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ARCHIVUM MATHEMATICUM (BRNO)
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WEBSTER PSEUDO-TORSION FORMULAS
OF CR MANIFOLDS

Ho Chor Yin

Abstract. In this article, we obtain a formula for Webster pseudo-torsion
for the link of an isolated singularity of a n-dimensional complex subvariety in
Cn+1 and we present an alternative proof of the Li-Luk formula for Webster
pseudo-torsion for a real hypersurface in Cn+1.

1. Introduction

The complete local invariants in the pseudoconformal geometry of a nondegene-
rate CR manifold M are defined on an SU(p+ 1, q + 1)-bundle Y over M , which
generalizes the bundle of Q-frame as a real hyperquadric [1]. To reduce the struc-
ture group, Webster singles out a real nowhere vanishing one form θ on M which
annihilates the CR structure of M . A CR manifold M with such a choice θ is called
a pseudohermitian manifold [6]. The contact form θ is called a pseudohermitian
structure. The structure group of the Chern bundle Y is reduced to U(p, q). In
[6], Webster showed there is a natural connection in the bundle T 1,0M adapted
to θ. This connection can be extended to a connection to CTM . To solve the
equivalence problem of pseudohermitian manifold, Webster derived the structure
equations for M , from which the Webster Ricci curvature and Webster torsion
tensor are defined. In [3], the author derived a formula for Webster pseudo-torsion
for a real hypersurface in Cn+1. In this article, we derive a formula for Webster
pseudo-torsion for the link of an isolated singularity of a n-dimensional complex
subvariety in Cn+1 and we present an alternative proof of the Li-Luk formula for
Webster pseudo-torsion for a real hypersurface in Cn+1 [3]. The main idea of the
alternative proof is to describe the CR structure using all Euclidean coordinates
z1, z2, . . . , zn+1 (see (39)). This new description of CR structure using all Euclidean
coordinates is originated in [4]. In other words, we dispense with distinguishing
one coordinate, say zn+1, such that ∂r

∂zn+1 6= 0, as is required in Chern-Moser and
subsequent works. The organization of this article is as follows. In Section 2, we
review pseudohermitian geometry following Webster and Tanaka. In Section 3,
we derive a key identity for Webster pseudo-torsion computation in subsequent
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sections. In Section 4, we present the alternative proof of the Li-Luk formula for
Webster pseudo-torsion for a real hypersurface in Cn+1. In Section 5, we obtain an
explicit formula for Webster pseudo-torsion for the link of an isolated singularity of
a n-dimensional complex subvariety in Cn+1. To the best knowledge of the author,
this formula obtained in Section 5 is a new result.

2. Pseudohermitian structures

In this section, we collect the basic facts on pseudohermitian geometry. Let M
be a CR manifold with structure bundle T 1,0M satisfying T 1,0M ∩T 1,0 = {0} and
[T 1,0M,T 1,0M ] ⊂ T 1,0M . Let T 0,1M := T 1,0. Set HM = Re (T 1,0M ⊕ T 0,1M).
HM is a 2n dimensional subbundle of TM which carries a complex structure
J : HM → HM given by J(X + X) = i(X −X) for X ∈ T 1,0M . Let E ⊂ TM∗

denote the real line subbundle which annihilates HM . Assuming M is orientable,
E has a global nowhere vanishing section θ. A choice of such a 1-form θ is called a
pseudohermitian structure on M . The Levi form of θ is the Hermitian form Lθ on
TM1,0 defined by

Lθ(V,W ) = Lθ(W,V ) = −2 id θ(V ∧W ) .
For a nondegenerate (resp. strongly pseudoconvex) CR manifold, Lθ is a nonde-
generate (resp. positive definite) Hermitian form for any choice of θ. The choice
of θ determines a unique real vector field ξ transverse to HM such that θ(ξ) = 1,
ξcdθ = 0. An admissible coframe on an open subset of M is a set of complex
(1, 0)-forms {θ1, . . . , θn} form basis for TM∗1,0 and satisfies θα(ξ) = 0. Then we
have dθ = ihαβ̄θ

α ∧ θβ̄ for some hermitian matrix of functions hαβ̄ . In [6], Webster
showed there is a natural connection in the bundle T 1,0M adapted to θ. This
connection can be extended to a connection to CTM . Webster showed that there
are uniquely determined 1-forms ωβα, τβ on M satisfying

dθ = iθγ ∧ θγ ,(1)
dθα = θβ ∧ ω α

β + θ ∧ τα ,(2)

ω β
α. + ω α

β̄.
= 0 , where ω α

β̄.
= ω β

α. ,(3)

τα = Aαγθ
γ , where τα = τα,(4)

with

Aαγ = Aγα ,(5)

and

hαβ̄ = δαβ̄ .(6)
This connection is called Webster connection. The curvature of the Webster connec-
tion, expressed in terms of the coframe is,

Ω α
β. : = dω α

β. − ω
γ
β. ∧ ω

α
γ. − iθβ̄ ∧ τα + iτ β̄ ∧ θα,

= Rβαρσθ
ρ ∧ θσ +Wβαρθ

ρ ∧ θ −Wαβσθ
σ ∧ θ

(7)
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where

Rβαρσ = Rαβ̄σρ = Rαβσρ ,(8)
Rβαρσ = Rραβσ ,(9)
Wαρσ = Wσρα ,(10)

since by (6), Ω α
β. = Ωβα. By (4), (7), we have

dω α
β. − ω

γ
β. ∧ ω

α
γ. = −iAβγθγ ∧ θα +Rβαρσθ

ρ ∧ θσ + iAαγθ
β̄ ∧ θγ

+Wβαρθ
ρ ∧ θ −Wαβσθ

σ ∧ θ .
(11)

We also put
Ωα : = dτα − τβ ∧ ω α

β ,

= Wαρσθ
ρ ∧ θσ −Aαγτγ ∧ θ +Bασθ

σ ∧ θ ,
(12)

where

Bασ = Bσα .(13)

Let (ξ,Xα, Xα) be the dual frame to (θ, θα, θα). Define an operator D locally by

DXα = ω β
α Xβ , D : Γ

(
H(M)

)
→ Γ

(
(T ∗(M)⊗H(M)

)
.(14)

D defines a connection on H(M), see [6, p. 32]. We can define an hermitian metric
( , ) in the fibres of H(M) by

(Xα, Xβ) = δ βα .(15)

Next, we turn to a formulation of the Webster connection by N. Tanaka [5]. We
have T 1,0M = {X − iJX | X ∈ HM} and using the decomposition CTM =
T 1,0M ⊕ T 0,1M ⊕ Cξ, we extend J to CTM with Jξ = 0. Then we have

J2X = −X + θ(X)ξ , X ∈ TMx .(16)

For, let pr: CTM → CHM be the natural projection. Any Y ∈ CTM can be
written as Y = pr(Y ) + θ(Y )ξ Then J2Y = −pr(Y ) = −Y + θ(Y )ξ. We put

Ω = −dθ .(17)

We define a tensor field on M by

g(X,Y ) = Ω(JX, Y ) .(18)

Then g(X,Y ) = g(Y,X), g(JX, JY ) = g(X,Y ) and g is positive definite on HM .
Recall T (X,Y ) = ∇XY −∇YX − [X,Y ].

Theorem 2.1 (N. Tanaka [5, p. 29]). There exists a unique affine connection

∇ : Γ(TM)→ Γ(TM ⊗ TM∗)

on M such that
(1) The contact structure HM is parallel, i.e.,

∇XΓ(HM) ⊂ Γ(HM) for any X ∈ Γ(TM) .(19)
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(2) The tensor field ξ, J,Ω are all parallel, i.e., ∇ξ = ∇J = ∇Ω = 0.
(It follows that ∇θ = ∇g = 0.)

(3) The torsion T of ∇ satisfies:

T (X,Y ) = −Ω(X,Y )ξ ,
T (ξ, JY ) = −JT (ξ, Y ) , X, Y ∈ HMx .

Let X, Y ∈ Γ(CHM). Denote by [X,Y ]HM the CHM -component of [X,Y ] in
the decomposition:

CTM = CHM ⊕ C⊗ (TM/HM) .

Also denote by [X,Y ]1,0 (resp. by [X,Y ]0,1) the TM1,0 component (resp. the
TM1,0-component) of [X,Y ]HM in the decomposition CHM = TM1,0 ⊕ TM0,1.
∇ can be extended to a differential operator of Γ(CTM) to Γ(CTM)⊗ CTM∗ in
a natural manner. By (19), ∇J = 0 and T 1,0M = {X − iJX | X ∈ HM}, we have

∇XΓ(TM1,0) ⊂ Γ(TM1,0) ,
∇XΓ(TM0,1) ⊂ Γ(TM0,1) , X ∈ Γ(CTM) .

Then we have

Proposition 2.2 ([5, p. 31]). The extension ∇ : Γ(CTM) → Γ(CTM ⊗ CTM∗)
is given as follows. For X, Y ∈ Γ(TM1,0),

∇XY = [X,Y ]1,0 ,(20)
∇XY is given by Ω(∇XY, Z) = XΩ(Y,Z)− Ω(Y,∇xZ) ∀Z ∈ Γ(TM1,0) ,(21)

∇ξY = [ξ, Y ]− 1
2J([ξ, JY ]− J [ξ, Y ]) = [ξ, Y ]1,0 .(22)

∇XY , ∇XY , ∇ξY are given by conjugations, and ∇Xξ, ∇Xξ, ∇ξξ are all zero.

In the following, we shall identify ∇ with Webster’s D. We have

DXβ
Xα = ω γ

α (Xβ)Xγ
(2)= dθγ(Xα, Xβ)Xγ

= −θγ([Xα, Xβ ])Xγ = [Xβ , Xα]1,0 = ∇XβXα .

And we check that

−dθ(DXβXα, Xγ) = −iθρ ∧ θρ
(
ω σ
α (Xβ)Xσ, Xγ

)
= −iω γ

α (Xβ) = iω α
γ (Xβ)

= Xβ

(
− iθρ ∧ θρ(Xα, Xγ)

)
+ iθρ ∧ θρ

(
Xα, ω σ

γ (Xβ)Xσ

)
= Xβ

(
− dθ(Xα, Xγ)

)
− (−dθ)(Xα,∇XβXγ) for all Xγ .

Hence, DXβXα = ∇XβXα. We also have

DξXα = ω γ
α (ξ)Xγ

(2)= −dθγ(ξ,Xα)Xγ = θγ([ξ,Xα])Xγ = [ξ,Xα]1,0 = ∇ξXα .
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Then we identify the torsion terms. We have

T (Xα, Xβ) = ∇XαXβ −∇XβXα − [Xα, Xβ ]

= [Xα, Xβ ]0,1 + [Xα, Xβ ]1,0 − [Xα, Xβ ]
= −θ([Xα, Xβ ])ξ
= dθ(Xα, Xβ)ξ
= iδ βα ξ = −Ω(Xα, Xβ)ξ,

and

T (Xα, Xβ) = (ω γ
β (Xα)− ω γ

α (Xβ)− θγ([Xα, Xβ ]))Xγ

= (ω γ
β (Xα)− ω γ

α (Xβ) + dθγ(Xα, Xβ))Xγ = 0 ,

and

T (ξ,Xα) = ∇ξXα −∇Xαξ − [ξ,Xα]
= [ξ,Xα]1,0 − [ξ,Xα]

= −θβ̄([ξ,Xα])Xβ − θ([ξ,Xα])ξ

= (θγ ∧ ω β
γ + θ ∧ τ β̄)(ξ,Xα)Xβ

= τ β̄(Xα)Xβ

= AαβXβ .

Finally, we identify the curvatures terms. We have

R(Y, Z)Xβ = ∇Y∇ZXβ −∇Z∇YXβ −∇[Y,Z]Xβ

= ((Y ω α
β (Z) + ω γ

β (Z)ω α
γ (Y ))−

(
Zω α

β (Y ) + ω γ
β (Y )ω α

γ (Z)
)

− ω α
β ([Y,Z]))Xα

(11)=
(
(dω α

β − ω
γ
β ∧ ω

α
γ )(Y,Z)

)
Xα ,

and

R(Xρ, Xσ)Xβ = (−iAβγθγ ∧ θα)(Xρ, Xσ)Xα

= −iAβγ(δγρ δασ − δγσδαρ )Xα

= −i(AβρXσ −AβσXρ) ,
R(Xρ, Xσ)Xβ = RβαρσXα ,

R(Xρ, Xσ)Xβ = (iAαγθβ̄ ∧ θγ)(Xρ, Xσ)Xα

= iAαγ(δρβδ
σ
γ − δσβδργ)Xα

= i(δρβAασ − δ
σ
βAαρ)Xα ,

R(Xρ, ξ)Xβ = WβαρXα ,

R(Xσ, ξ)Xβ = −WαβσXα .
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3. A key identity for Webster pseudo-torsion computation

In this section, we obtain a key identity (53) for Webster pseudo-torsion compu-
tation in Section 5.

Let M be the boundary of a strongly pseudoconvex domain in Cn+1. Let r be a
smooth real-valued defining function of M i.e. M = {r = 0} and dr 6= 0. Throughout
this section, the range of indices are: 0 ≤ i, j, k · · · ≤ n + 1, 0 ≤ α, β, γ · · · ≤ n.
Coordinates for Cn+1 will be given by (z1, z2, . . . , zn+1). We will use the conventions:
rj = ∂r

∂zj , rjk = ∂2r
∂zj∂zk

. The CR structure is on M is given by

T 1,0M = {X = xj
∂

∂zj
: dr(X) = xjrj = 0} .(23)

We define a 2n dimensional subbundle of TM by
CHM = T 1,0M ⊕ T 0,1M where T 0,1M := T 1,0M ,(24)

and HM := Re (T 1,0M ⊕ T 0,1M). HM carries a complex structure map
J : HM → HM, J2 = −Id ,(25)

and we denote its extension to CTM by J ,
(26) J : CHM → CHM, J2 = −Id and J |T 1,0M = multiplication by i =

√
−1 .

Define a one form θ on Cn+1 by
θ = −i∂r = −irjdzj .(27)

On CTM , θ is a real one form annihilating T 1,0M ⊕ T 0,1M ,

θ = i∂r = i∂r = i

2(∂r − ∂r) .(28)

For X, Y ∈ T 1,0M ,
θ([X,Y ]) = 0 , θ([X,Y ]) = 0 ,

and θ([X,Y ]) = −dθ(X,Y ) = −i∂∂r(X,Y ) .
(29)

For X, Y ∈ T 1,0M , the Levi form is given by
Lθ(X,Y ) = θ([JX, Y ]) = −dθ(JX, Y ) = ∂∂r(X,Y ) .(30)

M is said to be strongly pseudoconvex if Lθ(X,Y ) is positive definite as a Hermitian
form on T 1,0M . In other words,

∀ wj
∂

∂zj
6= 0 , wjrj = 0⇒ rjkw

jwk > 0 .(31)

Note that the matrix rjk is not necessary invertible though (31) is satisfied.

Example 3.1. The real hyperquadric in C2 given by

M := {(z1, z2) ∈ C2 | r(z1, z2) = 0, r = z1z1 −
z2 − z2

2i } which is s.p.c.

T 1,0M is spanned by ∂
∂z1

+ 2iz1
∂
∂z2

. We see that(
r11 r12
r21 r22

)
=
(

1 0
0 0

)
while

(
1 2iz1

)(1 0
0 0

)(
1

2iz1

)
= 1 .
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Neither does s.p.c., (31) imply the positive definiteness of rjk, as we see from

Example 3.2. M := {(z1, z2) ∈ C2 | r(z1, z2) = 0, r = 1 + z1z1 − z2z2} which is
s.p.c.
T 1,0M is spanned by z2

∂
∂z1

+ z1
∂
∂z2

. We see that(
r11 r12
r21 r22

)
=
(

1 0
0 −1

)
while

(
z2 z1

)(1 0
0 −1

)(
z2
z1

)
= 1 .

Let ξ be the unique real vector field on M such that

θ(ξ) = 1 ,(32)
ξcdθ = 0 .(33)

Let

ξ = ξj
∂

∂zj
+ ξj

∂

∂zj
.(34)

We have

θ(ξ) = 1 means irkξ
k = 1 or rjξ

j = i ,(35)

ξcdθ = 0 means xjrj = 0⇒ xjrjkξ
k = 0 .(36)

Let TM = HM ⊕ Rξ, we extend (25),

J : TM → TM by Jξ = 0 .(37)

Then, J as a
(1

1
)

tensor satisfies

J2X = −X + θ(X)ξ(38)

for all X ∈ TM . With J as a
(1

1
)

tensor, we regard g(X,Y ) := −dθ(JX, Y ) =
Lθ(X,Y ) as

(0
2
)

tensor on TM . Note that , for X,Y ∈ TM , θ([JX, Y ]) 6=
−dθ(JX, Y ) since θ([X,Y ]) is not a tensor, for instance, we have θ([fξ, ξ]) =
θ(ξ(f)ξ) = ξ(f). In the following, we write 〈X,Y 〉 := g(X,Y ). Choose X1, . . . , Xn

in T 1,0
p M for some point p in M . Let

Xα = xjα
∂

∂zj
(39)

satisfying

xjαrj = 0,(40)

xjαrjkx
k
β = δβα .(41)

Note that we use all Euclidean coordinates z1, . . . , zn+1 in the description of the
CR structure of M . In this way, we dispense with distinguishing one coordinate,
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say zn+1, such that ∂r
∂zn+1 6= 0, as is required in Chern-Moser and subsequent works.

Our computation is therefore symmetric in all z1, . . . , zn+1. Write

J(u) : = (−1)n+1 det


u u1 · · · un+1
u1 u11 · · · u1n+1
...

...
...

...
un+1 un+11 · · · un+1n+1

 ,(42)

F : =


r r1 · · · rn+1
r1 r11 · · · r1n+1
...

...
...

...
rn+1 rn+11 · · · rn+1n+1

 ,(43)

and

〈〈 ξ, ξ 〉〉 := ξjrjkξ
k .(44)

Then, we have

− 〈〈 ξ, ξ 〉〉rj + irjkξ
k = 0 .(45)

Proof of (45). (rjdzj)(Xα) = xjαrj
(40)= 0 and (rjkξ

kdzj)(Xα) = xjαrjkξ
k = 0 for

all α, implies that, since dr 6= 0, rjkξ
k = brj for some b. By contraction with ξj ,

〈〈 ξ, ξ 〉〉 = bi. Thus, we obtain (45). Write

ajk : = xjαx
k
α .(46)

Then

rja
jk = 0 .(47)

Write

Xn+1 : = ξj
∂

∂zj
and xjn+1 = ξj .(48)

Then

 x1
1 · · · xn+1

1
...

...
x1
n+1 · · · xn+1

n+1


 r11 · · · r1n+1

...
...

rn+11 · · · rn+1n+1




x1
1 · · · xn+1

1
...

...
x1
n+1 · · · xn+1

n+1



=


1

. . .
1
〈〈 ξ, ξ 〉〉

 .

(49)
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Write  y1
1 · · · yn+1

1
...

...
y1
n+1 · · · yn+1

n+1

 :=

 x1
1 · · · xn+1

1
...

...
x1
n+1 · · · xn+1

n+1


−1

(48)=

 y1
1 · · · yn1 −ir1
...

...
...

y1
n+1 · · · ynn+1 −irn+1

 .(50)

Then

 r11 · · · r1n+1
...

...
rn+11 · · · rn+1n+1




x1
1 · · · xn+1

1
...

...
x1
n+1 · · · xn+1

n+1


 x1

1 · · · xn+1
1

...
...

x1
n+1 · · · xn+1

n+1



=

 y1
1 · · · yn+1

1
...

...
y1
n+1 · · · yn+1

n+1




1
. . .

1
〈〈 ξ, ξ 〉〉


 x1

1 · · · xn+1
1

...
...

x1
n+1 · · · xn+1

n+1



=

 y1
1 · · · yn1 〈〈 ξ, ξ 〉〉yn+1

1
...

...
...

y1
n+1 · · · ynn+1 〈〈 ξ, ξ 〉〉yn+1

n+1


 x1

1 · · · xn+1
1

...
...

x1
n+1 · · · xn+1

n+1


=

 1− (1− 〈〈 ξ, ξ 〉〉)yn+1
1 x1

n+1 · · · −(1− 〈〈 ξ, ξ 〉〉)yn+1
1 xn+1

n+1
...

...
−(1− 〈〈 ξ, ξ 〉〉)yn+1

n+1x
1
n+1 · · · 1− (1− 〈〈 ξ, ξ 〉〉)yn+1

n+1x
n+1
n+1


=

 1 + (1− 〈〈 ξ, ξ 〉〉)ir1ξ
1 · · · (1− 〈〈 ξ, ξ 〉〉)ir1ξ

n+1

...
...

(1− 〈〈 ξ, ξ 〉〉)irn+1ξ
1 · · · 1 + (1− 〈〈 ξ, ξ 〉〉)irn+1ξ

n+1



(51)

i.e.

rikx
k
l x

j
l = δji + (1− 〈〈 ξ, ξ 〉〉)iriξj .

By (46), (48),

rik(akj + ξkξj) = δji + (1− 〈〈 ξ, ξ 〉〉)iriξj .

By (45),

rika
kj − i〈〈 ξ, ξ 〉〉riξj = δji + iriξ

j − i〈〈 ξ, ξ 〉〉riξj .

Hence,

− iriξj + rika
kj = δji .(52)
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By (35), (45), (47), (52),
(53)

r r1 · · · rn+1
r1 r11 · · · r1n+1
...

...
...

...
rn+1 rn+11 · · · rn+1n+1



−〈〈 ξ, ξ 〉〉 −iξ1 · · · −iξn+1

iξ1 a11 · · · a1n+1

...
...

...
iξn+1 an+11 · · · an+1n+1

 = I .

�

4. An alternative proof of the Li-Luk formula for Webster
pseudo-torsion for a real hypersurface in Cn+1

This section gives an alternative proof of the Li-Luk formula for Webster
pseudo-torsion (for definition, see (69)) for a strongly pseudoconvex pseudohermitian
hypersurface in Cn+1. For the convenience of readers and fixing notations, we recall
some facts and definitions in the beginning. We will also use some definitions
and results in Section 2. Let M be a strongly pseudoconvex pseudohermitian
hypersurface given by M = {z ∈ Cn+1 | r = 0}, where r is a real valued defining
function for M and r is C3 in a neighborhood of M . Let TM be the tangent bundle
on M and let HM := TM ∩ iTM , the holomorphic tangent bundle on M . As in
the previous sections, we fix the real one form θ be a pseudohermitian structure
on M . Let θ1, . . . , θn, θ1, . . . , θn be a local admissible coframe for M , 1 ≤ α, β ≤ n.
As before we use the convention θα := θα. Webster shows that there are uniquely
determined 1-forms ω β

α , τ
β on M satisfying

dθ = iθγ ∧ θγ ,(54)
dθα = θβ ∧ ω α

β. + θ ∧ τα ,(55)
ω β
α. + ω α

β = 0 ,(56)
τα = Aαγθ

γ ,(57)
Aαγ = Aγα .(58)

Let ξ,X1, . . . , Xn, X1, . . . , Xn be the dual frame satisfying
θ(ξ) = 1 , dθ(ξ, ·) = iθγ ∧ θγ(ξ, ·) = 0 .(59)

And we have

− id θ(Xα, Xβ) = iθγ ∧ θγ(Xα, Xβ) = δβα .(60)

The Levi form Lθ on TM1,0 is defined by Lθ(·, ·) := − id θ(·, ·). Hence,
Lθ(Xα, Xβ) = δβα =: 〈Xα, Xβ〉 .(61)

Covariant differentiation is given by
∇Xα = ω β

α Xβ , ∇Xα = ω β
α Xβ , ∇ξ = 0 .(62)

We also have
∇XγXα = [Xα, Xα]TM1,0 ,(63)
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and ∇XγXα is defined by

〈∇XγXα, Xβ〉 = Xγ〈Xα, Xβ〉 − 〈Xα,∇XγXβ〉 .(64)

We have

∇ξXα = [ξ,Xα]TM1,0 .(65)

The torsion tensor is defined by T (X,Y ) := ∇XY −∇YX−[X,Y ] for X,Y ∈ CTM .
We have

T (Xα, Y β) = iδβαξ ,(66)
T (Xα, Xβ) = 0 ,(67)
T (ξ,Xα) = AαβXβ .(68)

The Webster pseudo-torsion is defined as [3],

Tor(z)(U, V ) = i(Aαβ̄uαvβ −Aαβuαvβ) ,(69)

where U = uj ∂
∂zj

, V = vj ∂
∂zj
∈ HzM and z ∈M . We will use following notations.

J(r) := −
∣∣∣∣ r rk
rj rjk

∣∣∣∣ ,(70)

H(r) := (rjk) .(71)

We shall prove the following theorem.

Theorem 4.1 ([3]). Let M be a C4 strongly pseudoconvex hypersurface in Cn+1.
Let r be a defining function for M which is C3 in a neigborhood of M . Consider
the pseudohermitian structure defined by θ = −i∂r on M . Then for any U =
uj ∂

∂zj
, V = vj ∂

∂zj
∈ HzM and z ∈M , we have

(72) Tor(z)(U, V ) = 2 Re
(
ulvk

J(r) (N − detH(r)) rlk

)
,

where

(73) N =
∑
i

(−1)j+iri

∣∣∣∣∣∣
|

− rij −
|

∣∣∣∣∣∣ ∂

∂zj
.

We will need some preliminaries to prove this theorem. First, by (53), we have

1 = r(−〈〈 ξ, ξ 〉〉) + r1(−iξ1) + r2(−iξ2) + · · ·+ rn+1(−iξn+1) .(74)
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Expanding −J(r) by the 1st column, we have

∣∣∣∣ r rk
rj rjk

∣∣∣∣ = r

∣∣∣∣∣∣∣
r11 · · · r1n+1
...

...
rn+11 · · · rn+1n+1

∣∣∣∣∣∣∣− r1

∣∣∣∣∣∣∣∣∣
r1 · · · rn+1
r11 · · · r1n+1

...
...

rn+11 · · · rn+1n+1

∣∣∣∣∣∣∣∣∣+ · · ·

+ (−1)n+1rn+1

∣∣∣∣∣∣∣∣∣
r1 · · · rn+1
r11 · · · r1n+1
...

...
rn+11 · · · rn+1n+1

∣∣∣∣∣∣∣∣∣ .

(75)

Hence, by (74), (75), we have

(76) − 〈〈 ξ, ξ 〉〉 =
|rjk|∣∣∣∣ r rk

rj rjk

∣∣∣∣ = −detH(r)
J(r)

and

−iξj = (−1)j∣∣∣∣ r rk
rj rjk

∣∣∣∣
∣∣∣∣∣∣∣∣

r1 · · · rn+1
r11 · · · r1n+1
rj1 · · · rjn+1
rn+11 · · · rn+1n+1

∣∣∣∣∣∣∣∣
= (−1)j

−J(r)

r1

∣∣∣∣∣∣
r11 · · · r1n+1
rj1 · · · rjn+1

rn+11 · · · rn+1n+1

∣∣∣∣∣∣− r2

∣∣∣∣∣∣
r11 r12 · · · r1n+1
rj1 rj2 · · · rjn+1
rn+11 rn+12 · · · rn+1n+1

∣∣∣∣∣∣
+(−1)nrn+1

∣∣∣∣∣∣
r11 · · · r1n+1
rj1 · · · rjn+1
rn+11 · · · rn+1n+1

∣∣∣∣∣∣


=
n+1∑
k=1

(−1)j(−1)k+1

−J(r) rk

∣∣∣∣∣∣
r11 | r1n+1
− rjk −

rn+11 | rn+1n+1

∣∣∣∣∣∣

(77)

Proof of Theorem 4.1.
Step 1. We first find a relation between the torsion tensor T and the Webster
torsion Tor. Let U = µαXα, V = νβXβ ∈ T 1,0M . We have

Tor(U, V ) = Tor(µαXα, ν
βXβ)

= 2Re(iAαβ)

= 2Re(i〈T (ξ,Xα), Xβ〉)µανβ

= 2Re(i〈T (ξ, µαXα), νβXβ〉)

= 2Re(i〈T (ξ, U), V 〉) .(78)
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Step 2. We compute

T (ξ, U) = ∇ξU −∇Uξ − [ξ, U ]
= [ξ, U ]T 1,0M − [ξ, U ]
= −[ξ, U ]T 0,1M

= −
[
ξj

∂

∂zj
+ ξj

∂

∂zj
, U

]
T 0,1M

= (Uξj) ∂

∂zj
.(79)

We check that (Uξj) ∂

∂zj
∈ T 1,0M as follows. Using U = uj ∂

∂zj , we have

(Uξj)rj = U(ξjrj)− ξjUrj = −ukrkjξj = 0.

Step 3. Let U = uj ∂
∂zj , V = vk ∂

∂zk
such that ujrj = 0, vkrk = 0. Using (78), (79),

we have

Tor(U, V ) = 2Re
(
i

〈
(Uξj) ∂

∂zj
, vk

∂

∂zk

〉)
= 2Re

(
i

〈
ul
∂ξj

∂zl

∂

∂zj
, vk

∂

∂zk

〉)
= 2Re

(
iul

∂ξj

∂zl
rjkv

k

)
= 2Re

(
iulvk

(
∂

∂zl
(ξjrjk)− ξjrjkl

))
= 2Re

(
ulvk

(
∂

∂zl
(ark)− iξj

∂rkl
∂zj

))
= 2Re

(
ulvk

(
−〈〈 ξ, ξ 〉〉rlk − iξ

j ∂rkl
∂zj

))
.(80)

Hence, we have

Tor(U, V ) = 2Re

ulvk
J(r)

−|rij |rlk +
∑
i

(−1)j+iri

∣∣∣∣∣∣
|

− rij −
|

∣∣∣∣∣∣ rjlk


= 2Re

ulvk
J(r)

∑
i

(−1)j+iri

∣∣∣∣∣∣
|

− rij −
|

∣∣∣∣∣∣ ∂

∂zj
− detH(r)

 rlk


= 2Re

(
ulvk

J(r) (N − detH(r)) rlk

)
. �
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5. A formula for Webster pseudo-torsion for on the link of an
isolated singularity of a n-dimensional complex subvariety in Cn+1

In this section we derive a formula for the Webster pseudo-torsion on the link
of an isolated singularity of a n-dimensional complex subvariety in Cn+1. Let
M := {f = 0} ∩ {r = 0} where r is a defining function of the sphere of radius
ε, centered at the origin and f is a holomorphic function away from the origin,
we assume that ∂f ∧ dr 6= 0 along M . Then M is a strongly pseudoconvex CR
manifold of real hypersurface type, of dimension 2n− 1. We will use the result in
the last section to find an explicit formula for Webster torsion of M . The key idea
is to express the components of the characteristic vector field ξ in terms of the
derivatives of f and r.

Let N := {z ∈ Cn+1|f = 0} where f(0) = 0, ∂f = 0, ∂f 6= 0. Let S := {z ∈
Cn+1|r = |z1|2 + |z2|2 + · · · + |zn+1|2 − ε = 0} for some ε > 0. Let M := N ∩ S,
we assume ∂f ∧ dr 6= 0 along M . The complexified tangent bundles for S and M
are denoted by CTS and CTM respectively. Let the pseudohermitian structure of
S be given by θ = i∂r = −i∂r on CTS. Then, the pseudohermitian structure of M
is given by θ|M . We will denote θ|M by θ. Throughout this section the ranges of
indices are : 1 ≤ A,B, · · · ≤ n+ 1, 1 ≤ j, k, · · · ≤ n, 1 ≤ α, β, · · · ≤ n− 1, and we
will use the summation convention. Let θ, θα, θα be a local basis of CTM∗ such
that dθ = iθα ∧ θα. Let ξ,Xα, Xα be the dual basis. We may write

ξ = ξA
∂

∂zA
+ ξA

∂

∂zA
,(81)

Xα = xAα
∂

∂zA
.(82)

We have

ξcθ = 1⇒ ξArA = i ,(83)
ξc∂f = 0⇒ ξAfA = 0 ,(84)
Xαcθ = 0 ,(85)

Xαc∂f = 0 ,(86)
Xαcθβ = δβα ,(87)
ξcθβ = 0 ,(88)
ξcdθ = 0 ,(89)

and

dθ = irABdz
A ∧ dzB = iδABdz

A ∧ dzB = idzA ∧ dzA .(90)
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Hence, we have

xAαrA = 0 ,(91)

xAαfA = 0 ,(92)

xAαrABξ
B = 0⇒ xAα ξ

A = 0 .(93)

We consider (93) as a system of linear equations in unknowns ξA. The matrix (xAα )
has rank n− 1. So (93) has only 2 independent solutions. On the other hand the

matrix
(
f1 · · · fn+1
r1 · · · rn+1

)
has rank 2. Hence, we may write

ξA = afA + brA ,(94)

for a, b ∈ C. Contracting (94) with ξA, using (83), (86) we obtain ‖ξ‖2 = −ib
where ‖ξ‖2 := ξAξA. Hence,

b = i‖ξ‖2 .(95)

Contracting (94) with fA, we obtain 0 = afAfA + brAfA. So,

a = −
brAfA

fCfC
.(96)

By (94), (95), (96), we have

ξA = −i||ξ||2
rBfBfA

fCfC
+ i‖ξ‖2rA .(97)

Contracting (97) with rA, using (83),

i = rAξ
A = −i‖ξ‖2

(
−
rBfBfDrD

fCfC
+ rDrD

)
.(98)

We solve for ‖ξ‖2 in (98) and using (97), we obtain

ξA =
i

(
− rBfBfA

fCfC
+ rA

)
r
B
fBfDrD

fCfC
− rDrD

=
i
(
− z

BfBfA
fCfC

+ zA
)

zBfBfDzD

fCfC
− ε

.(99)

Now, we are ready to show:

Theorem 5.1. Let N := {z ∈ Cn+1 | f = 0} where f(0) = 0, ∂f = 0, ∂f 6= 0.
Let S := {z ∈ Cn+1 | r = |z1|2 + |z2|2 + · · · + |zn+1|2 − ε = 0} for some ε > 0.
Let M := N ∩ S, we assume ∂f ∧ dr 6= 0 along M . Consider the pseudohermitian
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structure defined by θ = −i∂r on M . Then for any U = uA ∂
∂zA

, V = vB ∂
∂zB
∈ HzM

and z ∈M , we have

(100) Tor(z)(U, V ) = 2 Re
(
iuBvA

∂ξA

∂zB

)
where

ξA =
i
(
− zBfBfA

fCfC
+ zA

)
zBfBfDzD
fCfC

− ε
.

Proof of Theorem 5.1.
Step 1. We first find a relation between the torsion tensor T and the Webster
torsion Tor. Let U = µαXα, V = νβXβ ∈ T 1,0M . By computation similar to (78),
we have

Tor(U, V ) = 2Re(i〈T (ξ, U), V 〉) .(101)

Step 2. By computation similar to (79), we have

T (ξ, U) = (UξA) ∂

∂zA
.(102)

We check that (UξA) ∂

∂zA
∈ T 1,0M as follows. Using U = uA ∂

∂zA
, we have

(UξA)fA = U(ξAfA)− ξAU(fA) = 0 .

Step 3. Let U = uA ∂
∂zA

, V = vA ∂
∂zA

such that uArA = 0, uAfA = 0, vArA =
0, vAfA = 0. Using (101), (102), we have

Tor(U, V ) = 2Re
(
i

〈
(UξA) ∂

∂zA
, vA

∂

∂zA

〉)
= 2Re

(
i

〈
uB

∂ξC

∂zB
∂

∂zC
, vA

∂

∂zA

〉)
= 2Re

(
iuBvA

∂ξA

∂zB

)
.

�

Example 5.2. Let f = (z3)2−z1z2. Let M := {f = 0}∩{|z1|2 + |z2|2 + |z3|2 = 1}.
We may see that the the codimension 3 real hypersurface M is spherical as follows.
Using the map F given by

z̃1 = − 1√
2

(z1 − iz2) ,

z̃2 = 1√
2

(z1 + iz2) ,

z̃3 = z3 ,
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the CR manifold M0 given by{
(z1)2 + (z2)2 + (z3)2 = 0 ,
|z1|2 + |z2|2 + |z3|2 = 1

is mapped to {
2z̃1z̃2 − (z̃3)2 = 0 ,

|z̃1|2 + |z̃2|2 + |z̃3|2 = 1 .
Together with the map φ : S3 →M0 given by

(ζ, η) 7→
(
ζ2 − η2
√

2
,
i(ζ2 + η2)√

2
,

2ζη√
2

)
=: (z1, z2, z3)

where S3 := {(ζ, η) ∈ C2 : |ζ|2 + |η|2 − 1 = 0}. φ is well defined, holomorphic, onto.
By [2], M0 is CR diffeomorphic to S3/G where G = {I,−I}, so that M0 is locally
biholomorphic to S3. Hence, M is locally biholomorphic to S3. Then zBfB = 0.
By (100) Tor(z)(U, V ) = 0, ∀z ∈M .
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