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A note on functional tightness and minitightness

of space of the G-permutation degree

Dimitrios N. Georgiou, Nodirbek K. Mamadaliev,

Rustam M. Zhuraev

Abstract. We study the behavior of the minimal tightness and functional tight-
ness of topological spaces under the influence of the functor of the permutation
degree. Analytically:

a) We introduce the notion of τ -open sets and investigate some basic proper-
ties of them.

b) We prove that if the map f : X → Y is τ -continuous, then the map
SPnf : SPnX → SPnY is also τ -continuous.

c) We show that the functor SPn preserves the functional tightness and the
minimal tightness of compacts.

d) Finally, we give some facts and properties on τ -bounded spaces. More
precisely, we prove that the functor of permutation degree SPn preserves the
property of being τ -bounded.

Keywords: τ -open set; τ -bounded space; functional tightness; minimal tightness

Classification: 54C05, 54B20

1. Introduction

At the Prague Topological Symposium in 1981, V. V. Fedorchuk, see [9], posed

the following general problem in the theory of covariant functors, which deter-

mined a new direction for research in the field of Topology:

◦ Let P be some geometric property and F be a covariant functor. If

a topological space X has the property P , then whether has F (X) the

same property P? Or vice versa, that is, if F (X) has the property P ,

does it follow that the topological space X has also the property P?

In our case, X is a topological T1-space and F ∈ {SPn
G, exp}.

In [16], a functor O : Comp → Comp of weakly additive functionals acting in

the category of compact spaces and their continuous mappings is defined. It was

proved that the functor O : Comp → Comp satisfies the normality conditions,

except the preimage preservation condition.
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The functor of Radon functionals in the category of weakly additive functionals

was investigated in [7] and it was proved that this functor is normal.

In [9] and [10] V.V. Fedorchuk and V.V. Filippov investigated a functor of

G-permutation degree and it was proved that a functor of G-permutation de-

gree is a normal functor in the category of compact spaces and their continuous

mappings.

In recent researches an interest in the theory of cardinal invariants and their

behavior under the influence of various covariant functors is increasing fast. In

[6], [2], [3], [8], [4], [12], [5] the authors investigated several cardinal invariants

under the influence of some weakly normal and normal functors and hyperspaces.

The current paper is devoted to the investigation of cardinal invariants such

as the functional tightness, the minimal tightness and some other topological

properties of the space of permutation degree, as well as, some basic properties

of τ -bounded spaces are studied.

The concept of functional tightness of a topological space was first introduced

by A. Arkhangel’skii in [1]. As it turned out, cardinal invariants such as the

minimal tightness and the functional tightness are in many ways similar to each

other, and for many natural and classical cases they coincide. Moreover, there is

an example of a topological space, the minimum tightness of which is countable,

and the functional tightness is uncountable, see [17].

In [15], the action of closed and R-quotient maps on functional tightness is

investigated. It is proved that the R-quotient mapping does not increase func-

tional tightness. As well as, in [15] it is proved that the functional tightness of the

product of two locally compact spaces does not exceed the product of functional

tightnesses of those spaces.

Throughout the paper all spaces are assumed to be regular, and τ means an

infinite cardinal number.

2. Preliminary notes

The set of all nonempty closed subsets of a topological space X is denoted by

expX . The family of all sets of the form

O〈U1, U2, . . . , Un〉 =

{

F : F ∈ expX, F ⊂
n
⋃

i=1

Ui, F ∩ Ui 6= ∅, i = 1, . . . , n

}

where U1, U2, . . . , Un are open subsets of X , generates a base of the topology on

the set expX . This topology is called the Vietoris topology. The set expX with

the Vietoris topology is called exponential space or the hyperspace of a space X .
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We put

expnX = {F ∈ expX : |F | ≤ n},

see [11].

It is known that a permutation group is the group of all permutations, that is

one-to-one mappings X → X . A permutation group of a set X is usually denoted

by S
(

X
)

. Especially, if X = {1, 2, . . . , n}, then S
(

X
)

is denoted by Sn.

Let Xn be the nth power of a compact space X . The permutation group Sn of

all permutations acts on the nth power Xn as permutation of coordinates. The

set of all orbits of this action with the quotient topology is denoted by SPnX .

Thus, points of the space SPnX are finite subsets (equivalence classes) of the

product Xn.

Two points (x1, x2, . . . , xn), (y1, y2, . . . , yn) ∈ Xn are considered to be equiva-

lent if there exists a permutation σ ∈ Sn such that yi = xσ(i). The space SPnX

is called the n-permutation degree of the space X .

Equivalent relation by which we obtain the space SPnX is called the symmetric

equivalence relation. The nth permutation degree is a quotient of Xn. Therefore,

the quotient map, denoted by πs
n : X

n → SPnX , is defined as

πs
n((x1, x2, . . . , xn)) = [(x1, x2, . . . , xn)]

for every (x1, x2, . . . , xn) ∈ Xn.

Let G be a subgroup of the permutation group Sn and X be a compact space.

The group G acts on the nth power of the space X as permutation of coordinates.

The set of all orbits of this action with the quotient topology is denoted by SPn
GX .

Thus, points of the space SPn
GX are finite subsets (equivalence classes) of the

product Xn. The space SPn
GX is called G-permutation degree of the space X .

Equivalence relations by which we obtained spaces SPn
GX and expnX are

called the symmetric and hypersymmetric equivalence relations, respectively.

Any symmetrically equivalent points in Xn are hypersymmetrically equivalent.

But the inverse is not correct, in general. So, for x 6= y points (x, x, y), (x, y, y)

are hypersymmetrically equivalent, but not symmetrically equivalent.

Let f : X → Y be a continuous mapping. For an equivalence class [(x1, x2, . . . ,

xn)] ∈ SPn
GX we put

SPn
Gf [(x1, x2, . . . , xn)] = [(f(x1), f(x2), . . . , f(xn))].

Thereby, a mapping SPn
Gf : SP

n
GX → SPn

GY is defined. It is easy to check that

the operation SPn
G so constructed is a normal functor in the category of compacts.

This functor is called the functor of G-permutation degree.

The G-symmetric equivalence class [(x1, x2, . . . , xn)] uniquely determines the

hypersymmetric equivalence class [(x1, x2, . . . , xn)]
hc containing it. Thereby,
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a mapping

πh
n,G : SPn

GX → expnX,

is defined representing the functor expn as the factor functor of the functor SPn
G,

see [9], [10].

3. On τ-open sets

Recall that a subset A of a topological space X is called τ-closed, see [14], if for

some B ⊂ A with |B| ≤ τ , the closure [B] in X of the set B is contained in A.

The τ -closure of the set A is defined as

[A]τ =
⋃

{

[B] : B ⊂ A, |B| ≤ τ
}

.

Definition 3.1. Let X be a topological space. A set F ⊂ X is called τ -open in

the space if its complement X − F is τ -closed.

The τ -interior of a set A ⊂ X is the union of all τ -open sets contained in A,

i.e.

IntτA =
⋃

{U : U ⊂ A and U is τ -open}.

It is easy to check that the τ -interior of every set is τ -open.

Proposition 3.1. For every A ⊂ X we have IntτA = X − [X −A]τ .

Proof: By definition of the τ -closure operation we have

[X −A]τ =
⋂

{M : X −A ⊂M and M is τ -closed in X}.

Hence

X − [X −A]τ = X −
(

⋂

{M : X −A ⊂M and M is τ -closed in X}
)

.

Now by De Morgan’s laws we have

X − [X −A]τ =
⋃

{X −M : X −A ⊂M and M is τ -closed in X}.

Therefore,

X − [X −A]τ =
⋃

{X −M : X −M ⊂ A and M is τ -closed in X} = IntτA.

�

The following example shows that a τ -open set need not be open, in general.

Example 3.1. Let R be the real line and θ the family consisting of all sets

whose cardinality of the complement is at most countable. It is easy to verify
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that (R, θ) is a topological space. Since any countable set is closed, the set of all

irrational numbers is ω-closed. Then the set of all rational numbers Q is ω-open,

but not open.

Proposition 3.2 ([4]). For a mapping f : X → Y of arbitrary topological spaces

X and Y the following conditions are equivalent:

1) A mapping f : X → Y is τ -continuous.

2) For every closed set F in Y , the preimage f−1(F ) is τ -closed in X .

3) For every τ -closed set F in Y , the preimage f−1(F ) is τ -closed in X .

4) f([A]τ ) ⊂ [f(A)]τ for an arbitrary subset A ⊂ X .

5) [f−1(B)]τ ⊂ f−1([B]τ ) for an arbitrary subset B ⊂ Y .

We generalize Proposition 3.2 as follows.

Proposition 3.3. For a mapping f : X → Y of arbitrary topological spaces X

and Y the following conditions are equivalent:

1) A mapping f : X → Y is τ -continuous.

2) For every closed set F in Y , the preimage f−1(F ) is τ -closed in X .

3) For every τ -closed set F in Y , the preimage f−1(F ) is τ -closed in X .

4) f([A]τ ) ⊂ [f(A)]τ for an arbitrary subset A ⊂ X .

5) [f−1(B)]τ ⊂ f−1([B]τ ) for an arbitrary subset B ⊂ Y .

6) f−1(IntτC) ⊂ Intτf
−1(C) for an arbitrary subset C ⊂ Y .

7) For every τ -open set V in Y , the preimage f−1(V ) is τ -open in X .

8) For every open set V in Y , the preimage f−1(V ) is τ -open in X .

Proof: For the implications 1) ⇒ 2), 2) ⇒ 3), 3) ⇒ 4) and 4) ⇒ 5) see Propo-

sition 3.2.

5) ⇒ 6) By Proposition 3.1 we have IntτC = Y − [Y − C]τ . Moreover,

f−1(IntτC) = f−1(Y − [Y − C]τ ).

Clearly, [f−1(Y − C)]τ ⊂ f−1([Y − C]τ ). Thus

X − f−1([Y − C]τ ) ⊂ X − [f−1(Y − C)]τ .

Therefore, we have

f−1(IntτC) ⊂ X − [f−1(Y − C)]τ = X − [X − f−1(C)]τ = Intτf
−1(C).

Hence,
f−1(IntτC) ⊂ Intτf

−1(C).

6) ⇒ 7) Assume that the inclusion f−1(IntτC) ⊂ Intτf
−1(C) holds for any

C ⊂ Y . Consider an arbitrary τ -open subset V of Y . It is known that any open
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set is τ -open. In this case, we have

f−1(V ) = f−1(IntτV ) ⊂ Intτ (f
−1(V )).

Therefore, f−1(V ) is τ -open in X .

7) ⇒ 8) It is known that any open set is τ -open. Then by 7) the preimage

f−1(V ) is τ -open in X .

8) ⇒ 1) Consider an arbitrary closed subset E of Y . We have to show that

the preimage f−1(E) is τ -closed in X . Since Y −E is an open set in Y , then the

preimage f−1(Y −E) is τ -open in X . By the equality f−1(Y −E) = X−f−1(E),

we directly obtain that f−1(E) is τ -closed in X . Proposition 3.3 is proved. �

4. The functional tightness of G-permutation degree

Definition 4.1 ([1]). Let X and Y be topological spaces. A function f : X → Y

is said to be τ -continuous if for every subspace A of X such that |A| ≤ τ , the

restriction f |A is continuous.

Definition 4.2 ([1]). Let X and Y be topological spaces. A function f : X → Y

is said to be strictly τ -continuous if for every subspace A of X such that |A| ≤ τ ,

the restriction of f to A coincides with the restriction to A of some continuous

function g : X → Y .

Operation SPn preserves τ -continuity of the mappings, i.e. the following

holds.

Theorem 4.1. If f : X → Y is a τ -continuous mapping, then the mapping

SPnf : SPnX → SPnY is τ -continuous.

Proof: Consider an arbitrary subset Ω of SPnX , such that |Ω| ≤ τ . Let us

prove that the restriction of the mapping SPnf onto the set Ω is continuous.

We put M = pr1((π
s
n)

−1(Ω)), where pr1 : X
n → X is defined as

pr1(z1, z2, . . . , zn) = z1,

for any (z1, z2, . . . , zn) ∈ Xn and πs
n : X

n → SPnX . It is clear that M ⊂ X

and |M | ≤ τ . Take an arbitrary element [x] from Ω. Let [x] = [(x1, x2, . . . , xn)],

where xi ∈ X , i = 1, 2, . . . , n. Then

SPnf([x]) = [(f(x1), f(x2), . . . , f(xn))] ∈ SPnY.

Suppose W is an arbitrary neighborhood of the orbit SPnf([x]) in SPnY . By

definition of the quotient mapping there exist neighborhoods V1, V2, . . . , Vn of
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the points f(x1), f(x2), . . . , f(xn) such that [V1 × V2 × · · · × Vn] ⊂ W . In this

case we have x1, x2, . . . , xn ∈ M . Since M ⊂ X and |M | ≤ τ , we have that

f |M : M → Y is continuous. By continuity of f on M , there exist neighborhoods

U1, U2, . . . , Un of the points x1, x2, . . . , xn satisfying the condition f(Ui) ⊂ Vi for

all i = 1, 2, . . . , n. Then

SPnf [U1 × U2 × · · · × Un] = [f(U1)× f(U2)× · · · × f(Un)] ⊂W.

It means that the restriction SPnf |Ω is continuous at the point [x]. Theorem 4.1

is proved. �

In [1] A. Arkhangel’skĭı introduced cardinal invariants so called the functional

tightness and the minimal tightness of a topological space as follows.

Definition 4.3 ([1]). The functional tightness of a space X is

t0(X) = min{τ : τ is an infinite cardinal and every τ -continuous

real-valued function on X is continuous}.

Definition 4.4 ([1]). The minimal tightness of a space X is

tm(X) = min{τ : τ is an infinite cardinal and every strictly τ -continuous

real-valued function on X is continuous}.

Note that we always have that tm(X) ≤ t0(X) for an arbitrary topological

space, since every strictly τ -continuous function is τ -continuous. Besides, in [1]

it was shown that tm(X) = t0(X) for an arbitrary normal space X .

For the function f : X → R, where R is the set of real numbers, the operation

fexp : expnX → R is defined as follows: each set F ∈ expnX is associated with

the maximum value of f on the set F , i.e.

fexp(F ) = max{f(x) : x ∈ F}.

This operation is defined correctly, since F is a finite set [4].

Lemma 4.1 ([4]). For any (strictly) τ -continuous function f : X → R, the func-

tion fexp : expnX → R is (strictly) τ -continuous.

Proposition 4.1 ([15], [14]). If φ : X → Y and ψ : Y → Z are (strictly) τ -

continuous mappings, then the composition ψ ◦φ : X → Z is (strictly) τ -continu-

ous.

For the function f : X → R, the operation fn
SP : SPnX → R is defined as fol-

lows: each orbit [x] = [(x1, x2, . . . , xn)] ∈ SPnX is associated with the maximum
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value of f on the orbit [x], i.e.

fn
SP ([x]) = max{f(xi) : i = 1, 2, . . . , n}.

Proposition 4.2. For any (strictly) τ -continuous function f : X → R, the func-

tion fn
SP : SPnX → R is (strictly) τ -continuous.

Proof: Let f : X → R be a (strictly) τ -continuous function. We show that

fn
SP = fexp ◦ πh

n is (strictly) τ -continuous, i.e. the following diagram is commu-

tative:

SPnX
πh

n
//

fn

SP
%%
❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

expnX

fexp

��

R

For an arbitrary orbit [x] = [(x1, x2, . . . , xn)] ∈ SPnX we have

(fexp ◦ π
h
n)([x]) = fexp(π

h
n([x])) = fexp({x1, x2, . . . , xn})

= max{f(xi) : i = 1, 2, . . . , n} = fn
SP ([x]).

By Lemma 4.1 in [4] and Proposition 4.1 in [15], [14], the function fn
SP :

SPnX → R is (strictly) τ -continuous. Proposition 4.2 is proved. �

Corollary 4.1. The function f : X → R is continuous if and only if the function

fn
SP : SPnX → R is continuous.

Theorem 4.2. For any infinite topological space X we have

t0(X) ≤ t0(SP
nX).

Proof: Suppose t0(SP
nX) ≤ τ . Consider an arbitrary τ -continuous function

f : X → R. By Proposition 4.2, the function fn
SP : SPnX → R is also τ -con-

tinuous. Since t0(SP
nX) ≤ τ , the function fn

SP : SPnX → R is continuous

and the function f : X → R is continuous as the restriction of the continuous

function fn
SP : SPnX → R on the subspace ∆ = {[(x, x, . . . , x)] : x ∈ X}, which

is homeomorphic to X . Theorem 4.2 is proved. �

Theorem 4.3. For any infinite topological space X we have

tm(X) ≤ tm(SPnX).

Proof: Suppose tm(SPnX) ≤ τ . Consider an arbitrary strictly τ -continuous

function f : X → R. By Proposition 4.2, the function fn
SP : SPnX → R is also

strictly τ -continuous. Since tm(SPnX) ≤ τ , the function fn
SP : SPnX → R

is continuous and the function f : X → R is continuous as the restriction of
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the continuous function fn
SP : SPnX → R on the subspace ∆ = {[(x, x, . . . , x)]:

x ∈ X}, which is homeomorphic to X . Hence tm(X) ≤ τ . Theorem 4.3 is

proved. �

Proposition 4.3 ([15]). If p : X → Y is a quotient mapping, then

t0(Y ) ≤ t0(X).

Theorem 4.4 ([14], [15]). If X is a locally compact space, then

t0(X × Y ) ≤ t0(X)t0(Y )

and

tm(X × Y ) ≤ tm(X)tm(Y )

for any topological space Y .

Note that there exists a quotient map from Xn onto SPnX for every topo-

logical space X and natural number n. It is known that any quotient map does

not increase the functional tightness, see Proposition 4.3 in [15]. Besides, by

Theorem 4.4 in [15], any finite product preserves functional tightness of locally

compact spaces.

Corollary 4.2. For an arbitrary infinite locally compact space X we have

t0(X) = t0(SP
nX).

Corollary 4.3. For an arbitrary infinite compact X we have

t0(X) = tm(X) = tm(SPnX) = t0(SP
nX).

5. On τ-bounded spaces

Definition 5.1 ([14]). A space X is called τ -bounded, if the closure in X of

every subset of cardinality at most τ is compact.

In this section we investigate some properties of τ -bounded spaces. Some of

the considered properties are related to hyperspaces.

Proposition 5.1 ([4]). Continuous image of a τ -bounded space is τ -bounded.

Theorem 5.1 ([4]). The Cartesian product of nonempty spaces is τ -bounded if

and only if all spaces are τ -bounded.

Since the space SPnX can be represented as a quotient space of the finite

product Xn, from above results one can easily obtain the following.
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Corollary 5.1. A topological space X is τ -bounded if and only if SPnX is

τ -bounded, where n is a natural number.

Remark 5.1. The above results are valid for any functor SPn
G.

Theorem 5.2. Let X be a topological space. Then the set

Γ = {F ∈ expX : F ∩A 6= ∅}

is τ -closed, if A ⊂ X is τ -closed in X .

Proof: Consider a subset Υ ⊂ Γ such that |Υ| ≤ τ . Let E ∈ [Υ] such that

E /∈ Γ, i.e. E ∩ A = ∅. Take a point xF from each set in the form F ∩ A, where

F ∈ Υ and put

M = {xF : F ∈ Υ}.

In this case, it is clear that M ⊂ A, and moreover, [M ] ⊆ A since A is τ -closed

and |M | ≤ τ . This implies that [M ] ∩ E = ∅ and that is why E ⊂ X \ [M ].

We obtain that E ∈ O〈X \ [M ]〉. On the other side, for every F ∈ Υ we have

F ∩M 6= ∅. Therefore we have F /∈ O〈X \ [M ]〉 for every F ∈ Υ, which means

that E /∈ [Υ]. The obtained contradiction proves the statement. Theorem 5.2 is

proved. �

Corollary 5.2. Let X be a topological space. If A ⊂ X is τ -open in X then

the set

Γ = {F ∈ expX : F ⊂ A}

is τ -open.

Proposition 5.2. A τ -bounded subset of a Hausdorff space is τ -closed.

Proof: Let X be a Hausdorff space and K ⊂ X its τ -bounded subspace. We

have to show that [A] ⊂ K for any subset A of K with |A| ≤ τ . Indeed, since K

is τ -bounded, we see that [A]K is compact. This implies that the subset [A]K is

closed as a compact subset of a Hausdorff space. Therefore, [[A]K ] = [A]K = [A]

and thus, [A] ⊂ K. This proves the τ -closedness of K. Proposition 5.2 is

proved. �

Proposition 5.3. A τ -closed subspace of a τ -bounded space is τ -bounded.

Proof: Let X be a Hausdorff τ -bounded space and M ⊂ X its τ -closed sub-

space. Now we show that M is τ -bounded too. Consider A ⊂ M with |A| ≤ τ .

Then [A] is compact since X is τ -bounded. On the other side, [A] ⊂M . We have

shown that M is τ -bounded. Proposition 5.3 is proved. �

Theorem 5.3. Let X be an infinite regular space, then
⋃

β is τ -closed in X for

every τ -bounded subspace β of the hyperspace expX .
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Proof: Let β be an arbitrary τ -bounded subspace of expX and let M =
⋃

β.

We consider A ⊂ M with |A| ≤ τ and show that [A] ⊂ M . Clearly, for every

x ∈ A there exists Fx ∈ β such that x ∈ Fx. We put

γ = {Fx : x ∈ A}.

Since β is τ -bounded and |γ| ≤ τ , we see that [γ] is compact. Then by The-

orem 2.5 in [13], the set
⋃

[γ] is closed in X . Therefore, since A ⊂
⋃

γ and
⋃

[γ] ⊂
⋃

β =M , M is τ -closed. Theorem 5.3 is proved. �
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