
Commentationes Mathematicae Universitatis Carolinae

Stoyu T. Barov
More on exposed points and extremal points of convex sets in Rn and Hilbert
space

Commentationes Mathematicae Universitatis Carolinae, Vol. 64 (2023), No. 1, 63–72

Persistent URL: http://dml.cz/dmlcz/151799

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 2023

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/151799
http://dml.cz


Comment.Math.Univ.Carolin. 64,1 (2023) 63–72 63

More on exposed points and extremal points

of convex sets in Rn and Hilbert space

Stoyu T. Barov

Abstract. Let V be a separable real Hilbert space, k ∈ N with k < dimV, and
let B be convex and closed in V. Let P be a collection of linear k-subspaces

of V. A point w ∈ B is called exposed by P if there is a P ∈ P so that
(w + P ) ∩ B = {w}. We show that, under some natural conditions, B can be
reconstituted as the convex hull of the closure of all its exposed by P points
whenever P is dense and Gδ. In addition, we discuss the question when the set
of exposed by some P points forms a Gδ-set.

Keywords: convex set; extremal point; exposed point; Hilbert space; Grassmann
manifold

Classification: 52A20, 52A07

1. Introduction

Throughout this paper V stands for a separable real Hilbert space. Thus V is

isomorphic to either Rn or l2. Let k ∈ N with k < dimV, B be convex and closed

in V and let Gk(V) consist of all k-dimensional linear subspaces of V with the

natural topology; see Definition 1. Let P ⊂ Gk(V) and w ∈ B. We say that w is

exposed by P if (w + P ) ∩B = {w} for some P ∈ P . This definition generalizes

each of the both concepts—an exposed point and a 0-exposed point—as defined in

[6] and [1] respectively, that is, a point of B ⊂ Rn that is exposed by Gn−1(Rn).

By X k
p (B,P) we denote the set of all exposed by P points in B. Next, if C ⊂ V

then we say that C is a P-imitation of B if B + P = C + P for every P ∈ P .

Further, X k
t (B,P) stands for the set of extremal points of B with respect to P

and is defined as X k
t (B,P) =

⋂{C ⊂ B : C is a closed P-imitation of B}. The

following exposed point theorem is proved in [5, Theorem 10].

Theorem 1. Let k ∈ N with k < dimV, let B ⊂ V be closed and convex, and

let P be a Gδ-subset of Gk(V) such that P ⊂ intP . Then X k
p (B,P) is dense in

X k
t (B,P).
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One of the goals of the current paper is to make use of the exposed point the-

orem and to prove the following theorem of Krein–Milman type; for example, see

[15, Theorem 9.4.6]. It allows us, under some natural conditions, to reconstitute

a closed convex set B in V as the convex hull of the closure of the set of all

exposed by P—a dense Gδ-subset of Gk(V)—points in B. In this connection,

let us mention the theorem of V. L. Klee, see [12, Theorem 2.3], which is about

a reconstruction of a locally compact closed convex set B in a normed linear

space, and B contains no line. Further, it is worth pointing out the theorem of

V. Kanellopoulos, see [11, Theorem 1.1], that is of a similar type and is also an

extension of Asplund’s theorem, see [1], and Straszewicz theorem, see [16]. Recall

that a k-hyperplane is a plane with codimension k and a halfspace of a plane L

in V is any subset of L that consists of a hyperplane of L along with one of its

sides. For the concept of a derived face the reader can refer to Definition 2. We

have the following reconstitution theorem.

Theorem 2. Let k ∈ N with k < dimV, let B ⊂ V be closed and convex that

contains no k-hyperplane and let P be a dense Gδ-subset of Gk(V). If there is

no derived face of B that is a halfspace of a k-hyperplane then

〈X k
p (B,P)〉 =

〈
X k

p (B,P)
〉
= B.

Let us point out that the requirement for P to be Gδ in both Theorem 1

and Theorem 2 cannot be omitted as Example 1 shows. Now, we need to make

a couple of definitions. If H ⊂ Rn is a linear subspace of Rn and k ∈ N with

k ≤ dimH then we define Gk(H) as Gk(H) = {L ∈ Gk(Rn) : L ⊂ H}. A compact

and convex set B in Rn is called a convex body if dimB = n. Next, let us

discuss the following question: given B ⊂ Rn closed and convex and 1 ≤ k < n

when can we find a nonempty subset P in Gk(Rn) so that X k
p (B,P) is a Gδ-set?

Here, we should mention the example of V. L. Klee, see [12, Example (6.10)],

that is, a convex body B in R3 such that X 2
p (B,G2(R3)) is not Gδ. More refined

example is constructed by H.H. Corson in [7]—a convex body B ⊂ R3 such that

X 2
p (B,G2(R3)) is of the first category and hence does not contain a dense Gδ-

subset of X 2
t (B,G2(R3)). Further, S. Barov and J. J. Dijakstra in [5, Example 2]

show that there is a convex body B in R3 for which the set of points exposed by

G1(R3) \ G1(H), for some linear two-dimensional plane H in R3, is not a Gδ-set.

Moreover, [5, Example 3] is an expansion of Corson’s example, namely, there is

a convex body B in Rn such that X k
p (B,Gk(Rn)) does not contain a dense Gδ-

subset of the complete space X k
t (B,Gk(Rn)) whenever 2 ≤ k < n. In view of all

those examples the following Straszewicz-type theorem is on the “positive” side

of the discussion and is a slight improvement over [5, Theorem 3].
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Theorem 3. Let n ∈ N with n ≥ 2 and let B be closed and convex in Rn. Let

P ⊂ G1(Rn) such that G1(H) \ P is countable for every H ∈ G2(Rn). Then

X 1
p (B,P) is a dense Gδ-set in X 1

t (B,P).

Our paper is arranged as follows. In the introduction section we present and

discuss our main results. In Section 2 we introduce the main concepts and give

some basic properties and in Section 3 we prove our main theorems.

2. Definitions and preliminaries

The inner product in V is denoted by x · y and 0 always stands for the zero

vector. The norm on V is given by ‖u‖ =
√
u · u and the metric d is given by

d(u, v) = ‖v − u‖. Let A be a subset of V. We have that aff A denotes the affine

hull of A, Ā the closure, and intA the interior of A in V. Next, 〈A〉 stands for

the convex hull of A, ∂A means the relative boundary of A, that is, the boundary

with respect to the affine hull of A and we define A◦ = A \ ∂A. Note that if A

is convex and nonempty in a finite-dimensional space then A◦ 6= ∅ and Ā◦ ⊂ A.

We also define the linear space

A⊥ = {v ∈ V : v · x = v · y for all x, y ∈ A}.

In addition, if A is a closed linear subspace of V, then (A⊥)⊥ = A and A⊥ is

called the orthocomplement of A. Also, we define codimA = dimA⊥ ∈ {0, 1,
2, . . . ,∞}. Notice that codimA = codimaff A. A plane in V is a closed affine

subspace of V; a k-plane in V is a k-dimensional affine subspace of V. Now, let L
be a plane in V. A plane H ⊂ L is called a k-hyperplane in L if dim(H⊥∩L) = k.

In other words, a k-hyperplane is a plane with codimension k in the ambient space.

A hyperplane H of L is a plane of L of codimension 1. The two components of

L\H are called the sides of the hyperplane H and the union of H with one of its

sides is called a halfspace of L. A halfspace of a line is called a halfline or a ray.

We say that H supports a subset A of L at x if x ∈ H ∩ A and A is contained

in a halfspace that is associated with H .

Definition 1. Let B = {v ∈ V : ‖v‖ ≤ 1} be the unit ball in V and let Gm(V)
stand for the collection of all m-dimensional linear subspaces of V. As in [5], we

topologize Gm(V) by defining a metric ̺ on Gm(V):

̺(L1, L2) = dH(L1 ∩ B, L2 ∩ B),

where dH is the Hausdorff distance, associated with d, between two nonempty

compact subsets of B; see also [14, 1.11, page 95]. With the generated topology

Gm(V) is complete; when V is finite-dimensional then Gm(V) is even compact and

is called Grassmann manifold.
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Definition 2. Let B be a closed and convex set in V. A nonempty subset F

of B is called a face of B if there is a hyperplane H of aff B that supports B

with the property F = B ∩ H . Note that F is also closed and convex and

that codimF > codimB. If F is a face of B we write F ≺ B. We say that

a subset F of B is a derived face of B if F = B or there exists a sequence

F = F1 ≺ F2 ≺ · · · ≺ Fm = B for some m. Furthermore, if B ⊂ Rn and F ≺ B

then we say that F is a facet of B if dimF = dimB − 1. Observe that, in this

case, F has a nonempty interior in ∂B. Besides, these interiors are disjoint for

different facets of B. Therefore, by separability, a closed convex set in Rn can

have only countably many facets.

Definition 3. Let P be a collection of linear subspaces of a vector space V. We

say that an affine subspace H of V is consistent with P if there is a P ∈ P such

that z + P ⊂ H for some z ∈ H . Let B be a convex and closed subset of V.
A nonempty subset F of B is called a P-face of B if F = B ∩ H for some

hyperplane H of V that supports B and that is consistent with P . A derived

P-face is a derived face of a P-face. If k ∈ N and k < dimV then we define the

set Ek(B,P) as the closure of

⋃
{F : F is a derived P-face of B with codimF > k}.

We finish this section with one more definition. A continuous map f : X → Y

is called proper if the pre-image of every compactum in Y is compact. Recall

that in metric spaces a continuous map is proper if and only if it is closed and

every fibre is compact; see [8, Theorem 3.7.18].

3. Proofs of the main results

We are going to establish our main theorems. As the following theorem shows

if B◦ = ∅ or codimB ≥ k then we have a stronger result than Theorem 2.

Theorem 4. Let k ∈ N with k < dimV, let B ⊂ V be closed and convex, and

let P be somewhere dense in Gk(V).

(a) If B◦ = ∅ and P is Gδ, or

(b) if codimB ≥ k

then B = X k
p (B,P).

Proof: The theorem follows directly from [5, Theorem 12] and [5, Remark 2]. �

Let Dk(B) be the union of all derived faces of B that are halfspaces of k-

hyperplanes. Theorem 2 follows immediately from the following more general

result having in mind that Dk(B) = ∅ by assumption of Theorem 2, and that

〈 X k
p (B,P) 〉 ⊂ 〈X k

p (B,P)〉 holds generally.
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Theorem 5. Let k ∈ N with k < dimV, let B ⊂ V be closed and convex that

contains no k-hyperplane and let P be a dense Gδ-subset of Gk(V). Then

〈
X k

p (B,P) ∪ Dk(B)
〉
=

〈
X k

p (B,P) ∪ Dk(B)
〉
= B.

Proof: If codimB ≥ k then the theorem follows from Theorem 4. So, without

loss of generality, we can assume that codimB < k. Next, we will show the

following key claim.

Claim 1. We have B = 〈Ek(B,Gk(V)) ∪ Dk(B)〉.

Proof: Indeed, striving for a contradiction assume that B 6⊂ 〈Ek(B,Gk(V)) ∪
Dk(B)〉. Consider the collection

F = {F : F is a derived face of B such that

F 6⊂ 〈Ek(B,Gk(V)) ∪Dk(B)〉}.

Since B is a derived face of itself we have that B ∈ F . By the definition of

Ek(B,Gk(V)), we have that if F ∈ F then codimF ≤ k. Thus we can choose an

F ∈ F with a maximal codimension. By [4, Lemma 17], we get that F ◦ 6= ∅. Set
L = aff F and observe that codimL ≤ k. Next, since B contains no k-hyperplane

we have that F 6= L. Therefore, we can pick a point x ∈ ∂F . By Hahn–Banach

theorem, we consider a supporting hyperplane H1 at x to F in L. Suppose that

H1 ⊂ F . Then we must have that codimH1 = k + 1 and codimL = k. By the

structure of closed convex sets, see [10, §2.5], we have that if y ∈ L then either

(y−x+H1) ⊂ F or (y−x+H1)∩ F = ∅. Next, let l̂ ⊂ L be a line through x with

l̂ ⊥ H1. Observe that, S = l̂ ∩ F is either a nondegenerate line segment or a ray

such that in both cases x is an end point. Clearly, F =
⋃{z − x +H1 : z ∈ S}.

Further, if S is a ray then we get that F is a halfspace of the k-hyperplane L.

Hence F ⊂ Dk(B), a contradiction. If S is a line segment then there is a w ∈ L

such that S = 〈{x,w}〉. In this case ∂F = H1 ∪ (w − x + H1). Consequently,

∂F ⊂ Ek(B,Gk(V)) since codimH1 = codim(w − x + H1) = k + 1. Hence F =

〈∂F 〉 ⊂ 〈Ek(B,Gk(V))〉, a contradiction again. Therefore, H1 6⊂ F and we can

pick an y ∈ H1\F . Further, since F is closed and convex, we can find the (unique)

F -supporting hyperplane H2 through y in L so that d(H2, F ) = d(y, F ) > 0; see

[13, page 347]. Notice that H1 6= H2 and y ∈ H1 ∩ H2. Furthermore, by [3,

Lemma 8], there is a line l ∈ G1 with y+ l ⊂ L and ψl↾F → V is proper, where

ψl : V → l⊥ denotes the orthogonal projection along l onto l⊥. Now, let z ∈ F .

If z ∈ ∂F then, by Hahn–Banach theorem, there is a face F ′ of F that contains z.

Clearly, F ′ is a derived face of B with codimF ′ > codimF . By the choice of F

we get that F ′ ⊂ 〈Ek(B,Gk(V)) ∪ Dk(B)〉. Hence z ∈ 〈Ek(B,Gk(V)) ∪ Dk(B)〉.
That argument also implies that ∂F ⊂ 〈Ek(B,Gk(V)) ∪ Dk(B)〉. Now, suppose
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that z ∈ F ◦. Since ψl↾F → V is proper, we get that K = (z + l) ∩ F is a line

segment. So K ⊂ 〈Ek(B,Gk(V)) ∪ Dk(B)〉 since the end points of K are in ∂F .

Hence F ⊂ 〈Ek(B,Gk(V)) ∪Dk(B)〉. We arrive at a contradiction. Consequently,

we obtain that B ⊂ 〈Ek(B,Gk(V)) ∪Dk(B)〉. Thus the claim holds. �

Further, since codimB < k, by [5, Theorem 4] and [5, Lemma 9], we have

that Ek(B,P) = Ek(B,Gk(V)) = X k
t (B,P) = X k

t (B,Gk(V)). Now, we can ap-

ply the exposed point theorem, see [5, Theorem 10], to get that X k
p (B,P) =

X k
t (B,P). Consequently, B = 〈Ek(B,Gk(V)) ∪ Dk(B)〉 = 〈 X k

p (B,P) ∪ Dk(B)〉.
Since

〈
X k

p (B,P) ∪ Dk(B)
〉
⊂

〈
X k

p (B,P) ∪ Dk(B)
〉
, the theorem follows. �

Example 1. A convex body in Rn is smooth if there is a unique supporting

hyperplane at each point of its boundary; see [9]. In [2, Section 5], for every n ≥ 2

smooth symmetric convex bodies B(n) in Rn and dense sets P(n) in Gn−1(Rn)

are constructed such that the union of all facets of B(n) is dense in the boundary

of B(n) and Xn−1
p (B(n),P(n)) = ∅ for n ≥ 2. This example is closely related

to Theorem 2 and Theorem 5 and shows that the Gδ-condition in both theorems

cannot be omitted.

We have the following corollary that is closely related to the finite-dimensional

version of Krein–Milman theorem in [15, Theorem 9.4.6], along with [16] as well

as to [12, Theorem 2.3].

Corollary 6. Let n ∈ N with n ≥ 2, let B & Rn be closed and convex, and let

P be a dense Gδ-subset of Gn−1(Rn). If every face of B is compact then

B =
〈
Xn−1

p (B,P)
〉
.

Example 2. Let C = {(x, y) : x ∈ R and y = x2} and B = 〈C〉. Then B is

a closed and convex set in R2. Notice that at every point x of the boundary there is

a unique supporting line to B that, in fact, exposes x. Thus X 1
p (B,G1(R2)) = C.

Although B itself contains a ray, Corollary 6 is applicable since every face of B

is compact.

Further, we are going to prove Theorem 3. Before that we need a lemma.

Lemma 7. Let n ∈ N with n ≥ 2 and let B be closed and convex in Rn.

Let P ⊂ G1(Rn) such that G1(L) ∩ P is a dense Gδ-subset of G1(L) for every

L ∈ G2(Rn). Then X 1
p (B,P) is dense in X 1

t (B,P).

Proof: Let ε > 0. First of all, observe that P must be dense in G1(Rn). If

n = 2 then we are done by [5, Theorem 10]. So assume that n ≥ 3 and, in

view of Theorem 4, we may assume that dimB = n. By [5, Theorem 4] and [5,
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Lemma 9], we have that E1(B,G1(Rn)) = X 1
t (B,P). Let F = H ∩ B be a face

of B, where H is a supporting hyperplane to B.

Case 1. Let dimF < n − 1. Then there is a hyperplane Ĥ in H such that

F ⊂ Ĥ . Let x ∈ F . Let L be a 2-plane in H with x ∈ L and L \ Ĥ 6= ∅. Thus

dimL∩ Ĥ = 1. By [5, Remark 2] we can find an l ∈ P such that (x+l)∩ Ĥ = {x}
and x+ l ⊂ L. This implies that (x + l) ∩B = {x}, i.e. x ∈ X 1

p (B,P).

Case 2. Let dimF = n − 1. In this case F is a facet of B. Take an x ∈ ∂F .

Let y ∈ F ◦ and z ∈ B◦. Consider the 2-plane L = aff{x, y, z}. Put BL = L ∩ B
and P̂ = G1(L− x) ∩P . Now, we have that P̂ is a dense Gδ-subset of G1(L− x).

Further, observe that F̂ = H ∩ BL is a facet of BL and x ∈ ∂F̂ . Hence x ∈
E1(BL,G1(L − x)). Besides, by [5, Theorem 4] and [5, Lemma 9], we get that

x ∈ X 1
t (BL, P̂). Thus we can apply [5, Theorem 10] for BL in L to find an l ∈ P̂

and x̂ ∈ BL so that ‖x − x̂‖ < ε and (x̂ + l) ∩ BL = {x̂}. Now, clearly, we have

(x̂+ l) ∩B = {x̂}. Consequently, ∂F ⊂ X 1
p (B,P).

From both cases we obtain that X 1
p (B,P) = E1(B,G1(Rn)) and, therefore,

X 1
p (B,P) = X 1

t (B,P). That completes the proof. �

Now, let us prove Theorem 3.

Proof of Theorem 3: If dimB < n then, by [5, Remark 2], X 1
p (B,P) = B

and the theorem is proved. Besides, if n = 2 then, by [5, Theorem 3], we are done

as well. So we may assume that dimB = n with n ≥ 3. By Lemma 7 we have

that X 1
p (B,P) = X 1

t (B,P). Now, we are going to show that X 1
p (B,P) is a Gδ-set.

Let Fm ≺ Fm−1 · · · ≺ F1 = B be a sequence of derived faces. We call a sequence

Fm ≺ Fm−1 · · · ≺ F1 = B of derived faces regular if dimFk − dimFk+1 = 1 for

every 1 ≤ k < m. Also, we call a derived face F of B regular if for F exists

a regular sequence. As it is noticed in Definition 2 the set B has countably

many facets. Consequently, we can easily get that B has countably many regular

derived faces and one of them is B itself. Next, let x ∈ B. Inductively, we

construct a sequence x ∈ Fm ≺ Fm−1 ≺ · · · ≺ F1 = B of derived faces such that

the following two conditions hold:

(i) either x ∈ F ◦
m or codimFm > m− 1 (or both) holds, and

(ii) if m > 2 then Fm−1 ≺ · · · ≺ F1 = B is a regular sequence.

Set F1 = B and assume that we have constructed a regular sequence x ∈ Fk ≺
Fk−1 ≺ · · · ≺ F1 = B for some 1 ≤ k. Clearly, codimFk = k − 1. If x ∈ F ◦

k

we are done. Otherwise, we will have that x ∈ ∂Fk. So we are in a position to

add one more element to the sequence under construction. We apply the Hahn–

Banach theorem to find a supporting hyperplane L̂ at x to Fk in L = aff Fk. Set

Fk+1 = L̂ ∩ Fk. Observe that, if codimFk+1 > k we are done. Otherwise, we

would have that codimFk+1 = k and, therefore, x ∈ Fk+1 ≺ Fk · · · ≺ F1 = B



70 S.T. Barov

would be a regular sequence. Obviously, after finitely many steps, we will have

both conditions (i) and (ii) satisfied and we will get our sequence constructed.

Claim 2. If dimFm−1 ≥ 3 and dimFm−1 − dimFm ≥ 2 then every y ∈ Fm is

an exposed by P point of B.

Proof: Consider a coordinate system such that y = 0. Let H be a supporting

hyperplane at 0 to Fm−1 in aff Fm−1 such that Fm = H ∩ Fm−1. Then the

codimension of Fm in H is at least 1. Therefore, we have room enough to find

P ∈ P ∩ G1(H) such that P ∩ Fm = {0}. Hence P ∩ B = {0}. The claim is

proved. �

The next claim is, in fact, [5, Claim 3] when G1(Rn) is replaced by P . With

this substitution its proof is virtually the same as the proof of [5, Claim 3] and,

therefore, we omit it.

Claim 3. Let F be a derived face of B. If there is a y ∈ X 1
p (B,P) ∩ F ◦ then

F ⊂ X 1
p (B,P).

Further, we go to the following important claim.

Claim 4. The set

T = {x ∈ B \ X 1
p (B,P) : dimFm−1 = 2 and Fm = {x}}

is countable.

Proof: Let x ∈ T and let us consider the respective sequence x ∈ Fm ≺
Fm−1 ≺ Fm−2 · · · ≺ F1 = B of derived faces for x. Since dimB = n ≥ 3 we

have that m ≥ 3. Then Fm−1 ≺ Fm−2 · · · ≺ F1 = B is a regular sequence

of derived faces. Thus Fm−1 is a regular derived face with dimFm−1 = 2.

In addition, since Fm = {x} we get that x ∈ ∂Fm−1 and x is exposed by

P̂ = G1(aff Fm−1 − x) \ P . Further, since P̂ is countable, we have that the set

{y ∈ Fm−1 : y is exposed by P̂} is also countable. Now, having in mind that the

set of all regular derived faces of B is countable, we get that T must be countable

as well. That completes the proof. �

Let x ∈ B \ X 1
p (B,P). Suppose that the sequence x ∈ Fm ≺ Fm−1 · · · ≺

F1 = B is not regular. Then we have dimFm−1 − dimFm ≥ 2. Next, we have

that m > 2. Indeed, if m = 2 then dimB − dimF2 > 1 and, by Claim 2, we

would have had x ∈ X 1
p (B,P). Further, if dimFm−1 ≥ 3 then, by Claim 2, we

would again get that x ∈ X 1
p (B,P). Consequently, we have that dimFm−1 = 2,

Fm = {x} and x ∈ ∂Fm−1. So we are under the hypotheses of Claim 4. Hence,

in this case, x ∈ T with T countable. Now, let us assume that the sequence

x ∈ Fm ≺ Fm−1 · · · ≺ F1 = B is regular. Then, notice that, codimFm = m− 1.
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Therefore, we get that x ∈ F ◦
m. Now, we apply the same argument as in the proof

of [5, Theorem 3]. Namely, consider the countable set

L = {F ◦ : F is a regular derived face of B with F ◦ ∩ X 1
p (B,P) = ∅}.

Since x ∈ F ◦

m \X 1
p (B,P), by Claim 3, we have that F ◦

m ∈ L. Next, every F ◦ ∈ L
is an open subset of a closed set in Rn, hence σ-compact. Since L is countable,⋃L is also σ-compact with

⋃L ⊂ B \ X 1
p (B,P). Consequently, we get that(⋃L

)
∪ T = B \ X 1

p (B,P) with
(⋃L

)
∪ T being a σ-compact subset of B.

Hence X 1
p (B,P) is Gδ-subset in B and, of course, in X 1

t (B,P) as well. That

completes the proof of the theorem. �
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