K > 0 such that ‖f ′‖ ≤ K.

Now we will construct inductively a sequence of intervals [an, bn], n = 0, 1, . . . ,

such that for each n ≥ 0 the following two conditions hold:

(C1) [an, bn] ⊂ (a, b), (an, bn) ∩ P 6= ∅ and n(bn − an) < 1.

(C2) If n ≥ 1, then [an, bn] ⊂ (an−1, bn−1) and for each x ∈ [an, bn] there exists

a point znx ∈ Tf,x ∩H such that ‖znx − (x, f(x))‖ < 3(K + 1)/n.

We can clearly choose [a0, b0] such that condition (C1) holds for n = 0.

Further suppose that n ≥ 1 and we have defined [an−1, bn−1] such that condi-

tion (C1) holds for n− 1 instead of n. Choose pn ∈ P ∩ (an−1, bn−1) and δn > 0

such that [pn−δn, pn+δn] ⊂ (an−1, bn−1). Since P is perfect, the set D∩(pn−δn,

pn + δn) is infinite and so by (3.2) we can choose dn ∈ D∩ (pn − δn, pn + δn) such

that [udn
, vdn

] ⊂ (an−1, bn−1) and dn − udn
< 1/n.

We know that (dn, f(dn)) ∈ graph f |P∩(a,b) ⊂ Ak ⊂ H . Consequently, since

(dn, f(dn)) ∈ intTf,[udn ,vdn ]∩P by (3.1) and H is open, we can choose an open

set W 6= ∅ such that

(3.3) W ⊂ B((dn, f(dn)), 1/n) ∩H ∩ Tf,[udn ,vdn ]∩P .

Consequently we can choose xn ∈ [udn
, vdn

] ∩ P for which Tf,xn
∩ W 6= ∅.

Since f ∈ C1[0, 1] and W is open, it is easy to see that there exists an open

neighbourhood (an, bn) of xn such that [an, bn] ⊂ (an−1, bn−1), bn−an < 1/n and

Tf,x ∩W 6= ∅ for each x ∈ [an, bn]. So we can choose for each x ∈ [an, bn] a point

znx = (αn
x , β

n
x ) ∈ Tf,xn

∩ W . Obviously (C1) holds and [an, bn] ⊂ (an−1, bn−1)

and thus it is sufficient to check that ‖znx − (x, f(x))‖ < 3(K + 1)/n. To this end

first observe that |x − αn
x | < 3/n since it is easy to see that |dn − xn| < 1/n,

|xn − x| < 1/n, and (3.3) with znx ∈ W imply |dn −αn
x| < 1/n. Since the absolute

value of the slope of the tangent Tf,x is at most K, we obtain that

‖znx − (x, f(x))‖ ≤
√
|x− αn

x |
2 + (K|x− αn

x |)
2 ≤ (1 +K)|x− αn

x | <
3(K + 1)

n
.

So we have finished our inductive costruction.

Now observe that the closedness of P and condition (C1) imply that {p} =⋂
∞

n=0[an, bn] for some p ∈ P ∩ (a, b). Applying (C2) to p for each n ≥ 1 we
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obtain points znp ∈ Tf,p ∩H , n ≥ 1, such that znp → (p, f(p)) ∈ Ak. Consequently

L = R
2 \H is not an l-neigbourhood of Ak, which is a contradiction. �

We will need also the following technical lemma.

Lemma 3.2. Let G and G̃ be functions from C1[0, 1] and g := G′, g̃ := (G̃)′.

Let numbers 0 < u < z < v < x < 1, y ∈ R and ε > 0, δ > 0, η > 0 have the

following properties:

v + δ + η < x, v − u < η and 6η < ε δ,(3.4)

(x, y) ∈ TG,z,(3.5)

‖G− G̃‖ ≤ η,(3.6)

‖g‖ ≤ 1 and osc(g, [u, v]) ≤ η,(3.7)

there exist u < s1 < s2 < v such that g̃(s1) = g(s1)− ε(3.8)

and g̃(s2) = g(s2) + ε.

Then we have

(3.9) B((x, y), η) ⊂ T
G̃,(u,v).

Proof: Consider an arbitrary point (x, y) ∈ B((x, y), η). Then x−η < x < x+η

and y − η < y < y + η. Let s1, s2 be as in (3.8). Using (3.4), we obtain

(3.10) x− s1 > x− η − v > δ.

Now set

h(s) := A
G̃,s

(x) = G̃(s) + g̃(s) · (x − s), s ∈ [s1, s2].

It is sufficient to prove that

(3.11) h(s1) ≤ y − η and h(s2) ≥ y + η.

Indeed, (3.11) and the continuity of the function h imply that there exists s ∈

(s1, s2) such that h(s) = y; consequently (x, y) ∈ T
G̃,(u,v) and (3.9) follows.

Recall that h(s1) = G̃(s1) + g̃(s1) · (x − s1), h(s2) = G̃(s2) + g̃(s2) · (x − s2).

By (3.5),

y = G(z) + g(z)(x− z) = G(z) + g(s1)(x− z) + (g(z)− g(s1))(x − z)

= G(z) + g(s1)((x − s1) + (x− x) + (s1 − z)) + (g(z)− g(s1))(x − z).

Using these equalities, (3.4), (3.6), (3.7), (3.10), the choice of s1 and the inequality

|G(z)−G(s1)| < η which follows from (3.7) and |z − s1| < η by the mean value



On sets of discontinuities of functions continuous on all lines 495

theorem, we obtain

y − h(s1) = (G(z)−G(s1)) + (G(s1)− G̃(s1)) + (g(s1)− g̃(s1))(x − s1)

+ g(s1)(x − x) + g(s1)(s1 − z) + (g(z)− g(s1))(x − z)

≥ − η − η + εδ − η − η − η ≥ η.

Quite analogously we obtain y − h(s2) ≤ −η and (3.11) follows. �

The proof of our main Theorem 3.4 is based on the construction of f ∈ C1[0, 1],

P ⊂ [0, 1] (and also D and ud, vd) which satisfy assumptions of Lemma 3.1. We

will set f := limn→∞ fn and P :=
⋂

∞

n=1 Pn, where (fn) and (Pn) are defined by

a nontrivial inductive construction, in which each Pn is a finite union of compact

intervals. For sets Pn we will use the following notation.

Definition 3.3. If ∅ 6= P ⊂ R is a finite union of nondegenerate compact

intervals,

(i) we denote by C(P ) the set of all components of P , and set

(ii) R(P ) := {d ∈ R : d is a right endpoint of some I ∈ C(P )},

(iii) ν(P ) := max{λ(I) : I ∈ C(P )}.

Theorem 3.4. There exist f ∈ C1[0, 1] and a closed set M ⊂ graph f which is

nowhere dense in graph f such that there does not exist any linearly continuous g

on R
2 which is discontinuous at each point of M .

Proof: We will define sequences (ηk)
∞

k=1, (Pk)
∞

k=1, (fk)
∞

k=1 such that the follow-

ing seven conditions hold for each k ∈ N:

η1 = 1 and 0 < ηk <
ηk−1

2
, k ≥ 2.(3.12)

∅ 6= Pk ⊂ (0, 1) is a finite union of nondegenerate compact intervals.(3.13)

ν(Pk) ≤
1

k
, Pk ⊂ Pk−1 and R(Pk−1) ⊂ R(Pk) if k ≥ 2.(3.14)

Each I ∈ C(Pk−1) contains at least two elements of C(Pk) if k ≥ 2.(3.15)

fk ∈ C1[0, 1] and f ′

k has infinite variation(3.16)

on each interval [α, β] ⊂ [0, 1].

fk(0) = 0 and ‖f ′

1‖ ≤
1

2
.(3.17)

‖fk − fk−1‖ <
ηk
2

and ‖f ′

k − f ′

k−1‖ = 2−k if k ≥ 2.(3.18)

Moreover, for each k ∈ N and each point d from the set R∗

k, where

(3.19) R∗

1 := R(P1) and R∗

k := R(Pk) \R(Pk−1) for k ≥ 2,
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we will define an interval [ud, vd] such that the following two conditions hold:

0 < ud < vd < d, [ud, d] ⊂ Pk and 3ηk+1 < d− vd.(3.20)

If k < l, l ∈ N, then Tfl,(ud,vd)∩ intPl
⊃ B((d, fk(d)), ηk+1).(3.21)

In the formulation of (3.20) and (3.21) we have used that R∗

1, R
∗

2, . . . are pairwise

disjoint by (3.14) and so k is uniquely determined by d.

In our inductive construction we will have defined, after the nth step, n ∈ N,

of the construction, the numbers η1, . . . , ηn, the sets P1, . . . , Pn, the functions

f1, . . . , fn and, if n ≥ 2 for each 1 ≤ k ≤ n − 1 and d ∈ R∗

k, see (3.19), we will

have defined an interval [ud, vd], such that

seven conditions (3.12)–(3.18) hold whenever 1 ≤ k ≤ n,(3.22)

conditions (3.20) and (3.21) hold(3.23)

whenever 1 ≤ k ≤ n− 1, d ∈ R∗

k and l ≤ n

and

for any point d ∈ R∗

n there exists 0 < e < d(3.24)

such that [e, d] ⊂ Pn, e ∈ intPn and (d, fn(d)) ∈ Tfn,e.

The first step. We set η1 := 1. Choose (using e.g. [2, Corollary 2.2, page 143])

a nowhere differentiable function g ∈ C[0, 1] with ‖g‖ ≤ 1/2 and set f1(x) :=∫ x

0 g, x ∈ [0, 1]. Then f ′

1 = g has infinite variation on each interval [α, β] ⊂ [0, 1].

Using Lemma 2.3 with f := f1, α := 0 and β := 1, we can choose 0 < e < w < 1

such that (w, f1(w)) ∈ Tf1,e and set P1 := [e/2, w]. It is easy to check that

conditions (3.22), (3.23) and (3.24) hold for n = 1.

The inductive step. We suppose that m ≥ 2 and the (m − 1)th step of the

construction was accomplished. In particular, we know that conditions (3.22),

(3.23) and (3.24) hold for n = m− 1.

Our aim is to construct ηm, Pm, fm and an interval [ud, vd] for each d ∈ R∗

m−1

such that (3.22), (3.23) and (3.24) hold for n = m.

First we choose, by the validity of (3.24) for n = m − 1, for each d ∈ R∗

m−1

a point e =: zd such that

(3.25) 0 < zd < d, [zd, d] ⊂ Pm−1, zd ∈ intPm−1 and (d, fm−1(d)) ∈ Tfm−1,zd

and set

Zm
1 := {zd : d ∈ R∗

m−1}.



On sets of discontinuities of functions continuous on all lines 497

Further choose δm > 0 so small, that

(3.26) δm <
d− zd

3
for each d ∈ R∗

m−1 and δm < min
( 1

2m
, ηm−1

)
.

Now we set Zm
2 := ∅ if m = 2 and, if m ≥ 3, we define Zm

2 as follows. In this

case R∗

k 6= ∅ for each 1 ≤ k ≤ m − 2, see (3.22) and (3.15), and for such k and

d ∈ R∗

k we have defined an interval (ud, vd) such that, by the validity of (3.23) for

n = m− 1, (3.20) holds and

(3.27) Tfm−1,(ud,vd)∩ intPm−1
⊃ B((d, fk(d)), ηk+1).

Choose ηm > 0 so small that

6ηm < 2−mδm, ηm <
ηm−1

2
and(3.28)

6ηm < 2−m d− vd
3

, whenever 1 ≤ k ≤ m− 2 and d ∈ R∗

k.(3.29)

Further, for every fixed 1 ≤ k ≤ m − 2 and d ∈ R∗

k, we choose a finite ηm-net

Qd of the ball B((d, fk(d)), ηk+1) and for each q ∈ Qd choose by (3.27) a point

zq,d ∈ (ud, vd) ∩ intPm−1 such that q ∈ Tfm−1,zq,d . Now we define Zm
2 := {zq,d:

1 ≤ k ≤ m− 2, d ∈ R∗

k, q ∈ Qd}.

(Note that, as above, k is uniquely determined by d; however our construction

allows cases when (q1, d1) 6= (q2, d2) and zq1,d1
= zq2,d2

.)

Further choose Zm
3 as an arbitrary finite set Zm

3 ⊂ intPm−1 such that

(3.30) Zm
3 ∩ int I 6= ∅ for each I ∈ C(Pm−1)

and set Zm := Zm
1 ∪ Zm

2 ∪ Zm
3 .

Choose 0 < δ∗m < δm so small that

[zq,d − δ∗m, zq,d + δ∗m] ⊂ (ud, vd)(3.31)

whenever 1 ≤ k ≤ m− 2, d ∈ R∗

k and q ∈ Qd,

the intervals {[z − δ∗m, z + δ∗m] : z ∈ Zm}(3.32)

are pairwise disjoint subsets of intPm−1,

λ

( ⋃

z∈Zm

[z − δ∗m, z + δ∗m]

)
<

ηm
2
, and(3.33)

osc(f ′

m−1, [z − δ∗m, z + δ∗m]) ≤ ηm for each z ∈ Zm.(3.34)
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Further choose a piecewise linear function hm ∈ C[0, 1] such that

‖hm‖ = 2−m, supphm ⊂
⋃

z∈Zm

[z − δ∗m, z + δ∗m] and(3.35)

for every z ∈ Zm there exist z − δ∗m < sz1 < sz2 < z(3.36)

with hm(sz1) = −2−m, hm(sz2) = 2−m.

Now we define fm by

(3.37) fm(x) = fm−1(x) +

∫ x

0

hm, x ∈ [0, 1].

Then clearly fm ∈ C1[0, 1] and, using (3.16) for k = m− 1, it is easy to see that

f ′

m = f ′

m−1 + hm has infinite variation on each interval [α, β] ⊂ [0, 1].

So by Lemma 2.3 we can find for each z ∈ Zm points z < ez < wz < z + δ∗m
such that

(3.38) (wz , fm(wz)) ∈ Tfm,ez .

For each d ∈ R∗

m−1, set

(3.39) ud := zd − δ∗m, vd := wzd .

To define Pm, assign to each d ∈ R(Pm−1) a point cd < d such that cd ∈

intPm−1, [cd, d] ⊂ Pm−1, d− cd < 1/m and [cd, d] ∩
⋃

z∈Zm [z − δ∗m, z + δ∗m] = ∅,

and define

(3.40) Pm :=
⋃

z∈Zm

[z − δ∗m, wz] ∪
⋃

d∈R(Pm−1)

[cd, d].

Thus we have constructed ηm, fm, Pm, and an interval [ud, vd] for each d ∈ R∗

m−1.

Our aim is now to prove that properties (3.22), (3.23) and (3.24) hold for

n = m.

First note that, by the above construction,

(3.41) (3.40) gives the decomposition of Pm into its components.

So, using (3.26), δ∗m < δm and d− cd < 1/m (d ∈ R(Pm−1)), we obtain

(3.42) ν(Pm) ≤ 1/m.

To prove that (3.22) holds for n = m, it is sufficient (since we know that (3.22)

holds for n = m−1) to verify that conditions (3.12)–(3.18) hold for k = m. These

facts easily follow from the construction:
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Conditions (3.12) and (3.13) follow from (3.28) and (3.40), respectively. Con-

dition (3.14) follows from (3.42), (3.41) and (3.32). Condition (3.15) follows from

(3.41) and (3.30). Condition (3.16) is stated just after (3.37). Condition (3.17)

follows from (3.37) and the validity of (3.17) for k = m− 1.

To prove (3.18), observe that by (3.37) and (3.35) we have ‖f ′

m − f ′

m−1‖ =

‖hm‖ = 2−m and, using also (3.35) and (3.33), we obtain

|(fm − fm−1)(x)| =

∣∣∣∣
∫ x

0

hm

∣∣∣∣ ≤
∣∣∣∣
∫

supphm

|hm|

∣∣∣∣ <
ηm
2
, x ∈ [0, 1],

and so ‖fm − fm−1‖ < ηm/2.

Now we will show that (3.23) holds for n = m. Since we know that (3.23) holds

for n = m− 1, it is sufficient to verify that

(3.43) (3.20) holds if k = m− 1 and d ∈ R∗

k

and

(3.44) (3.21) holds if 1 ≤ k ≤ m− 1, l = m and d ∈ R∗

k.

To prove (3.43), consider an arbitrary d ∈ R∗

m−1 and recall that zd ∈ Zm
1 ⊂ Zm

and ud = zd − δ∗m, vd = wzd , see (3.39). By (3.25) we have [zd, d] ⊂ Pm−1 and so

(3.32) and zd < wzd < zd + δ∗m imply 0 < ud < vd < d and [ud, d] ⊂ Pm−1. To

prove 3ηm < d − vd, observe that (3.26) gives d − zd > 3δm and so, using also

δ∗m < δm and (3.28), we obtain

d− vd > d− zd − δ∗m > 3δm − δm > 3ηm.

So (3.43) is proved.

To prove (3.44), we will distinguish cases a) k = m− 1 and b) 1 ≤ k < m− 1.

a) Consider an arbitrary d ∈ R∗

m−1. Then zd ∈ Zm
1 and ud = zd − δ∗m,

vd = wzd . By (3.25) we have

(3.45) (d, fm−1(d)) ∈ Tfm−1,zd .

Now we will show that the assumptions of Lemma 3.2 are satisfied for

G = fm−1, G̃ = fm, u = ud, z = zd, v = vd,

x = d, y = fm−1(d), ε = 2−m, δ = δm, η = ηm.

First we show that inequalities (3.4) hold:

Using (3.28) and (3.26) we obtain

vd + δm + ηm < (zd + δ∗m) + δm +
δm
6

< zd + 3δm < d.

Further we obtain vd − ud < 2δ∗m < ηm by (3.33) and 6ηm < 2−mδm by (3.28).
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Condition (3.5) coincides with (3.45) and (3.6) holds since we know that (3.18)

is valid for k = m. Condition (3.7) follows from (3.34) and the validity of (3.17)

and (3.18) for each k ≤ m− 1. Finally, condition (3.8) follows from (3.36) since

g̃ − g = hm.

Consequently conclusion (3.9) of Lemma 3.2 holds, i.e., B((d, fm−1(d)), ηm) ⊂

Tfm,(ud,vd). Since (ud, vd) ⊂ intPm by (3.39) and (3.40), we obtain that (3.21)

holds for k = m− 1, l = m and our d.

b) Consider arbitrary 1 ≤ k < m−1 and d ∈ R∗

k. Then we have defined a finite

ηm-net Qd of the ball B((d, fk(d)), ηk+1) and for each q ∈ Qd we have defined

a point zq,d ∈ (ud, vd) ∩ intPm−1 such that q ∈ Tfm−1,zq,d .

Now we will show that, for an arbitrary q =: (xq , yq) ∈ Qd, the assumptions

of Lemma 3.2 are satisfied for

G = fm−1, G̃ = fm, u = zq,d − δ∗m, z = zq,d, v = wzq,d ,

x = xq, y = yq, ε = 2−m, δ =
d− vd

3
, η = ηm.

First we show that inequalities (3.4) hold:

Using (3.31), (3.29) and (3.20) we obtain

v + δ + η = wzq,d +
d− vd

3
+ ηm < vd +

d− vd
3

+
d− vd

3

= d−
d− vd

3
< d− ηk+1 < xq = x.

Further we obtain the inequalities v − u = wzq,d − (zq,d − δ∗m) < 2δ∗m < ηm = η

by (3.33) and 6η = 6ηm < 2−m(d− vd)/3 = εδ by (3.29).

Condition (3.5) holds since q ∈ Tfm−1,zq,d and (3.6) holds since we know that

(3.18) is valid for k = m. Condition (3.7) follows from (3.34) and the validity of

(3.17) and (3.18) for each k ≤ m− 1. Finally, condition (3.8) follows from (3.36)

since g̃ − g = hm.

Thus assertion (3.9) of Lemma 3.2 holds, i.e., B(q, ηm) ⊂ Tfm,(zq,d−δ∗m,wzq,d
).

Note that zq,d ∈ Zm
2 ⊂ Zm and so (zq,d − δ∗m, wzq,d) ⊂ (ud, vd) ∩ intPm by (3.31)

and (3.40).

Since Qd is a ηm-net of B((d, fk(d)), ηk+1) we obtain that (3.21) holds for

l = m and our k and d.

So we have proved (3.44). It remains to prove that (3.24) holds for n = m.

So consider an arbitrary d ∈ R∗

m. By (3.41) we obtain that there exists z̃ ∈ Zm

such that d = wz̃ and (3.38) shows that (3.24) holds for n = m (since the choice

e := ez̃ works for our d).

So we have finished our inductive construction. It is easy to see that we have

defined the sequences (ηk)
∞

k=1, (Pk)
∞

k=1, (fk)
∞

k=1 and intervals [ud, vd], whenever
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d ∈ R∗

k, k = 1, 2, . . . , such that all nine properties (3.12)–(3.18), (3.20) and (3.21)

hold for each k ∈ N.

Using these properties only, we will show that f := limn→∞ fn, P :=
⋂

∞

n=1 Pn

and D :=
⋃

∞

k=1 R
∗

k =
⋃

∞

k=1 R(Pk) satisfy the assumptions of Lemma 3.1.

By (3.18) we obtain that ‖f ′

m − f ′

l‖ ≤ 2−l whenever 1 ≤ l < m and therefore

the sequence (f ′

k) uniformly converges to a function ϕ ∈ C[0, 1]. Since fk(x) =∫ x

0
f ′

k, x ∈ [0, 1], by (3.17), we obtain fk ⇒ f , where f(x) :=
∫ x

0
ϕ, x ∈ [0, 1].

Clearly f ∈ C1[0, 1] and f ′

k ⇒ f ′ = ϕ.

By (3.13) and (3.14), P =
⋂

∞

n=1 Pn is a nonempty closed set and (3.14) with

(3.15) easily imply that P is perfect and nowhere dense.

By (3.14) we easily obtain that the countable set D ⊂ P is dense in P .

Now consider an arbitrary d ∈ D. Then there exists k ∈ N such that d ∈ R∗

k

and so we have defined ud, vd ∈ (0, 1) such that ud < vd < d and (3.20) and (3.21)

hold. Now consider an arbitrary point (x, y) ∈ B((d, fk(d)), ηk+1). By (3.21) we

can choose, for each l > k, a point pl ∈ [ud, vd] ∩ Pl such that (x, y) ∈ Tfl,pl
.

Choose a convergent subsequence (pli)
∞

i=1 of (pl)
∞

l=k+1 with pli → p. Then p ∈

P ∩ [ud, vd] and Lemma 2.2 gives (x, y) ∈ Tf,p. Thus we have proved that

(3.46) B((d, fk(d)), ηk+1) ⊂ Tf,P∩ [ud,vd].

Using (3.18) and (3.12), we obtain

|f(d)− fk(d)| ≤ ‖fk+1 − fk‖+ ‖fk+2 − fk+1‖+ . . .

<
ηk+1

2
+

ηk+2

2
+

ηk+3

2
+ . . .

≤
1

2

(
ηk+1 +

ηk+1

2
+

ηk+1

4
+ . . .

)
= ηk+1.

So (3.46) gives

(d, f(d)) ∈ B((d, fk(d)), ηk+1) ⊂ intTf,P∩ [ud,vd]

and (3.1) is proved.

Finally, condition (3.2) holds since each R∗

k is finite and d − ud < 1/k for

d ∈ R∗

k by (3.14) and (3.20).

So the assertion of our theorem holds for M := graph f |P by Lemma 3.1. �

4. Slobodnik’s necessary condition is not sufficient

As an easy consequence of Theorem 3.4, we will prove the following result which

shows that Slobodnik’s necessary condition (for sets from Dn
l ) is not suficient.

Proposition 4.1. There exists a set M ⊂ R
2 such that M =

⋃
∞

k=1 Bk, where Bk

have properties (i), (ii) and (iii) from Theorem 1.2 for n = 2, but M /∈ D2
l .
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Proof: Let M and f be as in Theorem 3.4. So we have M /∈ D2
l and we have

M = {(x, f(x)) : x ∈ P} where P ⊂ [0, 1] is nowhere dense. Set Bk := M, k ∈ N;

we will show that then properties (i), (ii), (iii) hold.

The property (i) is almost obvious, since we can extend f to a Lipschitz func-

tion f∗ on R and thus M is a compact subset of graphf∗ which is a Lipschitz

hypersurface in R
2.

To prove (ii), consider a hyperplane H in R
2. Then H is a line and we

can suppose that it contains the origin. Then the projection onto H is a lin-

ear mapping and so it is clearly sufficient to prove that, for each a, b ∈ R,

Z := {ax + bf(x) : x ∈ P} is nowhere dense in R. Since Z = g(P ), where

g(x) := ax + f(x), x ∈ [0, 1], is C1-smooth and P is nowhere dense, we obtain,

see [3, Lemma 4.1], that Z = g(P ) is nowhere dense.

To prove (iii), consider an arbitrary point c = (c1, c2) ∈ R
2 \M . To prove that

the set

E :=

{
(x, y)− c

‖(x, y)− c‖
: (x, y) ∈ M

}

=

{(
x− c1√

(x− c1)2 + (f(x)− c2)2
,

f(x)− c2√
(x − c1)2 + (f(x)− c2)2

)
, x ∈ P

}

is nowhere dense in SR2 , it is clearly sufficient to show that (its “projection”)

F :=

{
x− c1√

(x− c1)2 + (f(x)− c2)2
, x ∈ P

}

is nowhere dense in R. Set

h(x) :=
x− c1√

(x− c1)2 + (f(x)− c2)2
if (x, f(x)) 6= c.

If c1 ∈ P or c1 /∈ [0, 1], then h is clearly C1-smooth on [0, 1] and therefore

F = h(P ) is nowhere dense by [3, Lemma 4.1].

If c1 ∈ [0, 1] \ P , then h can be undefined for x = c1. However, then there

exist points 0 < t1 < t2 < 1 such that F = h(P ∩ [0, t1]) ∪ h(P ∩ [t2, 1]) and h is

C1-smooth on [0, t1] ([t2, 1], respectively) whenever P ∩ [0, t1] 6= ∅ (P ∩ [t2, 1] 6= ∅,

respectively). So [3, Lemma 4.1] gives again that F is nowhere dense. �

Remark 4.2. In the above proposition, we can state that sets Bk satisfy the

following condition (more general than (iii)):

(iii)* For each c ∈ R
2, the set {(x− c)/‖x− c‖ : x ∈ Bk \ {c}} is nowhere dense

in the unit sphere SR2 .

The proof is only a slight refinement of the proof of (iii).
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5. An analogue of Slobodnik’s necessary condition in separable Ba-

nach spaces

In this section we will prove the following analogue of Slobodnik’s Theorem 1.2.

Proposition 5.1. Let X be a separable Banach space (dimX ≥ 2) and let

f : X → R be a linearly continuous function having the Baire property. Then the

set D(f) of all discontinuity points of f can be written as D(f) =
⋃

∞

k=1 Bk where

each Bk has the following properties:

(i) Bk is a bounded closed subset of a Lipschitz hypersurface Lk ⊂ X which

is nowhere dense in Lk.

(ii) Any linear projection of Bk onto any hyperplane 0 ∈ H ⊂ X is a first

category subset of H .

(iii) For each c ∈ X \Bk, the set {(x− c)/‖x− c‖ : x ∈ Bk} is a first category

set in SX .

This result improves [13, Corollary 4.2] which only asserts that D(f) can be

covered by countably many Lipschitz hypersurfaces (and implies that D(f) is

a null subset of X in any usual sense).

We infer Proposition 5.1 easily from [13, Corollary 4.2], the Banakh–Maslyu-

chenko characterization (Theorem 2.5) and simple Lemma 5.2 below.

Although our Proposition 5.1 is not a direct generalization of Slobodnik’s Theo-

rem 1.2, it easily implies Slobodnik’s result. Indeed, if X = R
n, then each linearly

continuous f has the Baire property by (1.1) and all Bk and their projections (in

(ii) and (iii)) are compact. So it is sufficient to use the fact that each closed first

category subset of a complete metric space is nowhere dense.

Lemma 5.2. Let X be a separable Banach space with dimX ≥ 2, v ∈ SX and

let Y be a topological complement of V := span{v}. Let A ⊂ X be an l-mis-

erable set. Then

(i) the projection πY (A) of A onto Y in the direction of V is of the first

category in Y , and

(ii) for each c ∈ X \ A, the set {(x − c)/‖x− c‖ : x ∈ A} is of the first

category in SX .

Proof: Choose a closed l-neighbourhood L of A such that A ⊂ X \ L. The

proofs of (i) and (ii) are quite analogous.

(i) For each n ∈ N, set An := {x ∈ A : {x+ tv : t ∈ [−1/n, 1/n]} ⊂ L}. Since L

is an l-neighbourhood of A, we have A =
⋃

n∈N
An. Now choose, for each n ∈ N,

a covering of V by open sets Vn,1, Vn,2, . . . such that each Vn,k ⊂ V is an open

subset of V with diam(Vn,k) < 1/n. Denote by πV the projection of X onto V

in the direction of Y and set An,k := An ∩ (πV )
−1(Vn,k), n, k ∈ N. Using the
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definitions of sets An and Vn,k, it is easy to see that

(5.1) (πY )
−1(πY (x)) ∩ (πV )

−1(Vn,k) ⊂ L whenever n, k ∈ N, x ∈ An,k.

Since A =
⋃

n,k∈N
An,k, it is sufficient to prove that each set πY (An,k) is nowhere

dense in the space Y . So suppose, to the contrary, that there exist n, k and

a nonempty set G ⊂ Y which is open in Y and πY (An,k) ∩ G is dense in G.

Using (5.1) and the closedness of L, we obtain (πY )
−1(G) ∩ (πV )

−1(Vn,k) ⊂ L.

Since (πY )
−1(G) ∩ (πV )

−1(Vn,k) is open and contains a point a ∈ An,k ⊂ A, we

obtain a /∈ X \ L which contradicts to A ⊂ X \ L.

(ii) Fix a point c ∈ X \ A and define the “projection” πS : X \ {c} → SX by

πS(x) := (x − c)/‖x− c‖, x ∈ X \ {c}. For each n ∈ N, denote An := {x ∈ A:

{x+ tπS(x) : t ∈ [−1/n, 1/n]} ⊂ L}. Since L is an l-neighbourhood of A, we have

A =
⋃

n∈N
An. Now choose, for each n ∈ N, a covering of (0,∞) by open subsets

Hn,1, Hn,2, . . . with diam(Hn,k) < 1/n. Set An,k := An∩{x ∈ X : ‖x−c‖ ∈ Hn,k},

n, k ∈ N. Using the definitions of sets An and Hn,k, it is easy to see that

(5.2)
(πS)

−1(πS(x)) ∩ {x ∈ X : ‖x− c‖ ∈ Hn,k} ⊂ L

whenever n, k ∈ N, x ∈ An,k.

Since A =
⋃

n,k∈N
An,k, it is sufficient to prove that each set πS(An,k) is nowhere

dense in the sphere SX . So suppose, to the contrary, that there exist n, k

and a nonempty set G ⊂ SX which is open in SX and πS(An,k) ∩ G is dense

in G. Using (5.2) and the closedness of L, we obtain (πS)
−1(G) ∩ {x ∈ X :

‖x − c‖ ∈ Hn,k} ⊂ L. Since (πS)
−1(G) ∩ {x ∈ X : ‖x − c‖ ∈ Hn,k} is open

and contains a point a ∈ An,k ⊂ A, we obtain a /∈ X \ L which contradicts to

A ⊂ X \ L. �

Proof of Proposition 5.1: By Theorem 2.5 there exist closed l-miserable

sets Fm ⊂ X , m ∈ N, such that D(f) =
⋃

m∈N
Fm. By [13, Corollary 4.2]

there exist Lipschitz hypersurfaces Mn, n ∈ N, such that D(f) ⊂
⋃

n∈N
Mn. Set

Zm,n,p := Fm ∩Mn ∩ {x ∈ X : ‖x‖ ≤ p}, m, n, p ∈ N,

and let (Bk)
∞

k=1 be a sequence of all elements of the set {Zm,n,p : m,n, p ∈ N}.

Now consider an arbitrary k ∈ N. Obviously, Bk is closed and bounded. It is

also l-miserable since it is a subset of an l-miserable set Fm and so we obtain by

Lemma 5.2 that conditions (ii) and (iii) hold. Further Bk is contained in some

Lipschitz hypersurface Mn. Let V and Y be linear spaces corresponding to Mn as

in Definition 2.1 and denote by πY the projection onto Y in the direction of V .

Since πY |Mn
: Mn → Y is clearly a homeomorphism, we obtain that πY (Bk) is

a closed subset of the complete space Y and so it is nowhere dense in Y , because
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it is a first category set in Y by condition (ii). Consequently Bk is nowhere dense

in Mn and thus condition (i) holds (with Lk := Mn). �
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Charles University, Faculty of Mathematics and Physics, Sokolovská 83,
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